Effect of Exchangeable Cation in Clays on the Yield and Quality of the Bio-Oil during Microwave Pyrolysis of Cellulose
Abstract
:1. Introduction
2. Results and Discussion
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Doroshenko, A.; Pylypenko, I.; Heaton, K.; Cowling, S.; Clark, J.; Budarin, V. Selective Microwave-Assisted Pyrolysis of Cellulose towards Levoglucosenone with Clay Catalysts. ChemSusChem 2019, 12, 5224–5227. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Jiang, J.; Xu, J. Effect of Alcohols on Simultaneous Bio-oil Upgrading and Separation of High Value-added Chemicals. Waste Biomass Valorization 2017, 9, 1779–1785. [Google Scholar] [CrossRef]
- Watson, M.J. Platinum Group Metal Catalysed Hydrodeoxygenation of Model Bio-oil Compounds. Johns. Matthey Technol. Rev. 2014, 58, 156–161. [Google Scholar] [CrossRef]
- Gunawan, R.; Li, X.; Lievens, C.; Gholizadeh, M.; Chaiwat, W.; Hu, X.; Mourant, D.; Bromly, J.; Li, C.-Z. Upgrading of bio-oil into advanced biofuels and chemicals. Part I. Transformation of GC-detectable light species during the hydrotreatment of bio-oil using Pd/C catalyst. Fuel 2013, 111, 709–717. [Google Scholar] [CrossRef]
- Vispute, T.P.; Zhang, H.; Sanna, A.; Xiao, R.; Huber, G.W. Renewable Chemical Commodity Feedstocks from Integrated Catalytic Processing of Pyrolysis Oils. Science 2010, 330, 1222–1227. [Google Scholar] [CrossRef]
- Bridgwater, A. Principles and practice of biomass fast pyrolysis processes for liquids. J. Anal. Appl. Pyrolysis 1999, 51, 3–22. [Google Scholar] [CrossRef]
- Álvarez-Chávez, B.J.; Godbout, S.; Le Roux, É.; Palacios, J.H.; Raghavan, V. Bio-oil yield and quality enhancement through fast pyrolysis and fractional condensation concepts. Biofuel Res. J. 2019, 6, 1054–1064. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.S.; Man, Z.; Bustam, M.A.; Kait, C.F.; Khan, M.I.; Muhammad, N.; Nasrullah, A.; Ullah, Z.; Ahmad, P. Impact of Ball-Milling Pretreatment on Pyrolysis Behavior and Kinetics of Crystalline Cellulose. Waste Biomass Valorization 2015, 7, 571–581. [Google Scholar] [CrossRef]
- Karnjanakom, S.; Asep, B.; Hao, X.; Yang, J.; Samart, C.; Abudula, A.; Guan, G.; Du, X. A green method to increase yield and quality of bio-oil: Ultrasonic pretreatment of biomass and catalytic upgrading of bio-oil over metal (Cu, Fe and/or Zn)/?-Al2O4. RSC Adv. 2015, 5, 83494–83503. [Google Scholar] [CrossRef]
- Gumaling, R.P.; Agusan, J.R.; Ellacer, N.V.C.R.; Abi, G.M.T.A.; Pajaron, J.R.P.; Joyno, J.R.Q.; Joyno, C.Q.; Ido, A.L.; Arazo, R.O. Increased bio-oil yield from Swietenia macrophylla seeds through microwave pretreatment and ultrasonic-assisted solvent extraction. Sustain. Environ. Res. 2018, 28, 430–437. [Google Scholar] [CrossRef]
- Doroshenko, A.; Budarin, V.L.; McElroy, C.R.; Hunt, A.J.; Rylott, E.; Anderson, C.W.; Waterland, M.; Clark, J.H. Using in vivo nickel to direct the pyrolysis of hyperaccumulator plant biomass. Green Chem. 2019, 21, 1236–1240. [Google Scholar] [CrossRef] [Green Version]
- Budarin, V.L.; Clark, J.H.; Lanigan, B.A.; Shuttleworth, P.; Breeden, S.W.; Wilson, A.J.; MacQuarrie, D.J.; Milkowski, K.; Jones, J.; Bridgeman, T.; et al. The preparation of high-grade bio-oils through the controlled, low temperature microwave activation of wheat straw. Bioresour. Technol. 2009, 100, 6064–6068. [Google Scholar] [CrossRef]
- Budarin, V.L.; Clark, J.H.; Lanigan, B.A.; Shuttleworth, P.; MacQuarrie, D.J. Microwave assisted decomposition of cellulose: A new thermochemical route for biomass exploitation. Bioresour. Technol. 2010, 101, 3776–3779. [Google Scholar] [CrossRef] [PubMed]
- Budarin, V.L.; Zhao, Y.; Gronnow, M.J.; Shuttleworth, P.S.; Breeden, S.W.; MacQuarrie, D.J.; Clark, J.H. Microwave-mediated pyrolysis of macro-algae. Green Chem. 2011, 13, 2330–2333. [Google Scholar] [CrossRef]
- Mishra, R.R.; Sharma, A.K. Microwave–material interaction phenomena: Heating mechanisms, challenges and opportunities in material processing. Compos. Part A Appl. Sci. Manuf. 2016, 81, 78–97. [Google Scholar] [CrossRef]
- Fan, J.; Shuttleworth, P.S.; Gronnow, M.J.; Breeden, S.W.; Clark, J.H.; MacQuarrie, D.J.; Budarin, V.L. Influence of Density on Microwave Pyrolysis of Cellulose. ACS Sustain. Chem. Eng. 2018, 6, 2916–2920. [Google Scholar] [CrossRef]
- Doroshenko, D.; Pylypenko, I.; Kovalchuk, I.; Kornilovych, B.; Spasonova, L. Investigation of the structure and sorption peculiarities of cobalt and uranium ions by nanocomposites based on montmorillonite and tetraethoxysilane. East. Eur. J. Enterp. Technol. 2018, 5, 6–11. [Google Scholar] [CrossRef] [Green Version]
- Pylypenko, I.V.; Spasonova, L.M. Removal of chromium (VI) from water solutions by means of composites based on montmorillonite and iron oxide. Vopr. Khimii Khimicheskoi Tekhnologii 2020, 2020, 121–127. [Google Scholar] [CrossRef]
- Bergaya, F.; Lagaly, G. (Eds.) Handbook of Clay Science, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2013; Volume 5, ISBN 978-0-08-099364-5. [Google Scholar]
- Sun, Z.; Park, Y.; Zheng, S.; Ayoko, G.A.; Frost, R.L. XRD, TEM, and thermal analysis of Arizona Ca-montmorillonites modified with didodecyldimethylammonium bromide. J. Colloid Interface Sci. 2013, 408, 75–81. [Google Scholar] [CrossRef]
- Bergaya, F.; Lagaly, G. (Eds.) Developments in Clay Science. In Handbook of Clay Science, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2013; Volume 5, ISBN 978-0-08-099364-5. [Google Scholar]
- Vorhauer, N.; Tretau, A.; Bück, A.; Prat, M. Microwave drying of wet clay with intermittent heating. Dry. Technol. 2019, 37, 664–678. [Google Scholar] [CrossRef]
- McCallister, D.L. Microwave Drying of Clays for X-ray Diffraction Analysis. Soil Sci. Soc. Am. J. 1986, 50, 807–809. [Google Scholar] [CrossRef]
- Ammar, M.; Oueslati, W.; Ben Rhaiem, H.; Amara, A.B.H. Quantitative XRD analysis of the dehydration–hydration performance of (Na+, Cs+) exchanged smectite. Desalin. Water Treat. 2013, 52, 4314–4333. [Google Scholar] [CrossRef]
- Guindy, N.M.; El-Akkad, T.M.; Flex, N.S.; El-Massry, S.R.; Nashed, S. Thermal Dehydration of Mono- and Di- valnt Montmorillonite Cationoc Derivatives. Thermochim. Acta 1985, 88, 369–378. [Google Scholar] [CrossRef]
- Kowalski, S.J.; Banaszak, J.; Rybicki, A. Damage analysis of microwave-dried materials. AIChE J. 2011, 58, 2097–2104. [Google Scholar] [CrossRef]
- Shafizadeh, F. Pyrolysis and Combustion of Cellulosic Materials. Adv. Carbohydr. Chem. 1968, 23, 419–474. [Google Scholar] [CrossRef]
- Iwamoto, M.; Shimatai, A.; Honda, M.; Matsukata, M. Depolymerization of Cellulose with Superheated Steam: Remarkable Obstruction Effects of Sodium and High Reactivity of Crystalline Cellulose. ACS Sustain. Chem. Eng. 2018, 6, 6570–6576. [Google Scholar] [CrossRef]
- Zhu, C.; Maduskar, S.; Paulsen, A.D.; Dauenhauer, P.J. Alkaline-Earth-Metal-Catalyzed Thin-Film Pyrolysis of Cellulose. ChemCatChem 2016, 8, 818–829. [Google Scholar] [CrossRef]
Material | Bio-Oil (wt.%) |
---|---|
Li-bentonite | 18.8 |
Na-bentonite | 15.4 |
K-bentonite | 12.9 |
Mg-bentonite | 14.8 |
Ca-bentonite | 14.3 |
Ba-bentonite | 12.5 |
Pure cellulose A | 11.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doroshenko, A.; Pylypenko, I.; Gromovaite, S.; Clark, J.; Budarin, V. Effect of Exchangeable Cation in Clays on the Yield and Quality of the Bio-Oil during Microwave Pyrolysis of Cellulose. Sustain. Chem. 2020, 1, 315-324. https://doi.org/10.3390/suschem1030021
Doroshenko A, Pylypenko I, Gromovaite S, Clark J, Budarin V. Effect of Exchangeable Cation in Clays on the Yield and Quality of the Bio-Oil during Microwave Pyrolysis of Cellulose. Sustainable Chemistry. 2020; 1(3):315-324. https://doi.org/10.3390/suschem1030021
Chicago/Turabian StyleDoroshenko, Alisa, Ihor Pylypenko, Simona Gromovaite, James Clark, and Vitaliy Budarin. 2020. "Effect of Exchangeable Cation in Clays on the Yield and Quality of the Bio-Oil during Microwave Pyrolysis of Cellulose" Sustainable Chemistry 1, no. 3: 315-324. https://doi.org/10.3390/suschem1030021
APA StyleDoroshenko, A., Pylypenko, I., Gromovaite, S., Clark, J., & Budarin, V. (2020). Effect of Exchangeable Cation in Clays on the Yield and Quality of the Bio-Oil during Microwave Pyrolysis of Cellulose. Sustainable Chemistry, 1(3), 315-324. https://doi.org/10.3390/suschem1030021