The Case for Octopus Consciousness: Temporality
Abstract
:1. Introduction
2. Accumulation of Information about Past Events to Guide Movement
3. Short Distance Egocentric Localization
4. Medium Distance ‘Mapping’ of Self in Environment
5. Long Distance Migration
6. Accumulation of Information about Items in the Environment for Future Use
6.1. Avoiding Predation
6.2. Finding and Manipulating Prey
6.3. Guidance of Learning
6.4. Exploration and Play
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baars, B.J. In the theatre of consciousness. Global workspace theory, a rigorous scientific theory of consciousness. J. Conscious. Stud. 1997, 4, 292–309. [Google Scholar]
- Pepperberg, I.M.; Lynn, S.K. Possible levels of animal consciousness with reference to grey parrots (Psittacus erithacus). Am. Zool. 2000, 40, 893–901. [Google Scholar]
- Edelman, D.B.; Baars, B.J.; Seth, A.K. Identifying hallmarks of consciousness in non-mammalian species. Conscious. Cogn. 2005, 14, 169–187. [Google Scholar] [CrossRef] [PubMed]
- Key, B. Why fish do not feel pain. Anim. Sentience 2016, 1, 1. [Google Scholar] [CrossRef]
- Mather, J.A. Cephalopod consciousness: Behavioral evidence. Conscious. Cogn. 2008, 17, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Shigeno, S.; Andrews, P.L.; Ponte, G.; Fiorito, G. Cephalopod brains: An overview of current knowledge to facilitate comparison with vertebrates. Front. Physiol. 2018, 9, 952. [Google Scholar] [CrossRef]
- O’Brien, C.E.; Ponte, G.; Fiorito, G. Octopus. In Encyclopedia of Animal Behavior, 2nd ed.; Choe, J.C., Ed.; Academic Press: Oxford, UK, 2019; pp. 142–148. [Google Scholar]
- Birch, J.; Schnell, A.K.; Clayton, N.S. Dimensions of animal consciousness. Trends Cogn. Sci. 2020, 24, 789–801. [Google Scholar] [CrossRef]
- Land, M.F. The operation of the visual system in relation to action. Curr. Biol. 2012, 22, R811–R817. [Google Scholar] [CrossRef] [Green Version]
- von Holst, E.; Mittelstaedt, H. Das reafferenzprinzip. Naturwissenschaften 1950, 37, 464–476. [Google Scholar] [CrossRef]
- Birch, J.; Ginsburg, S.; Jablonka, E. Unlimited associative learning and the origins of consciousness: A primer and some predictions. Biol. Philos. 2020, 35, 56. [Google Scholar] [CrossRef]
- Ginsburg, S.; Jablonka, E. The Evolution of the Sensitive Soul: Learning and the Origins of Consciousness; MIT Press: Cambridge, MA, USA, 2019. [Google Scholar]
- Mather, J.A.; Dickel, L. Cephalopod complex cognition. Curr. Opin. Behav. Sci. 2017, 16, 131–137. [Google Scholar] [CrossRef] [Green Version]
- Mather, J.A.; Leite, T.S.; Anderson, R.C.; Wood, J.B. Foraging and cognitive competence in octopuses. In Cephalopod Cognition; Darmaillacq, A.-S., Dickel, L., Mather, J., Eds.; Cambridge University Press: Cambridge, UK, 2014; pp. 125–149. [Google Scholar]
- Ponte, G.; Taite, M.; Borrelli, L.; Tarallo, A.; Allcock, A.L.; Fiorito, G. Cerebrotypes in cephalopods: Brain diversity and its correlation with species habits, life history, and physiological adaptations. Front. Neuroanat. 2020, 14, 565109. [Google Scholar] [CrossRef] [PubMed]
- Chung, W.-S.; Kurniawan, N.D.; Marshall, N.J. Comparative brain structure and visual processing in octopus from different habitats. Curr. Biol. 2021, 32, 97–110. [Google Scholar] [CrossRef] [PubMed]
- Wiener, J.; Shettleworth, S.; Bingman, V.P.; Cheng, K.; Healy, S.; Jacobs, L.F.; Jeffery, K.J.; Mallot, H.A.; Menzel, R.; Newcombe, N.S. A synthesis. In Animal Thinking: Contemporary Issues in Comparative Cognition; MIT Press: Cambridge, MA, USA, 2011. [Google Scholar]
- Hutt, C.; Bhavnani, R. Predictions from play. Nature 1972, 237, 171–172. [Google Scholar] [CrossRef]
- Mather, J. Octopus consciousness: The role of perceptual richness. NeuroSci 2021, 2, 276–290. [Google Scholar] [CrossRef]
- Read, J.C. Binocular vision and stereopsis across the animal kingdom. Annu. Rev. Vis. Sci. 2021, 7, 389–415. [Google Scholar] [CrossRef]
- Herrel, A.; Deban, S.M.; Schaerlaeken, V.; Timmermans, J.-P.; Adriaens, D. Are morphological specializations of the hyolingual system in chameleons and salamanders tuned to demands on performance? Physiol. Biochem. Zool. 2009, 82, 29–39. [Google Scholar] [CrossRef] [Green Version]
- Messenger, J.B. The visual attack of the cuttlefish, Sepia officinalis. Anim. Behav. 1968, 16, 342–357. [Google Scholar] [CrossRef]
- Dickel, L.; Chichery, M.-P.; Chichery, R. Postembryonic maturation of the vertical lobe complex and early development of predatory behavior in the cuttlefish (Sepia officinalis). Neurobiol. Learn. Mem. 1997, 67, 150–160. [Google Scholar] [CrossRef] [Green Version]
- Feord, R.; Sumner, M.; Pusdekar, S.; Kalra, L.; Gonzalez-Bellido, P.; Wardill, T.J. Cuttlefish use stereopsis to strike at prey. Sci. Adv. 2020, 6, eaay6036. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.J.-S.; Hung, A.; Lin, Y.-C.; Chiao, C.-C. Visual attack on the moving prey by cuttlefish. Front. Physiol. 2020, 11, 648. [Google Scholar] [CrossRef] [PubMed]
- Kral, K. Behavioural–analytical studies of the role of head movements in depth perception in insects, birds and mammals. Behav. Process. 2003, 64, 1–12. [Google Scholar] [CrossRef]
- Mather, J.A. Foraging, feeding and prey remains in middens of juvenile Octopus vulgaris (Mollusca: Cephalopoda). J. Zool. 1991, 224, 27–39. [Google Scholar] [CrossRef]
- Mather, J.A. Navigation by spatial memory and use of visual landmarks in octopuses. J. Comp. Physiol. A 1991, 168, 491–497. [Google Scholar] [CrossRef]
- Mather, J.A. ‘Home’ choice and modification by juvenile Octopus vulgaris (Mollusca: Cephalopoda): Specialized intelligence and tool use? J. Zool. 1994, 233, 359–368. [Google Scholar] [CrossRef]
- Olsson, O.; Brown, J.S.; Helf, K.L. A guide to central place effects in foraging. Theor. Popul. Biol. 2008, 74, 22–33. [Google Scholar] [CrossRef]
- Collett, T.S.; Graham, P. Animal navigation: Path integration, visual landmarks and cognitive maps. Curr. Biol. 2004, 14, R475–R477. [Google Scholar] [CrossRef] [Green Version]
- Miller, N. Taking shortcuts in the study of cognitive maps. Learn. Behav. 2021, 49, 261–262. [Google Scholar] [CrossRef]
- Leite, T.S.; Haimovici, M.; Mather, J.A. Octopus insularis (Octopodidae), evidences of a specialized predator and a time-minimizing hunter. Mar. Biol. 2009, 156, 2355–2367. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, W.J.; Browman, H.I.; Evans, B.I. Search strategies of foraging animals. Am. Sci. 1990, 78, 152–160. [Google Scholar]
- Stephens, D.W.; Krebs, J.R. Foraging Theory; Princeton University Press: Princeton, NJ, USA, 2019. [Google Scholar]
- Crystal, J.D. Episodic-like memory in animals. Behav. Brain Res. 2010, 215, 235–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jozet-Alves, C.; Bertin, M.; Clayton, N.S. Evidence of episodic-like memory in cuttlefish. Curr. Biol. 2013, 23, R1034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boal, J.G.; Dunham, A.W.; Williams, K.T.; Hanlon, R.T. Experimental evidence for spatial learning in octopuses (Octopus bimaculoides). J. Comp. Psychol. 2000, 114, 246. [Google Scholar] [CrossRef]
- Hvorecny, L.M.; Grudowski, J.L.; Blakeslee, C.J.; Simmons, T.L.; Roy, P.R.; Brooks, J.A.; Hanner, R.M.; Beigel, M.E.; Karson, M.A.; Nichols, R.H. Octopuses (Octopus bimaculoides) and cuttlefishes (Sepia pharaonis, S. officinalis) can conditionally discriminate. Anim. Cogn. 2007, 10, 449–459. [Google Scholar] [CrossRef]
- Karson, M.A.; Boal, J.G.; Hanlon, R.T. Experimental evidence for spatial learning in cuttlefish (Sepia officinalis). J. Comp. Psychol. 2003, 117, 149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clayton, N.; Emery, N.; Dickinson, A. The rationality of animal memory: Complex caching strategies of Western scrub jays. In Rational Animals; Hurley, S., Nudds, M., Eds.; Oxford University Press: Oxford, UK, 2006; pp. 197–216. [Google Scholar]
- Cartron, L.; Darmaillacq, A.-S.; Jozet-Alves, C.; Shashar, N.; Dickel, L. Cuttlefish rely on both polarized light and landmarks for orientation. Anim. Cogn. 2012, 15, 591–596. [Google Scholar] [CrossRef] [PubMed]
- Shaw, P.; Hendrickson, L.; McKeown, N.; Stonier, T.; Naud, M.-J.; Sauer, W. Discrete spawning aggregations of loliginid squid do not represent genetically distinct populations. Mar. Ecol. Prog. Ser. 2010, 408, 117–127. [Google Scholar] [CrossRef] [Green Version]
- Hall, K.C.; Hanlon, R.T. Principal features of the mating system of a large aggregation of the giant Australian cuttlefish Sepia apama (Mollusca: Cephalopoda). Mar. Biol. 2002, 140, 533–545. [Google Scholar]
- Finn, J.K.; Tregenza, T.; Norman, M.D. Defensive tool use in a coconut-carrying octopus. Curr. Biol. 2009, 19, R1069–R1070. [Google Scholar] [CrossRef] [Green Version]
- Montana, J.; Finn, J.K.; Norman, M.D. Liquid sand burrowing and mucus utilization as novel adaptations to a structurally-simple environment in Octopus kaurna Stranks, 1990. Behaviour 2015, 152, 1871–1881. [Google Scholar] [CrossRef]
- Hartwick, E.; Ambrose, R.F.; Robinson, S.M.C. Den utilization and the movement of tagged Octopus dofleini. Mar. Behav. Physiol. 1984, 11, 95–110. [Google Scholar] [CrossRef]
- Ambrose, R.F. Octopus bimaculatus. Mar. Ecol. Prog. Ser. 1982, 7, 67–73. [Google Scholar] [CrossRef]
- Mather, J.A. Factors affecting the spatial distribution of natural populations of Octopus joubini Robson. Anim. Behav. 1982, 30, 1166–1170. [Google Scholar] [CrossRef]
- Iribarne, O.O. Use of shelter by the small Patagonian octopus Octopus tehuelchus: Availability, selection and effects on fecundity. Mar. Ecol. Prog. Ser. 1990, 66, 251–258. [Google Scholar] [CrossRef]
- Guerra, Á.; Hernández-Urcera, J.; Garci, M.E.; Sestelo, M.; Regueira, M.; González, Á.F.; Cabanellas-Reboredo, M.; Calvo-Manazza, M.; Morales-Nin, B. Dwellers in dens on sandy bottoms: Ecological and behavioural traits of Octopus vulgaris. Sci. Mar. 2014, 78, 405–414. [Google Scholar]
- Anderson, R.C.; Hughes, P.D.; Mather, J.A.; Steele, C.W. Determination of the diet of Octopus rubescens Berry, 1953 (Cephalopoda: Octopodidae), through examination of its beer bottle dens in Puget Sound. Malacologia 1999, 41, 455–460. [Google Scholar]
- Katsanevakis, S.; Verriopoulos, G. Den ecology of Octopus vulgaris Cuvier, 1797, on soft sediment: Availability and types of shelter. Sci. Mar. 2004, 68, 147–157. [Google Scholar] [CrossRef] [Green Version]
- Leite, T.S.; Vidal, E.A.; Lima, F.D.; Lima, S.M.; Dias, R.M.; Giuberti, G.A.; de Vasconcellos, D.; Mather, J.A.; Haimovici, M. A new species of pygmy Paroctopus Naef, 1923 (Cephalopoda: Octopodidae): The smallest southwestern Atlantic octopod, found in sea debris. Mar. Biodivers. 2021, 51, 68. [Google Scholar] [CrossRef]
- Scheel, D.; Godfrey-Smith, P.; Lawrence, M. Signal use by octopuses in an agonistic interaction. Curr. Biol. 2016, 26, 377–382. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, D.A.; Taylor, M.L.; Masonjones, H.D.; Boersch-Supan, P.H.; O’Shea, O.R. Drivers of octopus abundance and density in an anchialine lake: A 30 year comparison. J. Exp. Mar. Biol. Ecol. 2020, 528, 151377. [Google Scholar] [CrossRef]
- Voss, K.M.; Mehta, R.S. Asymmetry in the frequency and proportion of arm truncation in three sympatric California Octopus species. Zoology 2021, 147, 125940. [Google Scholar] [CrossRef] [PubMed]
- Alupay, J.S. Characterization of Arm Autotomy in the Octopus, Abdopus Aculeatus (d’Orbigny, 1834). Ph.D. Thesis, UC Berkeley, Berkeley, CA, USA, 2013. [Google Scholar]
- Bush, S.L. Economy of arm autotomy in the mesopelagic squid Octopoteuthis deletron. Mar. Ecol. Prog. Ser. 2012, 458, 133–140. [Google Scholar] [CrossRef] [Green Version]
- Staudinger, M.D.; Juanes, F. Size-dependent susceptibility of longfin inshore squid (Loligo pealeii) to attack and capture by two predators. J. Exp. Mar. Biol. Ecol. 2010, 393, 106–113. [Google Scholar] [CrossRef]
- Meisel, D.V.; Kuba, M.; Byrne, R.A.; Mather, J. The effect of predatory presence on the temporal organization of activity in Octopus vulgaris. J. Exp. Mar. Biol. Ecol. 2013, 447, 75–79. [Google Scholar] [CrossRef]
- Josef, N.; Amodio, P.; Fiorito, G.; Shashar, N. Camouflaging in a complex environment—Octopuses use specific features of their surroundings for background matching. PLoS ONE 2012, 7, e37579. [Google Scholar] [CrossRef] [Green Version]
- Hanlon, R.T.; Forsythe, J.W.; Joneschild, D.E. Crypsis, conspicuousness, mimicry and polyphenism as antipredator defences of foraging octopuses on Indo-Pacific coral reefs, with a method of quantifying crypsis from video tapes. Biol. J. Linn. Soc. 1999, 66, 1–22. [Google Scholar] [CrossRef]
- Mather, J.A.; Mather, D.L. Apparent movement in a visual display: The ‘passing cloud’ of Octopus cyanea (Mollusca: Cephalopoda). J. Zool. 2004, 263, 89–94. [Google Scholar] [CrossRef]
- Packard, A.; Sanders, G.D. Body patterns of Octopus vulgaris and maturation of the response to disturbance. Anim. Behav. 1971, 19, 780–790. [Google Scholar] [CrossRef]
- Norman, M.D.; Finn, J.; Tregenza, T. Dynamic mimicry in an Indo–Malayan octopus. Proc. R. Soc. Lond. Ser. B Biol. Sci. 2001, 268, 1755–1758. [Google Scholar] [CrossRef]
- Mäthger, L.M.; Bell, G.R.; Kuzirian, A.M.; Allen, J.J.; Hanlon, R.T. How does the blue-ringed octopus (Hapalochlaena lunulata) flash its blue rings? J. Exp. Biol. 2012, 215, 3752–3757. [Google Scholar] [CrossRef] [Green Version]
- Caldwell, R.L. An observation of inking behavior protecting adult Octopus bocki from predation by green turtle (Chelonia mydas) hatchlings. Pac. Sci. 2005, 59, 69–72. [Google Scholar] [CrossRef] [Green Version]
- Sreeja, V.; Bijukumar, A. Ethological studies of the veined octopus Amphioctopus marginatus (Taki) (Cephalopoda: Octopodidae) in captivity, Kerala, India. J. Threat. Taxa 2013, 5, 4492–4497. [Google Scholar] [CrossRef]
- Young, R.F.; Winn, H.E. Activity patterns, diet, and shelter site use for two species of moray eels, Gymnothorax moringa and Gymnothorax vicinus, in Belize. Copeia 2003, 2003, 44–55. [Google Scholar] [CrossRef]
- Langridge, K.V. Cuttlefish use startle displays, but not against large predators. Anim. Behav. 2009, 77, 847–856. [Google Scholar] [CrossRef]
- Chiao, C.-C.; Chubb, C.; Hanlon, R.T. A review of visual perception mechanisms that regulate rapid adaptive camouflage in cuttlefish. J. Comp. Physiol. A 2015, 201, 933–945. [Google Scholar] [CrossRef] [PubMed]
- Allen, J.J.; Mäthger, L.M.; Barbosa, A.; Hanlon, R.T. Cuttlefish use visual cues to control three-dimensional skin papillae for camouflage. J. Comp. Physiol. A 2009, 195, 547–555. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, M.D.; Oakley, T.H. Eye-independent, light-activated chromatophore expansion (LACE) and expression of phototransduction genes in the skin of Octopus bimaculoides. J. Exp. Biol. 2015, 218, 1513–1520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buresch, K.C.; Mäthger, L.M.; Allen, J.J.; Bennice, C.; Smith, N.; Schram, J.; Chiao, C.-C.; Chubb, C.; Hanlon, R.T. The use of background matching vs. masquerade for camouflage in cuttlefish Sepia officinalis. Vis. Res. 2011, 51, 2362–2368. [Google Scholar] [CrossRef] [Green Version]
- Huffard, C.L. Locomotion by Abdopus aculeatus (Cephalopoda: Octopodidae): Walking the line between primary and secondary defenses. J. Exp. Biol. 2006, 209, 3697–3707. [Google Scholar] [CrossRef] [Green Version]
- Hanlon, R.T.; Watson, A.C.; Barbosa, A. A “mimic octopus” in the Atlantic: Flatfish mimicry and camouflage in Macrotritopus defilippi. Biol. Bull. 2010, 218, 15–24. [Google Scholar] [CrossRef] [Green Version]
- Huffard, C.L.; Saarman, N.; Hamilton, H.; Simison, W.B. The evolution of conspicuous facultative mimicry in octopuses: An example of secondary adaptation? Biol. J. Linn. Soc. 2010, 101, 68–77. [Google Scholar] [CrossRef] [Green Version]
- Hanlon, R.T.; Conroy, L.-A.; Forsythe, J.W. Mimicry and foraging behaviour of two tropical sand-flat octopus species off north Sulawesi, Indonesia. Biol. J. Linn. Soc. 2008, 93, 23–38. [Google Scholar] [CrossRef] [Green Version]
- Karpestam, E.; Merilaita, S.; Forsman, A. Colour polymorphism protects prey individuals and populations against predation. Sci. Rep. 2016, 6, 22122. [Google Scholar] [CrossRef] [Green Version]
- Zylinski, S.; How, M.; Osorio, D.; Hanlon, R.T.; Marshall, N. To be seen or to hide: Visual characteristics of body patterns for camouflage and communication in the Australian giant cuttlefish Sepia apama. Am. Nat. 2011, 177, 681–690. [Google Scholar] [CrossRef] [Green Version]
- Langridge, K.V. Symmetrical crypsis and asymmetrical signaling in the cuttlefish Sepia officinalis. Proc. R. Soc. B Biol. Sci. 2006, 273, 959–967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Staudinger, M.D.; Hanlon, R.T.; Juanes, F. Primary and secondary defences of squid to cruising and ambush fish predators: Variable tactics and their survival value. Anim. Behav. 2011, 81, 585–594. [Google Scholar] [CrossRef]
- Mather, J.A. Vigilance and antipredator responses of Caribbean reef squid. Mar. Freshw. Behav. Physiol. 2010, 43, 357–370. [Google Scholar] [CrossRef] [Green Version]
- Mather, J.A. Mating games squid play: Reproductive behaviour and sexual skin displays in Caribbean reef squid Sepioteuthis sepioidea. Mar. Freshw. Behav. Physiol. 2016, 49, 359–373. [Google Scholar] [CrossRef] [Green Version]
- Mather, J.A. Sand digging in Sepia officinalis: Assessment of a cephalopod mollusc’s “fixed” behavior pattern. J. Comp. Psychol. 1986, 100, 315. [Google Scholar] [CrossRef]
- York, C.A.; Bartol, I.K. Anti-predator behavior of squid throughout ontogeny. J. Exp. Mar. Biol. Ecol. 2016, 480, 26–35. [Google Scholar] [CrossRef] [Green Version]
- Wood, J.B.; Pennoyer, K.E.; Derby, C.D. Ink is a conspecific alarm cue in the Caribbean reef squid, Sepioteuthis sepioidea. J. Exp. Mar. Biol. Ecol. 2008, 367, 11–16. [Google Scholar] [CrossRef]
- Wood, J.B.; Maynard, A.E.; Lawlor, A.G.; Sawyer, E.K.; Simmons, D.M.; Pennoyer, K.E.; Derby, C.D. Caribbean reef squid, Sepioteuthis sepioidea, use ink as a defense against predatory French grunts, Haemulon flavolineatum. J. Exp. Mar. Biol. Ecol. 2010, 388, 20–27. [Google Scholar] [CrossRef]
- Derby, C.D.; Tottempudi, M.; Love-Chezem, T.; Wolfe, L.S. Ink from longfin inshore squid, Doryteuthis pealeii, as a chemical and visual defense against two predatory fishes, summer flounder, Paralichthys dentatus, and sea catfish, Ariopsis felis. Biol. Bull. 2013, 225, 152–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, M.; Zhao, C.; Yan, R.; Li, J.; Song, W.; Peng, R.; Han, Q.; Jiang, X. Continuous inking affects the biological and biochemical responses of cuttlefish Sepia pharaonis. Front. Physiol. 2019, 10, 1429. [Google Scholar] [CrossRef] [PubMed]
- Hikidi, Y.; Hirohashi, N.; Kasugai, T.; Sato, N. An elaborate behavioural sequence reinforces the decoy effect of ink during predatory attacks on squid. J. Ethol. 2020, 38, 155–160. [Google Scholar] [CrossRef] [Green Version]
- Anderson, R.C.; Mather, J.A. Escape responses of Euprymna scolopes Berry, 1911 (Cephalopoda, Sepiolidae). J. Molluscan Stud. 1996, 62, 543–545. [Google Scholar] [CrossRef] [Green Version]
- Helmer, D.; Geurten, B.R.; Dehnhardt, G.; Hanke, F.D. Saccadic movement strategy in common cuttlefish (Sepia officinalis). Front. Physiol. 2017, 7, 660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Onthank, K.L.; Cowles, D.L. Prey selection in Octopus rubescens: Possible roles of energy budgeting and prey nutritional composition. Mar. Biol. 2011, 158, 2795–2804. [Google Scholar] [CrossRef]
- Ambrose, R.F. Food preferences, prey availability, and the diet of Octopus bimaculatus Verrill. J. Exp. Mar. Biol. Ecol. 1984, 77, 29–44. [Google Scholar] [CrossRef]
- Vincent, T.; Scheel, D.; Hough, K. Some aspects of diet and foraging behavior of Octopus dofleini Wülker, 1910 in its northernmost range. Mar. Ecol. 1998, 19, 13–29. [Google Scholar] [CrossRef]
- Iribarne, O. Life history and distribution of the small south-western Atlantic octopus, Octopus tehuelchus. J. Zool. 1991, 223, 549–565. [Google Scholar] [CrossRef]
- Mather, J. Why is Octopus cyanea Gray in Hawaii specializing in crabs as prey? Vie Milieu 2011, 61, 181–184. [Google Scholar]
- Portela, E.; Simões, N.; Rosas, C.; Mascaró, M. Can preference for crabs in juvenile Octopus maya be modified through early experience with alternative prey? Behaviour 2014, 151, 1597–1616. [Google Scholar] [CrossRef]
- Schnell, A.K.; Boeckle, M.; Rivera, M.; Clayton, N.S.; Hanlon, R.T. Cuttlefish exert self-control in a delay of gratification task. Proc. R. Soc. B 2021, 288, 20203161. [Google Scholar] [CrossRef]
- Kuo, T.-H.; Chiao, C.-C. Learned valuation during forage decision-making in cuttlefish. R. Soc. Open Sci. 2020, 7, 201602. [Google Scholar] [CrossRef]
- Billard, P.; Clayton, N.S.; Jozer-Alves, C. Cuttlefish retrieve whether they smelt or saw a previously encountered item. Sci. Rep. 2020, 10, 5013. [Google Scholar] [CrossRef]
- Billard, P.; Schnell, A.K.; Clayton, N.S.; Jozet-Alves, C. Cuttlefish show flexible and future-dependent foraging cognition. Biol. Lett. 2020, 16, 20190743. [Google Scholar] [CrossRef] [Green Version]
- Anderson, R.C.; Wood, J.B.; Mather, J.A. Octopus vulgaris in the Caribbean is a specializing generalist. Mar. Ecol. Prog. Series 2008, 371, 199–202. [Google Scholar] [CrossRef] [Green Version]
- Scheel, D.; Leite, T.; Mather, J.; Langford, K. Diversity in the diet of the predator Octopus cyanea in the coral reef system of Moorea, French Polynesia. J. Nat. Hist. 2017, 51, 43–44. [Google Scholar] [CrossRef]
- Mather, J.A.; Leite, T.S.; Batista, A.T. Individual prey choices of octopuses: Are they generalist or specialist? Curr. Zool. 2012, 58, 597–603. [Google Scholar] [CrossRef] [Green Version]
- Scheel, D.; Anderson, R. Variability in the diet specialization of Enteroctopus dofleini (Cephalopoda: Octopodidae) in the eastern Pacific examined from midden contents. Am. Malacol. Bull. 2012, 30, 267–279. [Google Scholar] [CrossRef]
- Ambrose, R.F.; Nelson, B.V. Predation by Octopus vulgaris in the Mediterranean. Mar. Ecol. 1983, 4, 251–261. [Google Scholar] [CrossRef]
- Nixon, M.; Maconnachie, E. Drilling by Octopus vulgaris (Mollusca: Cephalopoda) in the Mediterranean. J. Zool. 1988, 216, 687–716. [Google Scholar] [CrossRef]
- Wodinsky, J. Penetration of the shell and feeding on gastropods by Octopus. Am. Zool. 1969, 9, 997–1010. [Google Scholar] [CrossRef] [Green Version]
- Wodinsky, J. Mechanism of hole boring in Octopus vulgaris. J. Gen. Psychol. 1973, 88, 179–183. [Google Scholar] [CrossRef]
- Steer, M.A.; Semmens, J.M. Pulling or drilling, does size or species matter? An experimental study of prey handling in Octopus dierythraeus. J. Exp. Mar. Biol. Ecol. 2003, 290, 165–178. [Google Scholar] [CrossRef]
- Fiorito, G.; Gherardi, F. Prey-handling behaviour of Octopus vulgaris (Mollusca, Cephalopoda) on bivalve preys. Behav. Process. 1999, 46, 75–88. [Google Scholar] [CrossRef]
- Blustein, D.H.; Anderson, R.C. Localization of octopus drill holes on cowries. Am. Malacol. Bull. 2016, 34, 61–64. [Google Scholar] [CrossRef]
- Anderson, R.C.; Mather, J.A. The packaging problem: Bivalve prey selection and prey entry techniques of the octopus Enteroctopus dofleini. J. Comp. Psychol. 2007, 121, 300–305. [Google Scholar] [CrossRef]
- Merlino, B. Predation Behavior of Octopus joubini Cuvier. Master’s Thesis, New College of Florida, Sarasota, FL, USA, 2013. [Google Scholar]
- Dickel, L.; Chichery, M.-P.; Chichery, R. Time differences in the emergence of short- and long-term memory during post-embryonic development in the cuttlefish, Sepia. Behav. Process. 1998, 44, 81–86. [Google Scholar] [CrossRef]
- Wells, M.; Wells, J. The effect of vertical lobe removal on the performance of octopuses in retention tests. J. Exp. Biol. 1958, 35, 337–348. [Google Scholar] [CrossRef]
- Muntz, W.; Sutherland, N.; Young, J. Simultaneous shape discrimination in octopus after removal of the vertical lobe. J. Exp. Biol. 1962, 39, 557–566. [Google Scholar] [CrossRef] [PubMed]
- Burghardt, G.M.; Hess, E.H. Food imprinting in the snapping turtle, Chelydra serpentina. Science 1966, 151, 108–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darmaillacq, A.-S.; Jozet-Alves, C.; Bellanger, C.; Dickel, L. Cuttlefish preschool or how to learn in the peri-hatching period. In Cephalopod Cognition; Darmaillacq, A.-S., Dickel, L., Mather, J., Eds.; Cambridge University Press: Cambridge, UK, 2014; pp. 3–30. [Google Scholar]
- Darmaillacq, A.-S.; Chichery, R.; Dickel, L. Food imprinting, new evidence from the cuttlefish Sepia officinalis. Biol. Lett. 2006, 2, 345–347. [Google Scholar] [CrossRef] [Green Version]
- Poirier, R.; Chichery, R.; Dickel, L. Effects of rearing conditions on sand digging efficiency in juvenile cuttlefish. Behav. Process. 2004, 67, 273–279. [Google Scholar] [CrossRef]
- Romagny, S.; Darmaillacq, A.-S.; Guibé, M.; Bellanger, C.; Dickel, L. Feel, smell and see in an egg: Emergence of perception and learning in an immature invertebrate, the cuttlefish embryo. J. Exp. Biol. 2012, 215, 4125–4130. [Google Scholar] [CrossRef] [Green Version]
- Darmaillacq, A.-S.; Lesimple, C.; Dickel, L. Embryonic visual learning in the cuttlefish, Sepia officinalis. Anim. Behav. 2008, 76, 131–134. [Google Scholar] [CrossRef]
- Lee, Y.-H.; Yan, H.Y.; Chiao, C.-C. Effects of early visual experience on the background preference in juvenile cuttlefish Sepia pharaonis. Biol. Lett. 2012, 8, 740–743. [Google Scholar] [CrossRef] [Green Version]
- Robin, J.-P.; Roberts, M.; Zeidberg, L.; Bloor, I.; Rodriguez, A.; Briceno, F.; Downey, N.; Mascaro, M.; Navarro, M.; Guerra, A.; et al. Transitions during cephalopod life history: The role of habitat, environment, functional morphology and behaviour. Adv. Mar. Biol. 2014, 67, 361–437. [Google Scholar]
- Wilson, R.C.; Bonawitz, E.; Costa, V.D.; Ebitz, R.B. Balancing exploration and exploitation with information and randomization. Curr. Opin. Behav. Sci. 2021, 38, 49–56. [Google Scholar] [CrossRef]
- Degen, J.; Hovestadt, T.; Storms, M.; Menzel, R. Exploratory behavior of re-orienting foragers differs from other flight patterns of honeybees. PLoS ONE 2018, 13, e0202171. [Google Scholar] [CrossRef] [Green Version]
- Tchernichovski, O.; Benjamini, Y. The dynamics of long term exploration in the rat: Part II. An analytical model of the kinematic structure of rat exploratory behavior. Biol. Cybern. 1998, 78, 423–432. [Google Scholar] [CrossRef]
- Burghardt, G.M. The Genesis of Animal Play: Testing the Limits; MIT Press: Cambridge, MA, USA, 2005. [Google Scholar]
- O’Hara, M.; Auersperg, A.M. Object play in parrots and corvids. Curr. Opin. Behav. Sci. 2017, 16, 119–125. [Google Scholar] [CrossRef]
- Mather, J.A.; Anderson, R.C. Exploration, play and habituation in octopuses (Octopus dofleini). J. Comp. Psychol. 1999, 113, 333. [Google Scholar] [CrossRef]
- Kuba, M.J.; Byrne, R.A.; Meisel, D.V.; Mather, J.A. When do octopuses play? Effects of repeated testing, object type, age, and food deprivation on object play in Octopus vulgaris. J. Comp. Psychol. 2006, 120, 184. [Google Scholar] [CrossRef] [Green Version]
- Pisula, W. Play and exploration in animals—A comparative analysis. Pol. Psychol. Bull. 2008, 39, 104–107. [Google Scholar] [CrossRef]
- Peters, A.; McEwen, B.S.; Friston, K. Uncertainty and stress: Why it causes diseases and how it is mastered. Prog. Neurobiol. 2017, 156, 164–188. [Google Scholar] [CrossRef]
Strategy | Species | References |
---|---|---|
Hiding | Many octopus species | Ambrose [48], Hartwick et al. [47] |
Change activity | Octopus vulgaris | Meisel et al. [61] |
Appearance | ||
camouflage | Octopus vulgaris | Josef et al. [62] |
change | Octopus cyanea | Hanlon et al. [63] |
passing cloud | Octopus cyanea | Mather & Mather [64] |
dymantic | Octopus vulgaris | Packard & Sanders [65] |
mimicry | Thaumoctopus mimicus | Norman [66] |
warning | Hapalochlaena maculosa | Mathger [67] |
Arm autotomy | Abdopus aculeatus | Alupay [58] |
Ink ejection | Octopus bocki | Caldwell [68] |
Jet escape | Amphioctopus marginatus | Sreeja & Bijukumar [69] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mather, J. The Case for Octopus Consciousness: Temporality. NeuroSci 2022, 3, 245-261. https://doi.org/10.3390/neurosci3020018
Mather J. The Case for Octopus Consciousness: Temporality. NeuroSci. 2022; 3(2):245-261. https://doi.org/10.3390/neurosci3020018
Chicago/Turabian StyleMather, Jennifer. 2022. "The Case for Octopus Consciousness: Temporality" NeuroSci 3, no. 2: 245-261. https://doi.org/10.3390/neurosci3020018
APA StyleMather, J. (2022). The Case for Octopus Consciousness: Temporality. NeuroSci, 3(2), 245-261. https://doi.org/10.3390/neurosci3020018