Octopus Consciousness: The Role of Perceptual Richness
Abstract
:1. Introduction
2. Vision
3. Chemical Sensing
4. Mechanoreception
5. Conclusions
- (1)
- Perception and cognition must adapt to the environment, and Hochner’s [7] embodied cognition gives us a place to start when we evaluate a marine animal … or one that is terrestrial or even airborne. It is not a dictum, though. Cetaceans and cephalopods live in the same ocean and they differ very much in sociality, mechanoreception, movement coordination, and even what medium they use for respiration. However, they have nevertheless adapted their perceptions, actions and even life history to the medium;
- (2)
- Complexity and access to consciousness is likely system or even task specific. Octopuses fail the mirror test because their source of self-recognition is not visual but probably chemical; we have been testing the wrong sense for the situation. P-richness [2] can vary within as well as across modalities. Even though the visual system is important for skin pattern camouflage, its production does not appear to be monitored and the output is not accessible to the animal’s senses. Conversely, two different visual cue types, geometric use of landmarks and plane of polarization of light, make a rich source of visual information for navigation. Where to go in space is learned and may be consciously monitored;
- (3)
- Sensory richness does not guarantee perceptual richness, and even a rich perceptual representation, as measured by acuity or bandwidth, may not be accessible to consciousness. Thus the sophisticated arm movement system combines touch and chemical sensors, muscular allocation and sucker and even arm movements, but although arm position can be monitored by the brain, it does not normally receive close details of arm actions, which are, thus, not usually available to consciousness;
- (4)
- Flexibility is a major characteristic of the octopus, and its drive to gain information shapes its actions. Some of these are consciously monitored, at least in allocation of attention, as in Baars’ [36] global workspace. Not enough information from the lateral eye causes the octopus to use a head bob to gain more depth cues. The fact that most benthic marine animals are in hiding leads it to a two-step foraging strategy. First the octopus goes with visual guidance to where prey are likely to be and then finds them with the flexible arms through chemical cues, even though they cannot be seen. Later, the animal remembers where it found them [105]. The pressure of many predators leads to a many-step set of reactions as the threat gets larger and perhaps generates the octopuses’ mantra: If at first you do not succeed, get some more information and try something else.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Foley, H.J.; Maitlin, M.W. Sensation and Perception, 5th ed.; Allyn & Bacon: Boston, MA, USA, 2015. [Google Scholar]
- Birch, J.; Schnell, A.K.; Clayton, N.S. Dimensions of Animal Consciousness. Trends Cogn. Sci. 2020, 24, 789–801. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.; Newcombe, N.S. Is there a geometric module for spatial orientation? squaring theory and evidence. Psychon. Bull. Rev. 2005, 12, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Williamson, R.; Chrachri, A. A model biological neural network: The cephalopod vestibular system. Philos. Trans. R. Soc. B Biol. Sci. 2007, 362, 473–481. [Google Scholar] [CrossRef] [Green Version]
- Von Uexcüll, J. A Foray into the World of Animals and Humans; University of Minnesota Press: Minneapolis, MN, USA, 1934. [Google Scholar]
- Caves, E.; Nowicki, S.; Johnsen, S. Von Uexcüll revisited: Addressing human biases in the study of animal perception. Integr. Comp. Biol. 2019, 6, 1451–1462. [Google Scholar] [CrossRef] [PubMed]
- Hochner, B. How Nervous Systems Evolve in Relation to Their Embodiment: What We Can Learn from Octopuses and Other Molluscs. Brain Behav. Evol. 2013, 82, 19–30. [Google Scholar] [CrossRef]
- Kier, W.M.; Smith, K.K. Tongues, tentacles and trunks: The biomechanics of movement in muscular-hydrostats. Zool. J. Linn. Soc. 1985, 83, 307–324. [Google Scholar] [CrossRef]
- Packard, A. Cephalopods and fish: The limits of convergence. Biol. Rev. 1972, 47, 241–307. [Google Scholar] [CrossRef]
- Messenger, J.B. Cephalopod chromatophores: Neurobiology and natural history. Biol. Rev. 2001, 76, 473–528. [Google Scholar] [CrossRef]
- Gutnick, T.; Shomrt, T.; Mather, J.A.; Kuba, M.J. The cephalopod brain: Motion control, learning and cognition. In Physiology of Mollusca; Salueddin, A.S., Mukai, S., Eds.; Apple Academic Press: Boca Raton, FL, USA, 2017; pp. 137–178. [Google Scholar]
- Shigeno, S.; Andrews, P.L.R.; Ponte, G.; Fiorito, G. Cephalopod Brains: An Overview of Current Knowledge to Facilitate Comparison with Vertebrates. Front. Physiol. 2018, 9, 952. [Google Scholar] [CrossRef] [PubMed]
- Hanke, F.D.; Kelber, A. The Eye of the Common Octopus (Octopus vulgaris). Front. Physiol. 2020, 10, 1637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramirez, M.D.; Oakley, T.H. Eye-independent, light-activated chromatophore expansion (LACE) and expression of phototransduction genes in the skin of Octopus bimaculoides. J. Exp. Biol. 2015, 218, 1513–1520. [Google Scholar] [CrossRef] [Green Version]
- Gleadall, I.G.; Shashar, N. The octopus’ garden: The visual world of cephalopods. In Complex Worlds from Simpler Nervous Systems; Prete, F.R., Ed.; MIT Press: Cambridge, MA, USA, 2004; pp. 269–308. [Google Scholar]
- Soto, C.; Kelber, A.; Hanke, F.D. The Pupillary Response of the Common Octopus (Octopus vulgaris). Front. Physiol. 2020, 11, 1112. [Google Scholar] [CrossRef] [PubMed]
- Muntz, W.R.A.; Gwyther, J. Visual Acuity in Octopus Pallidus and Octopus Australis. J. Exp. Biol. 1988, 134, 119–129. [Google Scholar] [CrossRef]
- Chung, W.-S.; Marshall, N.J. Supplementary materials from Comparative visual ecology of cephalopods from different habitats. Proc. R Soc. B 2016, 283, 20161346. [Google Scholar] [CrossRef] [PubMed]
- Stoddard, M.C.; Eyster, H.N.; Hogan, B.G.; Morris, D.H.; Soucy, E.R.; Inouye, D.W. Wild hummingbirds discriminate nonspectral colors. Proc. Natl. Acad. Sci. USA 2020, 117, 15112–15122. [Google Scholar] [CrossRef] [PubMed]
- Thoen, H.H.; How, M.J.; Chiou, T.-H.; Marshall, J. A Different Form of Color Vision in Mantis Shrimp. Science 2014, 343, 411–413. [Google Scholar] [CrossRef]
- Temple, S.E.; How, M.J.; Powell, S.B.; Gruev, V.; Marshall, N.J.; Roberts, N.W. Thresholds of polarization vision in octopuses. J. Exp. Biol. 2021, 224, jeb240812. [Google Scholar] [CrossRef]
- Nahmad-Rohen, L.; Vorobyev, M. Spectral contrast sensitivity to polarization and luminance in octopuses. Front. Physiol. 2020, 11, 379. [Google Scholar] [CrossRef]
- Cartron, L.; Josef, N.; Lerner, A.; McCusker, S.D.; Darmaillacq, A.-S.; Dickel, L.; Shashar, N. Polarization vision can improve object detection in turbid waters by cuttlefish. J. Exp. Mar. Biol. Ecol. 2013, 447, 80–85. [Google Scholar] [CrossRef]
- Evangelista, C.; Kraft, P.; Dacke, M.; Labhart, T.; Srinivasan, M.V. Honeybee navigation: Critically examining the role of the polarization compass. Philos. Trans. R. Soc. B Biol. Sci. 2014, 369, 20130037. [Google Scholar] [CrossRef] [Green Version]
- Brady, P.C.; Gilerson, A.A.; Kattawar, G.W.; Sullivan, J.M.; Twardowski, M.S.; Dierssen, H.M.; Gao, M.; Travis, K.; Etheredge, R.I.; Tonizzo, A.; et al. Open-ocean fish reveal an omnidirectional solution to camouflage in polarized environments. Science 2015, 350, 965–969. [Google Scholar] [CrossRef]
- Sabbah, S.; Shashar, N. Polarization contrast of zooplankton: A model for polarization-based sighting distance. Vis. Res. 2006, 46, 444–456. [Google Scholar] [CrossRef] [Green Version]
- Shashar, N.; Hagan, R.; Boal, J.G.; Hanlon, R.T. Cuttlefish use polarization sensitivity in predation on silvery fish. Vis. Res. 2000, 40, 71–75. [Google Scholar] [CrossRef]
- MaäthgeSr, L.M.; Shashar, N.; Hanlon, R.T. Do cephalopods communicate using polarized light reflections from their skin? J. Exp. Biol. 2009, 212, 2133–2140. [Google Scholar] [CrossRef] [Green Version]
- Mather, J.A.; Alupay, J.S. An ethogram for Benthic Octopods (Cephalopoda: Octopodidae). J. Comp. Psychol. 2016, 130, 109–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rogers, L.J. The two hemispheres of the avian brain: Their differing roles in perceptual processing and the expression of behavior. J. Ornithol. 2011, 153, 61–74. [Google Scholar] [CrossRef]
- Feord, R.C.; Sumner, M.E.; Pusdekar, S.; Kalra, L.; Gonzalez-Bellido, P.T.; Wardill, T.J. Cuttlefish use stereopsis to strike at prey. Sci. Adv. 2020, 6, eaay6036. [Google Scholar] [CrossRef] [Green Version]
- Levy, G.; Flash, T.; Hochner, B. Arm Coordination in Octopus Crawling Involves Unique Motor Control Strategies. Curr. Biol. 2015, 25, 1195–1200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kral, K. Behavioural–Analytical studies of the role of head movements in depth perception in insects, birds and mammals. Behav. Process. 2003, 64, 1–12. [Google Scholar] [CrossRef]
- Mather, J.A. Cephalopod consciousness: Behavioral evidence. Consc. Cogn. 2008, 17, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Baars, B.J. In the theatre of consciousness. Global workplace theory, a rigorous scientific theory of consciousness. J. Consc. Stud. 1997, 4, 292–309. [Google Scholar]
- Ionta, S.; Nartuzzi, R.; Solomon, R.; Blanke, O. The brain network reflecting bodily self-consciousness: A functional connectivity study. Soc. Cogn. Affect. Neurosci. 2014, 9, 1904–1913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wells, M.J. Octopus: Physiology and Behaviour of an Advanced Invertebrate; Chapman & Hall: London, UK, 1978. [Google Scholar]
- Wells, M.J. Detour Experiments with Octopuses. J. Exp. Biol. 1964, 41, 621–642. [Google Scholar] [CrossRef]
- Wells, M.J. Detour Experiments with Split-Brain Octopuses. J. Exp. Biol. 1970, 53, 375–389. [Google Scholar] [CrossRef]
- Byrne, R.A.; Kuba, M.; Griebel, U. Lateral asymmetry of eye use in Octopus vulgaris. Anim. Behav. 2002, 64, 461–468. [Google Scholar] [CrossRef] [Green Version]
- Byrne, R.A.; Kuba, M.J.; Meisel, D.V. Lateralized eye use in Octopus vulgaris shows antisymmetrical distribution. Anim. Behav. 2004, 68, 1107–1114. [Google Scholar] [CrossRef]
- Frasnelli, E.; Ponte, G.; Vallortigara, G.; Fiorito, G. Visual lateralization in the Cephalopod Mollusk Octopus vulgaris. Symmetry 2019, 11, 1121. [Google Scholar] [CrossRef] [Green Version]
- Jozet-Alves, C.; Viblanc, V.; Romagny, S.; Dacher, M.; Healy, S.; Dickel, L. Visual lateralization is task and age dependent in cuttlefish, Sepia officinalis. Anim. Behav. 2012, 83, 1313–1318. [Google Scholar] [CrossRef]
- Jozet-Alves, C.; Hébert, M. Embryonic exposure to predator odour modulates visual lateralization in cuttlefish. Proc. R. Soc. B Biol. Sci. 2013, 280, 20122575. [Google Scholar] [CrossRef] [Green Version]
- Schnell, A.K.; Hanlon, R.T.; Benkada, A.; Jozet-Alves, C. Lateralization of eye use in cuttlefish: Opposite direction for anti-predatory and predatory behaviors. Front. Physiol. 2016, 7, 620. [Google Scholar] [CrossRef] [Green Version]
- Sutherland, N.S. Visual discrimination of shape by octopus. squares and triangles. Q. J. Exp. Psychol. 1958, 10, 40–47. [Google Scholar] [CrossRef]
- Muntz, W.R.A.; Gwyther, J. Visual Discrimination of distance by octopuses. J. Exp. Biol. 1988, 140, 345–353. [Google Scholar] [CrossRef]
- Tokuda, K.; Masuda, R.; Yamashita, Y. Conditional discrimination in Octopus vulgaris. J. Ethol. 2014, 33, 35–40. [Google Scholar] [CrossRef] [Green Version]
- Bublitz, A.; Weinhold, S.R.; Strobel, S.; Dehnhardt, G.; Hanke, F.D. Reconsideration of Serial Visual Reversal Learning in Octopus (Octopus vulgaris) from a Methodological Perspective. Front. Physiol. 2017, 8, 54. [Google Scholar] [CrossRef] [Green Version]
- Jozet-Alves, C.; Bertin, M.; Clayton, N. Evidence of episodic-like memory in cuttlefish. Curr. Biol. 2013, 23, R1033–R1035. [Google Scholar] [CrossRef] [Green Version]
- Zylinski, S.; How, M.; Osorio, D.; Hanlon, R.T.; Marshall, N.J. To Be Seen or to Hide: Visual Characteristics of Body Patterns for Camouflage and Communication in the Australian Giant Cuttlefish Sepia apama. Am. Nat. 2011, 177, 681–690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, I.-R.; Chiao, C.-C. Visual equivalence and amodal completion in Cuttlefish. Front. Physiol. 2017, 8, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallup, G.G. Self-recognition research strategies and experimental design. In Self-Awareness in Animal and Humans; Parker, S.T., Mitchell, W., Boccia, M.L., Eds.; Cambridge University Press: Cambridge, UK, 1995; pp. 35–50. [Google Scholar]
- Bekoff, M.; Sherman, P.W. Reflections on animal selves. Trends Ecol. Evol. 2004, 19, 176–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khoda, M.; Hotta, T.; Takeyma, T.; Awata, S.; Tanaka, H.; Asai, J.; Jordan, L.A. Cleaner wrasse pass the mark test. What are the implications for consciousness and self-awareness testing in animals? PLoS Biol. 2018. [Google Scholar] [CrossRef] [Green Version]
- Nesher, N.; Levy, G.; Grasso, F.W.; Hochner, B. Self-Recognition Mechanism between Skin and Suckers Prevents Octopus Arms from Interfering with Each Other. Curr. Biol. 2014, 24, 1271–1275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mather, J.A.; Mather, D.L. Apparent movement in a visual display: The passing cloud of Octopus cyanea (Mollusca: Cephalopoda). J. Zoöl. 1999, 263, 89–94. [Google Scholar] [CrossRef]
- Grasso, F.W.; Darmaillacq, A.-S.; Dickel, L. The octopus with two brains: How are distributed and central representations integrated in the octopus central nervous system? In Cephalopod Cognition; Cambridge University Press (CUP): Cambridge, UK, 2014; pp. 94–122. [Google Scholar]
- Carls-Diamante, S. The octopus and the unity of consciousness. Biol. Philos. 2017, 32, 1269–1287. [Google Scholar] [CrossRef]
- Zullo, L.; Eichenstein, H.; Maiole, F.; Hochner, B. Motor control pathways in the nervous system of Octopus vulgaris arm. J. Comp. Physiol. A 2019, 205, 271–279. [Google Scholar] [CrossRef] [Green Version]
- Buresch, K.C.; Ulmer, K.M.; Cramer, C.; McAnulty, S.; Davison, W.; Mäthger, L.M.; Hanlon, R.T. Tactical decisions for changeable cuttlefish camouflage: Visual cues for choosing masquerade are relevant from a greater distance than visual cues used for background matching. Biol. Bull. 2015, 229, 160–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiao, C.-C.; Chubb, C.; Buresch, K.; Siemann, L.; Hanlon, R.T. The scaling effects of substrate texture on camouflage patterning in cuttlefish. Vis. Res. 2009, 49, 1647–1656. [Google Scholar] [CrossRef] [Green Version]
- Huffard, C.L. Locomotion by Abdopus aculeatus (Cephalopoda: Octopodidae): Walking the line between primary and secondary defenses. J. Exp. Biol. 2006, 209, 3697–3707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mather, J.A.; Greibel, U.; Byrne, R.A. Squid dances: An ethogram of postures and actions of Sepioteuthis sepioidea squid with a muscular hydrostat system. Mar. Fresw. Behav. Physiol. 2010, 43, 45–51. [Google Scholar] [CrossRef]
- Chiao, C.-C.; Wickiser, J.K.; Allen, J.; Genter, B.; Hanlon, R. Hyperspectral imaging of cuttlefish camouflage indicates good color match in the eyes of fish predators. Proc. Natl. Acad. Sci. USA 2011, 108, 9148–9153. [Google Scholar] [CrossRef] [Green Version]
- Byrne, R.A.; Kuba, M.J.; Meisel, D.V.; Griebel, U.; Mather, J.A. Octopus arm choice is strongly influenced by eye use. Behav. Brain Res. 2006, 172, 195–201. [Google Scholar] [CrossRef]
- Gutnick, T.; Byrne, R.A.; Hochner, B.; Kuba, M. Octopus vulgaris Uses Visual Information to Determine the Location of Its Arm. Curr. Biol. 2011, 21, 460–462. [Google Scholar] [CrossRef] [Green Version]
- Gutnick, T.; Zullo, L.; Hochner, B.; Kuba, M.J. Use of Peripheral Sensory Information for Central Nervous Control of Arm Movement by Octopus vulgaris. Curr. Biol. 2020, 30, 4322–4327.e3. [Google Scholar] [CrossRef] [PubMed]
- Josef, N.; Amodio, P.; Fiorito, G.; Shashar, N. Camouflaging in a Complex Environment—Octopuses Use Specific Features of Their Surroundings for Background Matching. PLoS ONE 2012, 7, e37579. [Google Scholar] [CrossRef] [Green Version]
- Mather, J.A. Cephalopod skin displays: From concealment to communication. In Evolution of Communication Systems; Oller, K., Greibel, U., Eds.; MIT Press: Cambridge, MA, USA, 2004; pp. 193–214. [Google Scholar]
- Huffard, C.L.; Caldwell, R.L.; Boneka, F. Mating behavior of Abdopus aculeatus (d’Orbigny 1834) (Cephalopoda: Octopodidae) in the wild. Mar. Biol. 2008, 154, 353–362. [Google Scholar] [CrossRef]
- Mather, J. Mating games squid play: Reproductive behaviour and sexual skin displays in Caribbean reef squid Sepioteuthis sepioidea. Mar. Freshw. Behav. Physiol. 2016, 49, 359–373. [Google Scholar] [CrossRef] [Green Version]
- Brown, C.; Garwood, M.P.; Williamson, J.E. It pays to cheat: Tactical deception in a cephalopod social signalling system. Biol. Lett. 2012, 8, 729–732. [Google Scholar] [CrossRef]
- Aitken, J.P.; O’Dor, R.K.; Jackson, G.D. The secret life of the giant Australian cuttlefish Sepia apama (Cephalopoda): Behavior and energetics in nature revealed through radio acoustic positioning and telemetry (RAPT). J. Exp. Mar. Biol. Ecol. 2015, 320, 77–91. [Google Scholar] [CrossRef]
- Jozet-Alves, C.; Darmaillacq, A.-S.; Boal, J.G. Navigation in cephalopods. In Cephalopod Cognition; Drmaillacq, A.-S., Dickel, L., Mather, J.A., Eds.; Cambridge University Press: Cambridge, UK, 2014; pp. 150–176. [Google Scholar]
- Mather, J.A. Navigation by spatial memory and use of visual landmarks in octopuses. J. Comp. Physiol. A 1991, 168, 491–497. [Google Scholar] [CrossRef]
- Forsythe, J.W.; Hanlon, R.T. Foraging and associated behavior by Octopus cyanea Gray, 1849 on a coral atoll, French Polynesia. J. Exp. Mar. Biol. Ecol. 1997, 209, 15–31. [Google Scholar] [CrossRef]
- Mather, J.A.; Resler, S.; Cosgrove, J. Activity and movement patterns of Octopus dofleini. Mar. Behav. Physiol. 1985, 11, 301–314. [Google Scholar] [CrossRef]
- Scheel, D.; Bisson, L. Movement patterns of giant Pacific octopuses, Enteroctopus dofleini (Wülker, 1910). J. Exp. Mar. Biol. Ecol. 2012, 416–417, 21–31. [Google Scholar] [CrossRef]
- Boal, J.G.; Dunham, A.W.; Williams, K.T.; Hanlon, R.T. Experimental evidence for spatial learning in octopuses (Octopus bimaculoides). J. Comp. Psychol. 2000, 114, 246–252. [Google Scholar] [CrossRef]
- Karson, M.A.; Boal, J.G.; Hanlon, R.T. Experimental evidence for spatial learning in cuttlefish (Sepia officinalis). J. Comp. Psychol. 2003, 117, 149–155. [Google Scholar] [CrossRef] [Green Version]
- Hvoreckny, L.M.; Grudowski, J.L.; Blakeslee, J.L.; Simmons, T.L.; Roy, P.R.; Brooks, J.A.; Hanner, R.M.; Beigel, M.E.; Karson, M.A.; Nichols, R.H.; et al. Octopuses (Octopus bimaculoides) and cuttlefish (Sepia pharaonis, S. officinalis) can conditionally discriminate. Anim. Cogn. 2007, 10, 449–459. [Google Scholar] [CrossRef]
- Alves, C.; Chichery, R.; Boal, J.G.; Dickel, L. Orientation in the cuttlefish Sepia officinalis: Response versus place learning. Anim. Cogn. 2006, 10, 29–36. [Google Scholar] [CrossRef]
- Scatà, G.; Darmaillacq, A.-S.; Dickel, L.; McCusker, S.; Shashar, N. Going Up or Sideways? Perception of Space and Obstacles Negotiating by Cuttlefish. Front. Physiol. 2017, 8. [Google Scholar] [CrossRef] [Green Version]
- Scatà, G.; Jozet-Alves, C.; Thomasse, C.; Josef, N.; Shashar, N. Spatial learning in the cuttlefish Sepia officinalis: Preference for vertical over horizontal information. J. Exp. Biol. 2016, 219, 2928–2933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cartron, L.; Darmaillacq, A.-S.; Jozet-Alves, C.; Shashar, N.; Dickel, L. Cuttlefish rely on both polarized light and landmarks for orientation. Anim. Cogn. 2012, 15, 591–596. [Google Scholar] [CrossRef] [PubMed]
- Graindorge, N.; Jozet-Alves, C.; Darmaillacq, A.-S.; Chichery, R.; Dickel, L.; Bellanger, C. Effects of dorsal and ventral vertical lobe electrolytic lesions on spatial learning and locomotor activity in Sepia officinalis. Behav. Neurosci. 2006, 120, 1151–1158. [Google Scholar] [CrossRef]
- Jozet-Alves, C.; Modéran, J.; Dickel, L. Sex differences in spatial cognition in an invertebrate: The cuttlefish. Proc. R. Soc. B Boil. Sci. 2008, 275, 2049–2054. [Google Scholar] [CrossRef] [Green Version]
- Vickers, N.J. Mechanisms of animal navigation in odor plumes. Biol. Bull. 2000, 198, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Gilly, W.F.; Lucero, M.T. Behavioral Responses to Chemical Stimulation of the Olfactory Organ in the Squid Loligo Opalescens. J. Exp. Biol. 1992, 162, 209–229. [Google Scholar] [CrossRef]
- Wood, J.B.; Maynard, A.E.; Lawlor, A.G.; Sawyer, E.K.; Simmons, D.M.; Pennoyer, K.E.; Derby, C.D. Caribbean reef squid, Sepioteuthis sepioidea, use ink as a defense against predatory French grunts, Haemulon flavolineatum. J. Exp. Mar. Biol. Ecol. 2010, 388, 20–27. [Google Scholar] [CrossRef]
- Derby, C.D.; Tottempudi, M.; Love-Chezem, T.; Wolfe, L.S. Ink from longfin inshore squid, Doryteuthis pealeii, as a Chemical and Visual Defense Against Two Predatory Fishes, Summer Flounder, Paralichthys dentatus, and Sea Catfish, Ariopsis felis. Biol. Bull. 2013, 225, 152–160. [Google Scholar] [CrossRef] [Green Version]
- Hikidi, Y.; Hirohashi, N.; Kasugai, T.; Sato, N. An elaborate behavioural sequence reinforces the decoy effect of ink during predatory attacks on squid. J. Ethol. 2020, 38, 155–160. [Google Scholar] [CrossRef] [Green Version]
- Boal, J.; Golden, D. Distance chemoreception in the common cuttlefish, Sepia officinalis (Mollusca, Cephalopoda). J. Exp. Mar. Biol. Ecol. 1999, 235, 307–317. [Google Scholar] [CrossRef]
- Polese, G.; Bertapelle, C.; Di Cosmo, A. Olfactory organ of Octopus vulgaris: Morphology, plasticity, turnover and sensory characterization. Biol. Open 2016, 5, 611–619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polese, G.; Bertapelle, C.; Di Cosmo, A. Role of olfaction in Octopus vulgaris reproduction. Gen. Comp. Endocrinol. 2015, 210, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Morse, P.; Zenger, K.T.; McCormick, M.I.; Meekan, M.O.; Huffard, C.I. Chemical cues correlate with agonistic behaviour and female mate choice in the southern blue-ringed octopu Hapalochlaena maculosa (Hoyle, 1883) (Cephalopoda: Octopoidae). J. Moll. Stud. 2017, 83, 79–87. [Google Scholar] [CrossRef] [Green Version]
- Walderon, M.D.; Nolt, K.J.; Haas, R.E.; Prosser, K.N.; Holm, J.B.; Nagle, G.T.; Boal, J.G. Distance chemoreception and the detection of conspecifics in Octopus bimaculoides. J. Molluscan Stud. 2011, 77, 309–311. [Google Scholar] [CrossRef] [Green Version]
- Boal, J.; Marsh, S. Social recognition using chemical cues in cuttlefish (Sepia officinalis Linnaeus, 1758). J. Exp. Mar. Biol. Ecol. 1998, 230, 183–192. [Google Scholar] [CrossRef]
- Boyle, P. Responses to water-borne chemicals by the octopus Eledone cirrhosa (Lamarck, 1798). J. Exp. Mar. Biol. Ecol. 1986, 104, 23–30. [Google Scholar] [CrossRef]
- Lee, P.G. Chemotaxis by Octopus maya Voss et Solis in a Y-maze. J. Exp. Mar. Biol. Ecol. 1992, 156, 53–67. [Google Scholar] [CrossRef]
- Darmaillacq, A.-S.; Jozet-Alves, C.; Bellanger, C.; Dickel, L. Cuttlefish Preschool or How to Learn in the Peri-Hatching Period; Cambridge University Press (CUP): Cambridge, UK, 2014; pp. 3–30. [Google Scholar]
- Guibé, M.; Boal, J.G.; Dickel, L. Early exposure to odors changes later visual prey preferences in cuttlefish. Dev. Psychobiol. 2010, 52, 833–837. [Google Scholar] [CrossRef]
- Van Giesen, L.; Killan, P.B.; Allard, C.A.H.; Bellono, N.W. Molecular basis of chemotactile sensation in octopuses. Cell 2011, 183, 1–11. [Google Scholar]
- Wells, M.J. Taste by Touch: Some Experiments with Octopus. J. Exp. Biol. 1963, 40, 187–193. [Google Scholar] [CrossRef]
- Mather, J.A.; Leite, T.S.; Anderson, R.C.; Wood, J.B.; Darmaillacq, A.-S.; Dickel, L. Foraging and Cognitive Competence in Octopuses; Cambridge University Press (CUP): Cambridge, UK, 2014; pp. 125–149. [Google Scholar]
- Boycott, B.B. Learning in Octopus vulgaris and other cephalopods. Pubbl. Staz. Zool. Nap. 1954, 25, 67–93. [Google Scholar]
- Ewing, T.J.; Onthank, K.L.; Cowles, D. The effect of octopus predation on a sponge-scallop association. In Proceedings of the 2008 ASLO Ocean Sciences, Orlando, FL, USA, 2—7 March 2008. [Google Scholar]
- Moynihan, M. Why are Cephalopods Deaf? Am. Nat. 1985, 125, 465–469. [Google Scholar] [CrossRef]
- Hanlon, R.T.; Budelmann, B.-U. Why cephalopods are probably not “deaf”. Am. Nat. 1987, 129, 312–317. [Google Scholar] [CrossRef]
- Budelmann, B.U.; Bleckmann, H. A lateral line analogue in cephalopods: Water waves generate microphonic potentials in the epidermal head lines of Sepia and Lolliguncula. J. Comp. Physiol. A 1988, 164, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Komak, S.; Boal, J.G.; Dickel, L.; Budelmann, B.U. Behavioural responses of juvenile cuttlefish (Sepia officinalis) to local water movements. Mar. Freshw. Behav. Physiol. 2005, 38, 117–125. [Google Scholar] [CrossRef]
- Mooney, T.A.; Hanlon, R.T.; Christensen-Dalsgaard, J.; Madsen, P.; Ketten, D.R.; Nachtigall, P.E. Sound detection by the longfin squid (Loligo pealeii) studied with auditory evoked potentials: Sensitivity to low-frequency particle motion and not pressure. J. Exp. Biol. 2010, 213, 3748–3759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- York, C.A.; Bartel, I.K.; Kreuger, P.S. Multiple sensory modalities used by squid in successful predator evasion throughout ontogeny. J. Exp. Biol. 2016, 219, 2870–2879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grasso, F.W. Octopus sucker-arm coordination in grasping and manipulation*. Am. Malacol. Bull. 2008, 24, 13–23. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mather, J. Octopus Consciousness: The Role of Perceptual Richness. NeuroSci 2021, 2, 276-290. https://doi.org/10.3390/neurosci2030020
Mather J. Octopus Consciousness: The Role of Perceptual Richness. NeuroSci. 2021; 2(3):276-290. https://doi.org/10.3390/neurosci2030020
Chicago/Turabian StyleMather, Jennifer. 2021. "Octopus Consciousness: The Role of Perceptual Richness" NeuroSci 2, no. 3: 276-290. https://doi.org/10.3390/neurosci2030020
APA StyleMather, J. (2021). Octopus Consciousness: The Role of Perceptual Richness. NeuroSci, 2(3), 276-290. https://doi.org/10.3390/neurosci2030020