Revisiting the Absorption Spectra of Polycyclic Aromatic Hydrocarbons over Porto (Portugal) by TD-DFT Calculations
Abstract
:1. Introduction
2. Computational Methods
3. Discussion and Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Andreae, M.O.; Gelencsér, A. Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmos. Chem. Phys. 2006, 6, 3131–3148. [Google Scholar] [CrossRef] [Green Version]
- Lei, Y.; Shen, Z.; Wang, Q.; Zhang, T.; Cao, J.; Sun, J.; Wang, L.; Xu, H.; Tian, J.; Wu, J. Optical characteristics and source apportionment of brown carbon in winter PM2.5 over Yulin in Northern China. Atmos. Res. 2018, 213, 27–33. [Google Scholar] [CrossRef]
- Lin, P.; Liu, J.; Shilling, J.E.; Kathmann, S.M.; Laskin, J.; Laskin, A. Molecular characterization of brown carbon (BrC) chromophores in secondary organic aerosol generated from photo-oxidation of toluene. Phys. Chem. Chem. Phys. 2015, 17, 23312–23325. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.-S.; Li, L.-J.; Huang, H.; Dai, W.-T.; Lei, Y.-L.; Qu, Y.; Huang, R.-J.; Wang, Q.-Y.; Shen, Z.-X.; Cao, J.J. n-Alkanes and PAHs in the Southeastern Tibetan Plateau: Characteristics and Correlations with Brown Carbon Light Absorption. J. Geophys. Res. Atmos. 2020, 125, e2020JD032666. [Google Scholar] [CrossRef]
- Huang, R.-J.; Yang, L.; Cao, J.; Chen, Y.; Chen, Q.; Li, Y.; Duan, J.; Zhu, C.; Dai, W.; Wang, K.; et al. Brown Carbon Aerosol in Urban Xi’an, Northwest China: The Composition and Light Absorption Properties. Environ. Sci. Technol. 2018, 52, 6825–6833. [Google Scholar] [CrossRef] [PubMed]
- Lack, D.A.; Langridge, J.M.; Bahreini, R.; Cappa, C.D.; Middlebrook, A.M.; Schwarz, J.P. Brown carbon and internal mixing in biomass burning particles. Proc. Natl. Acad. Sci. USA 2012, 109, 14802–14807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Bergin, M.; Guo, H.; King, L.; Kotra, N.; Edgerton, E.; Weber, R.J. Size-resolved measurements of brown carbon in water and methanol extracts and estimates of their contribution to ambient fine-particle light absorption. Atmos. Chem. Phys. 2013, 13, 12389–12404. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Cui, T.; Fowler, B.; Fankhauser, A.; Yang, K.; Surratt, J.D.; McNeill, V.F. Aerosol Brown Carbon from Dark Reactions of Syringol in Aqueous Aerosol Mimics. ACS Earth Space Chem. 2018, 2, 608–617. [Google Scholar] [CrossRef]
- Lin, G.; Penner, J.E.; Flanner, M.G.; Sillman, S.; Xu, L.; Zhou, C. Radiative forcing of organic aerosol in the atmosphere and on snow: Effects of SOA and brown carbon. J. Geophys. Res. Atmos. 2014, 119, 7453–7476. [Google Scholar] [CrossRef] [Green Version]
- Saleh, R.; Marks, M.; Heo, J.; Adams, P.J.; Donahue, N.M.; Robinson, A.L. Contribution of brown carbon and lensing to the direct radiative effect of carbonaceous aerosols from biomass and biofuel burning emissions. J. Geophys. Res. Atmos. 2015, 120, 10285–10296. [Google Scholar] [CrossRef]
- Frka, S.; Šala, M.; Kroflič, A.; Huš, M.; Čusak, A.; Grgić, I. Quantum Chemical Calculations Resolved Identification of Methylnitrocatechols in Atmospheric Aerosols. Environ. Sci. Technol. 2016, 50, 5526–5535. [Google Scholar] [CrossRef] [PubMed]
- Chung, C.E.; Ramanathan, V.; Decremer, D. Observationally constrained estimates of carbonaceous aerosol radiative forcing. Proc. Natl. Acad. Sci. USA 2012, 109, 11624–11629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, P.; Aiona, P.K.; Li, Y.; Shiraiwa, M.; Laskin, J.; Nizkorodov, S.A.; Laskin, A. Molecular Characterization of Brown Carbon in Biomass Burning Aerosol Particles. Environ. Sci. Technol. 2016, 50, 11815–11824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Haan, D.O.; Tapavicza, E.; Riva, M.; Cui, T.; Surratt, J.D.; Smith, A.C.; Jordan, M.-C.; Nilakantan, S.; Almodovar, M.; Stewart, T.N.; et al. Nitrogen-Containing, Light-Absorbing Oligomers Produced in Aerosol Particles Exposed to Methylglyoxal, Photolysis, and Cloud Cycling. Environ. Sci. Technol. 2018, 52, 4061–4071. [Google Scholar] [CrossRef]
- Phillips, S.M.; Bellcross, A.D.; Smith, G.D. Light Absorption by Brown Carbon in the Southeastern United States is pH-dependent. Environ. Sci. Technol. 2017, 51, 6782–6790. [Google Scholar] [CrossRef]
- Adler, G.; Wagner, N.L.; Lamb, K.D.; Manfred, K.; Schwarz, J.P.; Franchin, A.; Middlebrook, A.M.; Washenfelder, R.A.; Womack, C.C.; Yokelson, R.J.; et al. Evidence in biomass burning smoke for a light-absorbing aerosol with properties intermediate between brown and black carbon. Aerosol Sci. Technol. 2019, 53, 976–989. [Google Scholar] [CrossRef]
- Cheng, Z.; Atwi, K.; Yu, Z.; Avery, A.; Fortner, E.C.; Williams, L.; Majluf, F.; Krechmer, J.E.; Lambe, A.T.; Saleh, R. Evolution of the light-absorption properties of combustion brown carbon aerosols following reaction with nitrate radicals. Aerosol Sci. Technol. 2020, 54, 849–863. [Google Scholar] [CrossRef]
- Cheng, Z.; Atwi, K.; El Hajj, O.; Ijeli, I.; Al Fischer, D.; Smith, G.; Saleh, R. Discrepancies between brown carbon light-absorption properties retrieved from online and offline measurements. Aerosol Sci. Technol. 2020, 55, 92–103. [Google Scholar] [CrossRef]
- D’Hendecourt, L.; Ehrenfreund, P. Spectroscopic properties of polycyclic aromatic hydrocarbons (PAHs) and astrophysical implications. Adv. Space Res. 1997, 19, 1023–1032. [Google Scholar] [CrossRef]
- Cheng, Y.; He, K.; Engling, G.; Weber, R.; Liu, J.; Du, Z.; Dong, S. Brown and black carbon in Beijing aerosol: Implications for the effects of brown coating on light absorption by black carbon. Sci. Total Environ. 2017, 599–600, 1047–1055. [Google Scholar] [CrossRef]
- van der Gon, H.D.; van het Bolscher, M.; Visschedijk, A.; Zandveld, P. Emissions of persistent organic pollutants and eight candidate POPs from UNECE–Europe in 2000, 2010 and 2020 and the emission reduction resulting from the implementation of the UNECE POP protocol. Atmos. Environ. 2007, 41, 9245–9261. [Google Scholar] [CrossRef]
- Mari, M.; Harrison, R.M.; Schuhmacher, M.; Domingo, J.L.; Pongpiachan, S. Inferences over the sources and processes affecting polycyclic aromatic hydrocarbons in the atmosphere derived from measured data. Sci. Total Environ. 2010, 408, 2387–2393. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.M.; Lee, S.-B.; Kim, J.Y.; Kim, S.; Seo, J.; Bae, G.-N.; Lee, J.Y. A multivariate receptor modeling study of air-borne particulate PAHs: Regional contributions in a roadside environment. Chemosphere 2016, 144, 1270–1279. [Google Scholar] [CrossRef]
- Fu, Z.; Wang, Y.; Chen, J.; Wang, Z.; Wang, X. How PBDEs Are Transformed into Dihydroxylated and Dioxin Metabolites Catalyzed by the Active Center of Cytochrome P450s: A DFT Study. Environ. Sci. Technol. 2016, 50, 8155–8163. [Google Scholar] [CrossRef] [PubMed]
- Krzemińska, A.; Paneth, P. DFT Studies of SN2 Dechlorination of Polychlorinated Biphenyls. Environ. Sci. Technol. 2016, 50, 6293–6298. [Google Scholar] [CrossRef] [PubMed]
- da Silva, L.P. Theoretical Study of the Ring-Opening of Epoxides Catalyzed by Boronic Acids and Pyridinic Bases. J. Phys. Chem. C 2017, 121, 16300–16307. [Google Scholar] [CrossRef]
- da Silva, L.P. Mechanistic study of the role of hydrogen bond donors in the two-component organocatalysis of the ring-opening reaction of epoxides. Mol. Catal. 2019, 474, 110425. [Google Scholar] [CrossRef]
- Adamo, C.; Jacquemin, D. The calculations of excited-state properties with Time-Dependent Density Functional Theory. Chem. Soc. Rev. 2012, 42, 845–856. [Google Scholar] [CrossRef]
- Chen, J.Y.; Rodriguez, E.; Jiang, H.; Chen, K.; Frie, A.L.; Zhang, H.; Bahreini, R.; Lin, Y.-H. Time-Dependent Density Functional Theory Investigation of the UV–Vis Spectra of Organonitrogen Chromophores in Brown Carbon. ACS Earth Space Chem. 2020, 4, 311–320. [Google Scholar] [CrossRef]
- Hede, T.; Murugan, N.A.; Kongsted, J.; Leck, C.; Ågren, H. Simulations of Light Absorption of Carbon Particles in Nanoaerosol Clusters. J. Phys. Chem. A 2014, 118, 1879–1886. [Google Scholar] [CrossRef]
- Magalhães, A.C.O.; Da Silva, J.C.G.E.; Da Silva, L.P. Density Functional Theory Calculation of the Absorption Properties of Brown Carbon Chromophores Generated by Catechol Heterogeneous Ozonolysis. ACS Earth Space Chem. 2017, 1, 353–360. [Google Scholar] [CrossRef]
- Dolomatov, M.Y.; Shutkova, S.A.; Bakhtizin, R.Z.; Dolomatova, M.M.; Latypov, K.F.; Gilmanshina, K.A.; Badretdinov, B.R. Structure of Asphaltene Molecules and Nanoclusters Based on Them. Pet. Chem. 2020, 60, 16–21. [Google Scholar] [CrossRef]
- Pinto da Silva, L.; Dias, T.B.; Esteves da Silva, J.C.G. Modelling the absorption spectra of polycyclic aromatic hydrocarbons over Seoul, South Korea. Environ. Technol. Innov. 2019, 17, 100536. [Google Scholar] [CrossRef]
- Sousa, J.; Pinto da Silva, L. Modelling the absorption properties of polycyclic aromatic hydrocarbons and derivatives over three European cities by TD-DFT calculations. Sci. Total Environ. 2019, 695, 133881. [Google Scholar] [CrossRef] [PubMed]
- González-Berdullas, P.; da Silva, L.P. TD-DFT Monitoring of the Absorption Spectra of Polycyclic Aromatic Hydrocarbons over the Basque Country, Spain. Sustain. Chem. 2021, 2, 599–609. [Google Scholar] [CrossRef]
- González-Berdullas, P.; Cruz, C.N.; Bandowe, B.A.; da Silva, J.C.E.; da Silva, L.P. A time-dependent density functional theory investigation of the atmospheric absorption spectra of polycyclic aromatic hydrocarbons (PAHs) and their derivatives (Alkyl-PAHs, oxygenated-PAHs, and Nitrated-PAHs) over an urban area in China. J. Environ. Chem. Eng. 2022, 10, 108853. [Google Scholar] [CrossRef]
- Alves, C.A.; Vicente, A.M.; Custódio, D.; Cerqueira, M.; Nunes, T.; Pio, C.; Lucarelli, F.; Calzolai, G.; Nava, S.; Diapouli, E.; et al. Polycyclic aromatic hydrocarbons and their derivatives (nitro-PAHs, oxygenated PAHs, and azaarenes) in PM 2.5 from Southern European cities. Sci. Total. Environ. 2017, 595, 494–504. [Google Scholar] [CrossRef]
- Alves, C.; Evtyugina, M.; Vicente, A.; Vicente, E.; Nunes, T.; Silva, P.; Duarte, M.; Pio, C.; Amato, F.; Querol, X. Chemical profiling of PM10 from urban road dust. Sci. Total Environ. 2018, 634, 41–51. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, revision D.01; Gaussian, Inc.: Wallingford, CT, USA, 2013. [Google Scholar]
- Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158–6170. [Google Scholar] [CrossRef]
- Barone, V.; Cimino, P.; Crescenzi, O.; Pavone, M. Ab initio computation of spectroscopic parameters as a tool for the structural elucidation of organic systems. J. Mol. Struct. Theochem. 2007, 811, 323–335. [Google Scholar] [CrossRef]
- Jacquemin, D.; Preat, J.; Perpète, E.A.; Adamo, C. Absorption spectra of recently synthesised organic dyes: A TD-DFT study. Int. J. Quantum Chem. 2010, 110, 2121–2129. [Google Scholar] [CrossRef]
- Le Bahers, T.; Adamo, C.; Ciofini, I. Photophysical Properties of 8-Hydroxyquinoline-5-sulfonic Acid as a Function of the pH: A TD-DFT Investigation. J. Phys. Chem. A 2010, 114, 5932–5939. [Google Scholar] [CrossRef] [PubMed]
- Pinto da Silva, L.; Esteves da Silva, J.C.G. Computational Investigation of the Effect of pH on the Color of Firefly Bioluminescence by DFT. ChemPhysChem 2011, 12, 951–960. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef] [Green Version]
- Gronowski, M.; Kołos, R. A DFT Study on the Excited Electronic States of Cyanopolyynes: Benchmarks and Applications. Molecules 2022, 27, 5829. [Google Scholar] [CrossRef] [PubMed]
- Gronowski, M. TD-DFT benchmark: Excited states of atoms and atomic ions. Comput. Theor. Chem. 2017, 1108, 50–56. [Google Scholar] [CrossRef]
- Shi, B.; Nachtigallová, D.; Aquino, A.J.A.; Machado, F.B.C.; Lischka, H. High-level theoretical benchmark investigations of the UV-vis absorption spectra of paradigmatic polycyclic aromatic hydrocarbons as models for graphene quantum dots. J. Chem. Phys. 2019, 150, 124302. [Google Scholar] [CrossRef]
- Bruhn, T.; Schaumlöffel, A.; Hemberger, Y.; Bringmann, G. SpecDis: Quantifying the comparison of calculated and experimental electronic circular dichroism spectra. Chirality 2013, 25, 243–249. [Google Scholar] [CrossRef]
- ASTM.G173-03; Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface. ASTM International: West Conshohocken, PA, USA, 2012.
PAH | ~380 nm | ~433 nm | ~482 nm |
---|---|---|---|
FLT | 5% | ||
CHR | 8% | ||
BbF | 63% | ||
DahA | 5% | ||
InP | 9% | 7% | |
BkF | 41% | ||
BaP | 40% | ||
BghiP | 10% | ||
PER | 89% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandes, G.M.; Macedo, F.J.D.; da Silva, J.C.G.E.; da Silva, L.P. Revisiting the Absorption Spectra of Polycyclic Aromatic Hydrocarbons over Porto (Portugal) by TD-DFT Calculations. Sustain. Chem. 2022, 3, 511-519. https://doi.org/10.3390/suschem3040031
Fernandes GM, Macedo FJD, da Silva JCGE, da Silva LP. Revisiting the Absorption Spectra of Polycyclic Aromatic Hydrocarbons over Porto (Portugal) by TD-DFT Calculations. Sustainable Chemistry. 2022; 3(4):511-519. https://doi.org/10.3390/suschem3040031
Chicago/Turabian StyleFernandes, Guilherme M., Francisco J. D. Macedo, Joaquim C. G. Esteves da Silva, and Luís Pinto da Silva. 2022. "Revisiting the Absorption Spectra of Polycyclic Aromatic Hydrocarbons over Porto (Portugal) by TD-DFT Calculations" Sustainable Chemistry 3, no. 4: 511-519. https://doi.org/10.3390/suschem3040031
APA StyleFernandes, G. M., Macedo, F. J. D., da Silva, J. C. G. E., & da Silva, L. P. (2022). Revisiting the Absorption Spectra of Polycyclic Aromatic Hydrocarbons over Porto (Portugal) by TD-DFT Calculations. Sustainable Chemistry, 3(4), 511-519. https://doi.org/10.3390/suschem3040031