Biocatalyzed Sulfoxidation in Presence of Deep Eutectic Solvents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. General Procedure for the Biocatalyzed Sulfoxidations Catalyzed by mFMO in Buffer Containing NADES
3. Results
3.1. Effect of NADESs in the Biocatalyzed Sulfoxidation of Ethyl Phenyl Sulfide
3.2. Effect of Substrate Concentration
3.3. Synthesis of Other Sulfoxides
4. Discussion
5. Conclusions
Supplementary Materials
Funding
Acknowledgments
Conflicts of Interest
References
- Fabara, A.N.; Fraaije, M.W. An overview of microbial indigo-forming enzymes. Appl. Microbiol. Biotechnol. 2020, 104, 925–933. [Google Scholar] [CrossRef] [Green Version]
- Dijkman, W.P.; de Gonzalo, G.; Mattevi, A.; Fraaije, M.W. Flavoprotein oxidases: Classification and applications. Appl. Microbiol. Biotechnol. 2013, 97, 5177–5188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thodberg, S.; Jakobsen Neilson, E.H. The “Green” FMOs: Diversity, functionality and application of plant flavoproteins. Catalysts 2020, 10, 329. [Google Scholar] [CrossRef] [Green Version]
- Riebel, A.; de Gonzalo, G.; Fraaije, M.W. Expanding the biocatalytic toolbox of flavoprotein monooxygenases from Rhodococcus jostii RHA1. J. Mol. Catal. B Enzym. 2013, 88, 20–25. [Google Scholar] [CrossRef] [Green Version]
- Choi, H.S.; Kim, J.K.; Cho, E.H.; Kim, Y.C.; Kim, J.I.; Kim, S.W. A novel flavin-containing monooxygenase from Methylophaga sp strain SK1 and its indigo synthesis in Escherichia coli. Biochem. Biophys. Res. Commun. 2003, 306, 930–936. [Google Scholar] [CrossRef]
- Torres Pazmiño, D.E.; Riebel, A.; de Lange, J.; Rudroff, F.; Mihovilovic, M.D.; Fraaije, M.W. Efficient biooxidations catalyzed by a new generation of self-sufficient Baeyer-Villiger monooxygenases. ChemBioChem 2009, 10, 2595–2598. [Google Scholar] [CrossRef] [Green Version]
- Rioz-Martínez, A.; Kopacz, M.; de Gonzalo, G.; Torres Pazmiño, D.E.; Gotor, V.; Fraaije, M.W. Exploring the biocatalytic scope of a bacterial flavin-containing monooxygenase. Org. Biomol. Chem. 2011, 9, 1337–1341. [Google Scholar] [CrossRef] [Green Version]
- Holtmann, D.; Fraaije, M.W.; Arends, I.W.C.E.; Opperman, D.J.; Hollmann, F. The taming of oxygen: Biocatalytic oxyfunctionalizations. Chem. Commun. 2014, 50, 13180–13200. [Google Scholar] [CrossRef] [Green Version]
- Trost, B.M.; Rao, M. Development of chiral sulfoxide ligands for asymmetric catalysis. Angew. Chem. Int. Ed. 2015, 54, 5026–5043. [Google Scholar] [CrossRef]
- Carreño, M.C.; Hernández-Torres, G.; Ribagorda, M.; Urbano, A. Enantiopure sulfoxides: Recent applications in asymmetric synthesis. Chem. Commun. 2009, 6129–6144. [Google Scholar] [CrossRef]
- Aranda, C.; de Gonzalo, G. Biocatalyzed redox processes employing green reaction media. Molecules 2020, 25, 3016. [Google Scholar] [CrossRef] [PubMed]
- Domínguez de María, P.; Hollmann, F. On the (un)greenness of biocatalysis: Some challenging figures andsome pr omising options. Front. Microbiol. 2016, 6, 1257. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Friesen, J.B.; Lankin, J.B.; Chen, S.-N.; Pauli, G.F. Natural deep eutectic solvents: Properties, applications and perspectives. J. Nat. Prod. 2018, 81, 679–690. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.L.; Abbott, A.P.; Ryder, K.S. Deep Eutectic Solvents (DES) and their applications. Chem. Rev. 2014, 114, 11060–11082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Florindo, C.; Branco, L.C.; Marrucho, I.M. Quest for green solvents design: From hydrophilic to hydrophobic (deep) eutectic solvents. ChemSusChem 2019, 12, 1549–1559. [Google Scholar] [CrossRef] [PubMed]
- Boldrini, C.L.; Manfredi, N.; Perna, F.M.; Trifiletti, V.; Capriati, V.; Abbotto, A. Dye-sensitized solar cells that use an aqueous choline chloride-based deep eutectic solvent as effective electrolyte solution. Energy Technol. 2017, 5, 345–353. [Google Scholar] [CrossRef]
- Milia, L.; Dall’Asta, V.; Ferrara, C.; Berbenni, V.; Quartarone, E.; Perna, F.M.; Capriati, V.; Mustarelli, P. Bio-inspired choline chloride-based deep eutectic solvents as electrolytes for lithium-ion batteries. Solid State Ion. 2018, 323, 44–48. [Google Scholar] [CrossRef]
- Alonso, D.A.; Baeza, A.; Chinchilla, R.; Guillena, G.; Pastor, I.M.; Ramón, D.J. Deep eutectic solvents: The organic reaction medium of the century. Eur. J. Org. Chem. 2016, 612–632. [Google Scholar] [CrossRef] [Green Version]
- Guajardo, N.; Müller, C.R.; Schrebler, R.; Carlesi, C.; Domínguez de Maria, P. Deep eutectic solvents for organocatalysis, biotransformations, and multistep organocatalyst/enzyme combinations. ChemCatChem 2016, 8, 1020–1027. [Google Scholar] [CrossRef]
- Perna, F.M.; Vitale, P.; Capriati, V. Deep eutectic solvents and their applications as green solvents. Curr. Opin. Green Sust. Chem. 2020, 21, 27–33. [Google Scholar] [CrossRef]
- Gotor-Fernández, V.; Paul, C.E. Deep eutectic solvents for redox biocatalysis. J. Biotechnol. 2019, 293, 24–35. [Google Scholar] [CrossRef] [PubMed]
- Hasani, F.Z.I.M.; Amzazi, S.; Lavandera, I. The versatile applications of DES and their influence on oxidoreductase-mediated transformations. Molecules 2019, 24, 2190. [Google Scholar] [CrossRef] [Green Version]
- de Gonzalo, G.; Martin, C.; Fraaije, M.W. Positive impact of natural deep eutectic solvents on the biocatalytic performance of 5-hydroxymethyl-furfural oxidase. Catalysts 2020, 10, 447. [Google Scholar] [CrossRef]
- Li, Y.; Ma, Y.; Li, P.; Zhang, X.; Ribitsch, D.; Alcalde, M.; Hollmann, F.; Wang, Y. Enantioselective sulfoxidation of thioanisole by cascading a choline oxidase and a peroxygenase in the presence of natural deep eutectic solvents. ChemPlusChem 2020, 85, 254–257. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Li, Y.; Ali, S.; Li, P.; Rauch, M.C.R.; Willot, S.J.-P.; Ribitsch, D.; Choi, Y.H.; Alcaide, M.; Hollman, F.; et al. Natural deep eutectic solvents as performance additives for peroxygenases catalysis. ChemCatChem 2019, 11, 1–7. [Google Scholar] [CrossRef]
- de Gonzalo, G.; Fürst, M.J.L.J.; Fraaije, M.W. Polycyclic Ketone Monooxygenase (PockeMO): A robust biocatalyst for the synthesis of optically active sulfoxides. Catalysts 2017, 7, 288. [Google Scholar] [CrossRef] [Green Version]
- Hammond, O.S.; Bowrom, D.T.; Edler, K.J. The effect of water upon Deep Eutectic Solvent nanostructure: An unusual transition from ionic mixture to aqueous solution. Angew. Chem. Int. Ed. 2017, 56, 9782–9785. [Google Scholar] [CrossRef] [Green Version]
Entry | DES | % DES | Conv. (%) 1 | ee (%) 2 |
---|---|---|---|---|
1 | None | --- | 73.3 ± 1.2 | 75.0 ± 1.4 |
2 | Glu:Fru:H2O (1:1:6) | 5 | 44.5 ± 0.7 | 71.5 ± 2.1 |
3 | ChCl:Glu:H2O (5:2:5) | 5 | 51.5 ± 2.1 | 72.0 ± 1.4 |
4 | ChCl:Xyl (1:1) | 5 | 37.5 ± 0.7 | 71.5 ± 2.1 |
5 | ChCl:Urea (1:1) | 5 | 15.5 ± 0.7 | 49.5 ± 0.7 |
6 | ChCl:EG (1:2) | 5 | 71.5 ± 0.7 | 73.5 ± 0.7 |
7 | ChCl:EG (1:2) | 10 | 68.3 ± 1.6 | 73.2 ± 2.2 |
8 | ChCl:EG (1:2) | 20 | 61.0 ± 1.4 | 47.0 ± 1.3 |
9 | ChCl:EG (1:2) | 40 | 12.5 ± 0.7 | 15.5 ± 0.7 |
10 | ChCl:Gly (1:2) | 5 | 72.2 ± 1.3 | 75.3 ± 1.6 |
11 | ChCl:Gly (1:2) | 10 | 72.5 ± 2.1 | 74.6 ± 1.5 |
12 | ChCl:Gly (1:2) | 20 | 59.0 ± 1.4 | 50.0 ± 1.4 |
13 | ChCl:Gly (1:2) | 40 | 7.5 ± 0.7 | 13.5 ± 0.7 |
Entry | DES | % DES | [1a] (mM) | Time (h) | Conv. (%) 1 | ee (%) 2 | Rate (mmol/L h) |
---|---|---|---|---|---|---|---|
1 | None | --- | 10 | 24 | 73.3 ± 1.2 | 75.0 ± 1.4 | 30.6 ± 0.9 |
2 | None | --- | 20 | 46 | 52.0 ± 1.4 | 73.5 ± 2.1 | 22.6 ± 1.7 |
3 | None | --- | 50 | 46 | 19.0 ± 0.7 | 74.5 ± 0.7 | 20.7 ± 0.9 |
4 | None | --- | 100 | 96 | 12.0 ± 1.4 | 72.5 ± 2.1 | 12.5 ± 0.5 |
5 | None | --- | 200 | 96 | 4.5 ± 0.7 | 72.0 ± 1.4 | 9.4 ± 0.7 |
6 | ChCl:EG (1:2) | 5 | 10 | 24 | 71.5 ± 0.7 | 73.5 ± 0.7 | 29.8 ± 0.8 |
7 | ChCl:EG (1:2) | 5 | 20 | 46 | 47.0 ± 1.4 | 73.5 ± 2.1 | 20.4 ± 1.4 |
8 | ChCl:EG (1:2) | 5 | 50 | 46 | 12.5 ± 1.7 | 74.0 ± 1.4 | 13.6 ± 1.3 |
9 | ChCl:EG (1:2) | 10 | 10 | 24 | 68.3 ± 1.6 | 73.2 ± 2.2 | 28.5 ± 1.4 |
10 | ChCl:Gly (1:2) | 10 | 20 | 46 | 34.5 ± 0.7 | 75.5 ± 2.1 | 15.0 ± 0.8 |
11 | ChCl:Gly (1:2) | 10 | 50 | 46 | 10.0 ± 1.4 | 73.0 ± 2.1 | 10.9 ± 1.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Gonzalo, G. Biocatalyzed Sulfoxidation in Presence of Deep Eutectic Solvents. Sustain. Chem. 2020, 1, 290-297. https://doi.org/10.3390/suschem1030019
de Gonzalo G. Biocatalyzed Sulfoxidation in Presence of Deep Eutectic Solvents. Sustainable Chemistry. 2020; 1(3):290-297. https://doi.org/10.3390/suschem1030019
Chicago/Turabian Stylede Gonzalo, Gonzalo. 2020. "Biocatalyzed Sulfoxidation in Presence of Deep Eutectic Solvents" Sustainable Chemistry 1, no. 3: 290-297. https://doi.org/10.3390/suschem1030019
APA Stylede Gonzalo, G. (2020). Biocatalyzed Sulfoxidation in Presence of Deep Eutectic Solvents. Sustainable Chemistry, 1(3), 290-297. https://doi.org/10.3390/suschem1030019