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Abstract: Attention deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental
disorder, and numerous functional and structural differences have been identified in the brains of
individuals with ADHD compared to controls. This study uses data from the baseline sample of
the large, epidemiologically informed Adolescent Brain Cognitive Development Study of children
aged 9–10 years old (N = 7979). Cross-validated Poisson elastic net regression models were used
to predict a dimensional measure of ADHD symptomatology from within- and between-network
resting-state correlations and several known risk factors, such as biological sex, socioeconomic status,
and parental history of problematic alcohol and drug use. We found parental history of drug use and
biological sex to be the most important predictors of attention problems. The connection between the
default mode network and the dorsal attention network was the only brain network identified as
important for predicting attention problems. Specifically, we found that reduced magnitudes of the
anticorrelation between the default mode and dorsal attention networks relate to increased attention
problems in children. Our findings complement and extend recent studies that have connected
individual differences in structural and task-based fMRI to ADHD symptomatology and individual
differences in resting-state fMRI to ADHD diagnoses.

Keywords: adolescent brain cognitive development (ABCD); attention-deficit/hyperactivity disorder
(ADHD); functional magnetic resonance imaging (fMRI); group elastic net; Poisson regression

1. Introduction
1.1. ADHD Background

Attention-deficit hyperactivity disorder (ADHD) is a common neurodevelopmental
disorder, affecting between 5 and 10% of school-aged children [1–3]. Neuroimaging studies
have identified a number of differences at the group level in the brains of individuals with
ADHD compared to controls, both structurally [4] and functionally. For studies using
functional magnetic resonance imaging (fMRI), differences in particular brain regions have
been identified using both task-based designs [5,6] and resting-state fMRI (rs-fMRI; [7]).
However, in recent years, an increasing number of studies have focused on identifying
entire brain networks that display altered activity, rather than individual regions. In
rs-fMRI, this has been done primarily through functional connectivity studies, which
evaluate correlated activity among different regions of the brain. Numerous differences
in the network organization of individuals with ADHD have been identified, including
reduced anticorrelations between task-related networks and the default mode network [8,9],
reduced connectivity within the default mode network [10], and increased segregation and
decreased integration between subnetworks across the whole brain [11,12].

In addition to brain differences, several other biological and social factors have been
shown to be risk factors associated with ADHD. There is a strong genetic component of
ADHD, which has an estimated heritability as high as 88% [13], so having a family member
with ADHD increases one’s chances of having ADHD. Sex at birth is another important
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risk factor, such that males have higher rates of ADHD [2]. Another important risk factor
for ADHD is socioeconomic status, such that those of lower socioeconomic status are more
likely to have ADHD [14]. There also appears to be an association between parental sub-
stance use/abuse and ADHD, given that children of parents with substance abuse problems
have been found to be more likely to be diagnosed with ADHD [15,16], and increased
substance use has been reported in the parents of children in ADHD [17,18]. Although
a number of neurobehavioral factors have been identified in both ADHD and substance
use, such as increased reward sensitivity [19–21], deficits in executive function [22], and
atypical default mode network activity [23–25], the exact underpinnings of this shared
liability remain unclear.

1.2. Neuroimaging and ADHD

Despite the large number of neuroimaging findings related to ADHD and the identi-
fication of numerous risk factors, previous attempts to predict ADHD symptomatology
and diagnoses using neuroimaging information have had only moderate success. Early
success in small studies (e.g., [26]) has generally not been replicated as sample size has
increased; in fact, sample size and accuracy are negatively correlated [27]. The ADHD-200
contest [28], presenting a huge progression in sample size by pooling data from multiple
sites, challenged participating teams to create a diagnostic algorithm to classify ADHD
(vs. controls) using imaging and demographic information. The average classification
accuracy was 56.02% [29], and the best-performing algorithm obtained an accuracy of
61.54% [30]. Notably, however, the highest prediction accuracy was actually obtained
by a team using only demographic information (e.g., gender, age, etc.; [31]). Predictive
accuracies notably higher than chance have also been reported from the ADHD-ENIGMA
study, a large consortium combining structural imaging information, but these authors
used neural network models, which produce “black box” predictions that are challenging
to interpret [32].

Classification studies based on known ADHD diagnoses, typically with clinically
recruited samples, are common, but results from recent meta- and mega-analyses of imag-
ing studies have started to call into question reliance on the case-control study paradigm.
Mega-analyses of the ENIGMA study have found some reliable differences in brain volume
and structure, but effect sizes are small (Cohen’s 0.11 < d < 0.21), and most differences
are specific to children, and not found in adolescents and adults [4,33]. Several recent
meta-analyses combining findings from numerous case-control studies in rs-fMRI have
had conflicting results. Some spatial convergence of brain regions showing hyper- or
hypo-connectivity was found when restricting analyses only to areas in networks of interest
identified a priori [34,35], but a fully data-driven approach found no areas with significant
spatial convergence [36]. The lack of consistent functional imaging findings generally [37]
raises the question of whether the case-control approach may obscure significant hetero-
geneity that may exist within the brains of individuals with ADHD [36]. Approaches that
focus more on individual differences, without requiring a binary classification into only
two groups, may be more fruitful and generalizable.

Recently, Owens et al. [38] used data from the Adolescent Brain Cognitive Develop-
ment (ABCD) study to predict a dimensional measure of ADHD symptomatology from
structural MRI and task-based fMRI features. Using cross-validated elastic net regres-
sion [39], these authors found that structural MRI data explained about 0.7% of the vari-
ation in the ADHD symptomatology, whereas the task-based fMRI explained anywhere
from 0% to 0.8% of the variation (depending on the task). After controlling for potentially
confounding covariates, Owens et al. [38] found that the structural MRI had little predictive
utility, whereas the functional fMRI retained some (reduced) predictive utility for certain
tasks. Benefits of their approach include the use of a dimensional measure of ADHD (in-
stead of a binary classification), as well as the use of a cross-validation-oriented regression
methodology (instead of maximum likelihood). Limitations of their approach include the
use of an atypical residualization and model selection procedure, which confounded the
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interpretation of the results. Furthermore, these authors only considered structural MRI
and task-based fMRI, i.e., rs-fMRI connectivity was not considered.

1.3. Current Work

The aim of the present study is to explore the extent to which resting-state functional
connectivity (rs-FC) is predictive of ADHD symptomatology. To accomplish this, we
leveraged recent advances in elastic net regression [40] to predict ADHD symptomatology
from within- and between-network resting-state correlations using data from the ABCD
study. More specifically, we considered all pairwise combinations (including self-pairings)
of the 12 networks in Figure 1, which produced 78 rs-FC features used in the group elastic
regression analysis. As an outcome variable, we used the Attention Problems subscale of
the Child Behavior Checklist (CBCL). Our goal was to predict these subscale scores from
the 78 rs-FC features after controlling for common risk factors. It should be noted that
the Attention Problems scores are non-negative integers with a right-skewed distribution
(see Figure 2), so we used a Poisson response distribution. Based on recent work [41], we
expected the rs-FC between the default mode network (DT) and the dorsal attention (DLA)
to be most predictive of individual differences in ADHD symptomatology, as measured
by the Attention Problems subscale of the CBCL, after controlling for common ADHD
risk factors.

VTA CGC SA DLA

DT CA FO RSPLTP

AD VIS SMH SMM

Figure 1. The 12 functional brain networks considered in this study. The brain networks were
defined using regions of interest (ROIs) from the Gordon parcellation [42] and were plotted us-
ing the BrainNet Viewer software, version 1.7 [43]. The brain network abbreviations used in the
ABCD Study® include AD = auditory network, CA = cinguo-parietal network, CGC = cinguo-
opercular network, DLA = dorsal attention network, DT = default network, FO = frontoparietal
network, RSPLTP = restrosplenial temporal network, SA = salience network, SMH = somatomotor
hand network, SMM = somatomotor mouth network, VIS = visual network, and VTA = ventral
attention network.
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Figure 2. Histogram of the Attention Problems subscale of the Child Behavior Checklist (CBCL).

2. Materials and Methods
2.1. Participants

Subjects were participants in the ongoing ABCD study (www.ABCDstudy.org; ac-
cessed 30 August 2024), which collects data at 21 sites across the United States. Each data
collection site obtained institutional review board (IRB) approval from their institutions,
and study sites collected informed consent from parents and informed assent from subjects.
Data from the baseline sample were used, meaning that participants ranged from 9 to
11 years of age (M = 9.940, SD = 0.628). In total, there were 11,878 participants in the
baseline sample. Subjects were excluded for any type of relevant missing data, for rs-fMRI
quality control (QC) failure, described in greater detail below, and for excessive motion
during the rs-fMRI session, also clarified below. Following exclusion, there were N = 7979
subjects remaining, which were used in all following analyses. For demographic details of
the sample, see Table 1.

Table 1. Descriptive statistics of demographic variables for the sample used in analyses (N = 7979).

Variable Factor Levels Percentage (%)

Sex Male 49.994
Female 50.006

Race/Ethnicity

White 56.937
Black/African-American 12.094

Native American/Alaska Native 0.251
Asian/Pacific Islander 1.466

Hispanic/Latino 19.539
Multiple Races/Other 9.713

Household Income
<50 k 27.334

50–100 k 28.688
>100 k 43.978

Parental Education

HS Diploma or Less 11.342
Some College 25.116

Bachelor’s 26.983
Graduate 36.559

Parental Alcohol Use

None 85.061
Father Only 11.067
Mother Only 2.231
Both Parents 1.642

Parental Drug Use

None 69.207
Father Only 8.059
Mother Only 16.155
Both Parents 6.580

www.ABCDstudy.org
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2.2. fMRI Acquisition and Data Preprocessing

Anatomical and functional MRI scans were collected across the ABCD sites in accor-
dance with the study protocol; for a thorough description of the acquisition parameters and
the scanning protocol, please see Casey et al. [44]. Following collection, the rs-fMRI data
were processed and QC was performed by the ABCD Data Analysis and Informatics Center
(DAIC) in accordance with study protocol; for a thorough description of the processing and
QC procedures, please see Hagler et al. [45]. See Appendix A for a brief treatment of fMRI
data processing and QC procedures.

Regions of interest (ROIs) from the Gordon parcellation [42] were classified into 12 pre-
determined functionally defined networks (plus a “none” category, consisting of ROIs that
do not fit cleanly into any of the other networks, which was not included in analyses), which
were cingulo-opercular (CGC), salience (SA), dorsal attention (DLA), ventral attention
(VTA), default (DT), cingulo-parietal (CA), fronto-parietal (FO), retrosplenial temporal
(RSPLTP), auditory (AD), visual (VS), somatomotor hand (SMH), and somatomotor mouth
(SMM) networks; see Figure 1. It should be noted that network acronyms were chosen
to be consistent with ABCD documentation, although some differ from the acronyms
more standardly used throughout the literature. For ease of reference for these and the
other acronyms used throughout the article, see the Abbreviations section (directly before
Appendix A).

Within-network correlations were calculated as the average of the Fisher-transformed
correlations across the time series for each unique, pairwise combination of ROIs belonging
to the network. Average correlations between networks were calculated by averaging
the correlations for each unique, pairwise combination of ROIs in the first network with
the ROIs in the second. This process led to 78 total unique between- and within-network
pairs across the 12 networks. It should be noted that time points with >0.2 mm framewise
displacement or time periods with <5 contiguous frames below this framewise displace-
ment threshold were not included in the calculation of correlations. We confirmed that all
included subjects had at least 350 frames of data remaining after this censoring. Again, for
a more detailed treatment of the calculation of the resting-state network correlations in
ABCD, please see Hagler et al. [45].

2.3. Measures

Our outcome variable of interest, ADHD symptom scores, was determined as the
sum score on the Attention Problems subscale of the CBCL, which evaluates multiple
facets of ADHD symptomatology, including attention, hyperactivity, and impulsivity.
Scores were the sum of the ratings on each item on the scale, with totals ranging from 0
to 14 (see Figure 2). This CBCL subscale has been demonstrated to be a good predictor
of dichotomous ADHD diagnoses based on structured diagnostic interviews [46], and
has been shown to have relatively high specificity and sensitivity in regards to clinical
diagnoses [47]. However, although the scale shows a strong relationship to dichotomous
diagnoses, scores were kept on a continuum to better assess ADHD along a spectrum
of symptomatology, including sub-diagnostic individuals, to better evaluate individual
differences. Due to the interest in more directly exploring ADHD along a continuum, this
variable was selected as the outcome variable of interest over other categorical diagnostic
variables collected as a part of the ABCD Study.

A demographic questionnaire was administered to the parent/caretaker of the partic-
ipant to determine a number of demographic variables, including household combined
income (coded as <50 k, 50–100 k, and >100 k, consistent with prior work in ABCD; [48]);
highest parental education (coded as HS diploma or less, some college, Bachelor’s degree,
and graduate degree, and taken to be the highest of either the responding parent or a
partner who helps raise the child, if applicable); the child’s sex at birth (coded as either
male or female, with three intersex males coded as male); the race the parent perceives
the child to be (coded as White, Black/African-American, Native American/American
Indian/Alaska Native, Asian/Asian-American/Pacific Islander, Hispanic/Latino [regard-
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less of race identified], and multiple races/Other, where “Other” was a category selected
by the parent). The participant’s age was determined based on the date they completed
the rs-fMRI scan and was coded continuously. The study site of each participant was also
included as a categorical predictor with 22 levels (21 active ABCD study sites plus one
discontinued site).

A questionnaire was also administered to the parent/caretaker of the participant to
assess the history of problematic drug (non-specified) or alcohol use in both biological
parents as a lifetime occurrence. Problematic usage was defined as resulting in arrests or
DUIs, harming health, necessitating treatment, and a number of other negative outcomes.
Both variables were coded as either neither parent being affected, only the father being
affected, only the mother being affected, or both parents being affected.

2.4. Data Analysis

To determine which demographic and/or brain connectivity features were predictive
of the CBCL Attention problem scores, we used a group-penalized Poisson regression
model [49]. We used the default (log) link function, so wemodeled the log of the expected
CBCL score as an additive function of the predictors. For predictor variables, we used the
previously described demographic measures (site, age, sex, race, income, and education),
the parental substance use history variables (alcohol and drugs), and the 78 brain rs-FC
measures. Five predictors were treated as unordered factors (i.e., site, sex, race, alcohol,
drugs), two predictors were treated as ordered factors (i.e., income and education), and
the remaining predictors were treated as numeric/continuous variables (i.e., age and
78 rs-FC measures).

The Poisson regression models were fit/tuned using the cv.grpnet() function in
the grpnet R package [50], which implements the adaptively bounded gradient descent
algorithm recently developed by [40]. In penalized, or “regularized,” regression, a penalty
term is added to the likelihood function that penalizes the size of the estimated coefficients.
The overall aim of penalization is to add a small amount of bias to the estimates such
that the variance is reduced, due to the bias-variance trade off, and shrink the coefficient
estimates closer to zero. This has the benefit of reducing model overfitting, and, if an L1
penalty (based on an L1 norm) is used, variable selection is also performed such that some
coefficients are pushed completely to zero.

Unlike typical applications of penalized Poisson regression fit via the glmnet pack-
age [51], the grpnet package uses (i) a nonparametric regression approach that allows for
nonlinear effects, and (ii) elastic net penalties that mix robust combinations of L1 and L2
penalties. More specifically, we expanded each feature using a spectral smoothing spline
basis to capture nonlinear effects [49,52], and we compared three L1 penalties: the least
absolute shrinkage and selection operator (LASSO [53]), the smoothly clipped absolute de-
viation (SCAD [54]), and the minimax concave penalty (MCP [55]). The LASSO is the most
commonly used L1 penalty, but it has some noteworthy downsides, e.g., non-ignorable bias
in the parameter estimates of the non-zero coefficients, particularly for larger effects [56,57],
and a large number of false positive effects [57]. The SCAD and MCP penalties have been
shown to have less bias and better selection properties and, thus, we elected to compare
results using the three different penalty types.

The cv.grpnet() function uses 10-fold cross-validation to tune the model hyperpa-
rameters, which include the overall regularization parameter λ > 0, the elastic net tuning
parameter α ∈ [0, 1], and the tuning parameter γ > 2 (MCP) or γ > 3 (SCAD). We used the
defaults of the cv.grpnet() function, which tunes via a grid search using all combinations
of α ∈ {0.01, 0.25, 0.5, 0.75, 1} and γ ∈ {3, 4, 5} (for MCP and SCAD) with the λ sequence
automatically determined. We also used the default tuning measure, which is the mean
absolute error (MAE) between the predicted and observed data. The combination of the
hyperparameters that minimized the average MAE across the 10 folds was chosen.
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3. Results
3.1. Cross-Validation

The cross-validation curves for the optimal hyperparameters (i.e., α and γ) are dis-
played in Figure 3. It should be noted that the red points show the average prediction error
(averaged across the 10 folds), whereas the gray lines display +/− one standard error. The
two vertical (dotted) lines denote the solutions that minimize the prediction error (left) and
the solution that is within one standard error of the minimum (right). The “1se” solution is
often preferred over the “min” solution, given that the 1se solution is more parsimonious
and produces similar predictive performance as the min solution (e.g., see [51,58,59]).
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Figure 3. Prediction error curves for the three examined penalty functions. The x-axis represents
the logarithm of each of the 100 λ values tested in cross-validation as part of the solution path. Red
points show the average prediction error (operationalized as mean absolute error, and averaged
across the 10 folds), whereas the gray lines display +/− one standard error. The two vertical (dotted)
lines denote the solutions that minimize the prediction error (left) and the solution that is within one
standard error of the minimum (right).

3.2. Variable Selection and Importance

All three of the methods selected the following demographic/parental history vari-
ables: site, sex, income, alcohol, and drugs. The age and race variables were not selected
by any of the methods, whereas the education variable was selected by the LASSO and
the SCAD models (but not the MCP). Of the 78 rs-FC features included in the model, the
MCP and SCAD only selected a single feature: the connection between the DT (default
mode) and DLA (dorsal attention) networks. In contrast, the LASSO penalty selected the
DT-DLA connection, as well as eight additional rs-FC network connections. However, it is
important to note that a variable being selected by the model does not necessarily imply
that the variable has a noteworthy influence on the solution.

In nonparametric regression, the importance of each active (i.e., selected) term can be
quantified via each term’s contribution to the variation accounted for by the model predic-
tions (e.g., see [60]). Using the optimally tuned hyperparameters, the fit models explain
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the following proportions of the data variation (i.e., Poisson deviance): R2
LASSO = 8.516%,

R2
MCP = 9.430%, and R2

SCAD = 7.928%. The variable importance indices, which are plotted
in Figure 4, give the approximate percentage of the overall R2 that is accounted for by
each term, so these values can be used to understand which terms are relatively more
important for forming model predictions. It should be noted that the variable importance
indices sum to 100 (across all variables separately for each penalty), so an importance value
closer to 100 indicates that a given term is more important relative to the other terms in a
given model.
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Figure 4. Variable importance indices for the demographic and parental history variables (top) and
the active brain connectivity variables (bottom).

All three models agree that parental history of problematic drug use (i.e., “drugs”)
is the most important predictor of CBCL Attention Problems, with variable importance
indices of LASSO = 40.564, MCP = 30.601, and SCAD = 40.436. After “drugs”, the biological
“sex” of the child is the second most important predictor in all models: LASSO = 31.093,
MCP = 22.226, and SCAD = 28.437. Interestingly, the MCP penalty attributes (a) less im-
portance to the “sex” variable than the other penalties, and (b) more importance to the
“site” variable than the other penalties. Note that there are differences in the proportion of
males at each study site; thus, the “sex” and “site” variables contain shared information
(i.e., dependence), which may explain the noteworthy difference in the variable impor-
tances attributed to these terms in the compared models). The “income” variable also
has a noteworthy importance in all three models: LASSO = 13.028, MCP = 11.363, and
SCAD = 18.872. The parental history of problematic alcohol use (i.e., “alcohol”) has a rather
small importance index for the LASSO and MCP, and is determined to be negligible in
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the SCAD model. Finally, the parental education variable (i.e., “edu”) is determined to be
slightly important by the LASSO but unimportant in the other two models.

The LASSO model includes nine of the brain connectivity variables in the model, but
several of the included variables have importance indices that are quite small (see Figure 4).
The three most important rs-FC terms in the LASSO model have variable importance values
of DT-DLA = 2.697, DT-CGC = 0.740, and CGC-VTA = 0.462. Interestingly, the MCP and
SCAD models agree that the DT-DLA connection is the only important brain connectivity
variable in the model. The two models also agree regarding the importance of the DT-
DLA connection, which has importance values of MCP = 11.052 and SCAD = 11.3082. As
previously stated, these importance values give the approximate percentage of the overall
model R2 that is accounted for by each predictor, so the DT-DLA connection explains
about R2

MCP = 1.042% and R2
SCAD = 0.896% of the CBCL Attention Problem scores—after

controlling for the demographic and parental history variables.

3.3. Demographic and Parental History Effects

To understand the nature of the relationships estimated by the model, we first note that
the assumed model has the form log(µ) = ∑

p
j=0 f j, where µ is the expected CBCL Attention

Problems score, f0 is an intercept term, and f j is the j-th predictor’s effect. Exponentiating
both sides writes the model on the response scale, such as µ = exp(∑

p
j=0 f j) = ∏

p
j=0 exp( f j).

This implies that the exponential of the intercept, i.e., exp( f0), gives the baseline predicted
CBCL Attention Problems score, which is exp( f LASSO

0 ) = 2.669, exp( f MCP
0 ) = 1.452, and

exp( f SCAD
0 ) = 1.675. Further, the exponential of the j-th effect, i.e., exp( f j), gives the

multiplicative effect of the j-th predictor on the predicted response. It should be noted that,
if exp( f j) > 1, then the j-th effect increases the baseline predicted CBCL Attention Problems
score, whereas, if exp( f j) < 1, then the j-th effect decreases the baseline prediction.

Table 2 displays the multiplicative effects for the demographic and parental history
variables, and Table 3 displays the multiplicative effects for the 22 different ABCD sites.
The results in Table 2 are as expected based on the past literature: males are predicted to
have more attention problems than females, having lower income increases the predicted
attention problems, and having both parents with problematic histories of alcohol and
drug use increases the predicted attention problems. Interestingly, if only one parent has an
alcohol or drug problem, then the child would be expected to have more attention problems
if the alcohol and/or drug problem is with the mother only (compared to the father only).
The results in Table 3 reveal that there are noteworthy differences in the CBCL Attention
Problem scores across the different ABCD sites, but the effect is much more pronounced in
the MCP solution compared to the LASSO and SCAD solutions.

Table 2. Estimated multiplicative effects for each active demographic/parental history variable.

Variable Factor Levels LASSO MCP SCAD

Sex Male 1.15 1.17 1.18
Female 0.87 0.85 0.85

Income
<50 k 1.10 1.13 1.16

50–100 k 0.99 0.99 0.99
>100 k 0.92 0.89 0.87

Alcohol

None 0.94 0.87 0.98
Father Only 0.96 0.93 0.99
Mother Only 1.00 1.03 1.00
Both Parents 1.11 1.19 1.04

Drugs

None 0.79 0.76 0.75
Father Only 0.93 0.93 0.93
Mother Only 1.10 1.12 1.12
Both Parents 1.24 1.27 1.29
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Table 3. Estimated multiplicative effect for each site in the ABCD study.

Site LASSO MCP SCAD

site01 0.93 0.77 0.98
site02 0.94 0.81 0.98
site03 1.09 1.37 1.03
site04 1.05 1.17 1.01
site05 1.01 1.06 1.00
site06 0.99 0.97 1.00
site07 1.04 1.15 1.01
site08 1.02 1.09 1.01
site09 0.97 0.95 0.99
site10 0.94 0.79 0.98
site11 1.04 1.14 1.01
site12 1.04 1.13 1.01
site13 0.97 0.90 0.99
site14 0.94 0.80 0.98
site15 1.04 1.12 1.01
site16 1.02 1.13 1.01
site17 0.99 0.96 1.00
site18 0.98 0.91 0.99
site19 0.96 0.86 0.99
site20 1.00 1.04 1.00
site21 1.01 1.05 1.00
site22 1.03 1.08 1.01

3.4. DT-DLA Functional Connectivity Effect

The estimated relationship between the DT-DLA connectivity and CBCL Attention
Problems is plotted in Figures 5 and 6. Focusing first on Figure 5, we note that the estimated
relationship appears rather nonlinear in the MCP and SCAD solutions, but rather linear in
the LASSO solution. More specifically, in the MCP and SCAD solutions, the logarithm of the
predicted attention scores increases steeply as the magnitude of the connectivity decreases
from −0.8 to −0.4, but then increases more gradually as the correlation approaches zero. In
contrast, in the LASSO solution, the log of the predicted attention scores increases rather
gradually across the observed range of connectivity values.
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Figure 5. Predicted Child Behavior Checklist (CBCL) Attention Problems on the link scale (i.e.,
additive effect f j) as a function of the resting-state functional connectivity between the default mode
(DT) and the dorsal attention (DLA) networks.



NeuroSci 2024, 5 455−0.8 −0.6 −0.4 −0.2 0.0 0.2

−
4

−
3

−
2

−
1

0
1

Predictions on Link Scale

DT−DLA Functional Connectivity

lo
g(

C
B

C
L 

A
ttn

 P
ro

b)

LASSO
MCP
SCAD

−0.8 −0.6 −0.4 −0.2 0.0 0.2

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Predictions on Response Scale

DT−DLA Functional Connectivity

C
B

C
L 

A
ttn

 P
ro

b

LASSO
MCP
SCAD

Figure 6. Predicted Child Behavior Checklist (CBCL) Attention Problems on the response scale (i.e.,
multiplicative effect exp( f j)) as a function of the resting-state functional connectivity between the
default mode (DT) and the dorsal attention (DLA) networks.

Next, focusing on Figure 6, we note that the estimated multiplicative effect appears
much stronger in the MCP and SCAD solutions compared to the LASSO solution. More
specifically, in the MCP and SCAD solutions, the multiplicative effect ranges from approxi-
mately 0 (DT-DLA connectivity = −0.8) to 2–2.5 (DT-DLA connectivity = 0.2), whereas the
multiplicative effect in the LASSO solution ranges from approximately 0.7 to 1.2 across that
same range of DT-DLA connectivity values. In the MCP and SCAD solutions, the multi-
plicative effect is less than one (which corresponds to reduced attention problems) when
the DT-DLA connectivity is in the range −0.8 to −0.5 (strong negative correlation), whereas
the multiplicative effect is greater than one (which corresponds to increased attention
problems) when the DT-DLA connectivity is in the range −0.5 to 0.2 (weaker correlation).

4. Discussion
4.1. Summary of Findings

In this paper, we leveraged recent advances in penalized regression to explore the
extent to which rs-FC predicts attention problems in children after controlling for demo-
graphic and parental history risk factors. Using a community sample of data from the
ABCD study, we fit a penalized Poisson regression model to predict CBCL Attention Prob-
lem scores (see Figure 2) from 78 within- and between-network connections, as well as
seven known risk factors (and study site). We compared three different variable selection
penalties (LASSO, MCP, SCAD), and used 10-fold cross-validation to tune the model hy-
perparameters. For each penalty, we examined the nature of the cross-validation path,
the importance attributed to each model term, and the nature of the estimated functional
relationship between the CBCL Attention Problem scores and each predictor. Code to
reproduce all aspects of these analyses can be found in the Supplementary Material.

Our results reveal that the three different penalties produced similar predictive per-
formance in terms of the MAE (see Figure 3), but the different penalties produced rather
noteworthy differences in the importance assigned to each model term (see Figure 4). All
three penalties agreed that parental history of problematic drug use was the most influ-
ential predictor, followed by the biological sex of the child. Examination of the estimated
effects in Table 2 reveals that our results agree with past literature on the topic regarding
the nature of the drug use (see [16]) and sex effects (see [2]); specifically, parental history
of problematic drug usage and being a male both relate to increased attention problems.
The three penalties also agree that having lower income increases the expected attention
problems in children, which is consistent with the past literature (see [14]).
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Of primary interest in our study was the estimated relationships between the rs-FC
measures and the CBCL Attention Problems scores. Of the 78 within- and between-network
connections, the MCP and SCAD penalties only selected a single feature, which was the
connection between the default mode network (DT) and the dorsal attention network
(DLA). It should be noted that the LASSO penalty selected the DT-DLA connection, as well
as eight additional connections, but the LASSO penalty attributed the largest importance to
the DT-DLA connection. For the LASSO penalty to provide consistent variable selection,
the data need to meet rather strict assumptions (see [56,61]); consequently, we prefer the
MCP and SCAD solutions, given that these penalties are capable of consistent variable
selection under a wider set of circumstances (see [55]).

Focusing on the MCP and SCAD solutions, the model predictions reveal that there is a
noteworthy nonlinear relationship between the strength of the DT-DLA connection and
the CBCL Attention Problems scores (see Figures 5 and 6). More specifically, a decrease in
the magnitude of the connectivity between the default mode network (DT) and the dorsal
attention network (DLA) corresponds to increased attention problems, as measured by the
CBCL. Our primary finding complements and extends the recent results of Owens et al. [38],
who found that ADHD symptomatology was associated with task-based fMRI performance,
and Norman et al. [41], who found that ADHD diagnosis was associated with reduced
anticorrelation between the DT and DLA networks. Thus, our results suggest that rs-FC
may be useful for understanding individual differences in attention problems.

4.2. Strengths, Limitations, and Future Directions

The present study has numerous advantages that make it distinct from the existing
literature: (i) we leveraged recent advances in elastic net regression to fit and tune our
model using 10-fold cross-validation, (ii) we compared the influence of common and
more advanced variable selection penalties to find an optimal solution, (iii) we used a
dimensional measure of attention problems to understand individual differences in ADHD
symptomatology, and (iv) we used the large, epidemiologically informed ABCD sample to
ensure that our results are representative of children across the United States. Regarding
points (i) and (ii), to the best of our knowledge, the present study is the first attempt to
use a nonparametric elastic net approach in combination with advanced variable selection
penalties to predict behavior from neuroimaging data. Regarding points (iii) and (iv), the
present study is the first study that attempts to predict a dimensional measure of ADHD
symptomatology from rs-FC using data from the ABCD study.

Despite these obvious advantages, there are some subtle limitations of the present
study that could be improved upon in future efforts. One such limitation is that the ABCD
sample contains siblings, and this family structure was not accounted for in the current
analyses—although previous research has shown that this is unlikely to have a meaningful
effect [38,62]. Our choice to use a dimensional measure of ADHD symptomatology, which
we view as a strength, could also be considered a limitation of our study. Research suggests
that dimensional measures of psychopathology have greater reliability and validity [63],
and previous genetic [64] and neurocognitive [65] work supports a dimensional view of
ADHD in particular. However, in practice, ADHD is treated as a categorical diagnosis, and
recent work has suggested that using a restrictive, multi-informant classification of ADHD
may lead to stronger associations with genetic and cognitive signals of interest [66]. Finally,
there is always difficulty in using fMRI to investigate children with ADHD, and functional
connectivity in particular is highly sensitive to artifacts from motion [67]. We retained
as many subjects as possible while maintaining data quality; however, it is possible that
subjects with greater ADHD symptomatology or who were otherwise more susceptible to
motion were more likely to be removed from the sample, limiting generalizability [68], or
that motion differences are contributing to findings.
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5. Conclusions

In summary, our findings demonstrate the potential predictive power of resting-
state functional connectivity information in youth with ADHD. As one of the largest
investigations to date of the rs-FC networks associated with ADHD in children, our finding
of the importance of the DT-DLA correlation coheres with other large-scale studies using
differing approaches and datasets [41], helping to begin to establish a consensus in an
area of research marred by inconsistent findings [36,37]. As the field moves more towards
embracing large-scale consortia studies, data-driven approaches for identifying relevant
predictors will become increasingly common, but careful attention must be paid to what
variable selection strategies are used and how modeling choices (such as the penalty type)
affect the subsequent conclusions. We hope that our data-driven approach establishes
directions for future research, including replication of and further investigation into the
DT-DLA connection highlighted in the present work as it relates to ADHD, as well as
similar variable selection approaches for data from other sources and relating to other
clinical disorders.
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Abbreviations
Brain network abbreviations:
AD Auditory network
CA Cingulo-parietal network
CGC Cingulo-opercular network
DLA Dorsal attention network
DT Default network
FO Fronto-parietal network
RSPLTP Retrosplenial temporal network
SA Salience network
SMH Somatomotor hand network
SMM Somatomotor mouth network
VIS Visual network
VTA Ventral attention network
Other Abbreviations:
ABCD Adolescent Brain Cognitive Development Study
ADHD Attention-deficit hyperactivity disorder
CBCL Child Behavior Checklist
fMRI Functional magnetic resonance imaging
LASSO Least absolute shrinkage and selection operator
MAE Mean absolute error
MCP Minimax concave penalty
QC Quality control
ROIs Regions of interest
rs-FC Resting-state functional connectivity
rs-fMRI Resting-state fMRI
SCAD Smoothly clipped absolute deviation

Appendix A

Following collection, the rs-fMRI data were processed and QC was performed by the
ABCD Data Analysis and Informatics Center (DAIC) in accordance with the study protocol.
For processing, initial frames were removed, and voxel time series were normalized by
voxel mean. Then linear regression removed signals correlated with estimated motion time
series, quadratic trends, and the mean time courses and first derivatives of white matter,
ventricles, and the whole brain.

Motion regression was performed using six parameters of motion along with their
squares and derivatives on all frames with <0.30 mm framewise displacement (FD), and
temporal filtering was used on the estimated motion time series to mitigate respiratory sig-
nal. Time series were then bandpass-filtered between 0.009 and 0.08 Hz. The preprocessed
time series were then sampled onto each individual subject’s cortical surface, and average
region of interest (ROI) time series were calculated for the functionally defined Gordon
atlas parcellation [42], which are resampled from atlas space into subject space.

Automated and manual QC were performed by the DAIC in accordance with the
study protocol [45]. Briefly, automated QC procedures included checking for completeness
of files, adherence to protocol, and calculation of metrics such as mean FD and number of
time points below various thresholds of FD. Manual QC procedures included reviewing
images for artifacts and irregularities. Any subjects that were determined to have failed the
rs-fMRI QC performed by the DAIC were removed from the analysis.
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