Artificial Intelligence in Surgical Learning
Abstract
:1. Introduction
2. Materials and Methods
3. Results of Current Status of AI in Surgical Learning
3.1. AI in Surgical Learning
3.1.1. AI in Learning Surgical Competence
3.1.2. AI in Surgical Diagnostics and Decision-Making
3.1.3. AI in in Learning Minimally Invasive Surgery
3.1.4. Limitations of AI in Medical Education
4. Discussion of Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Davenport, T.; Kalakota, R. The potential for artificial intelligence in healthcare. Future Healthc. J. 2019, 6, 94–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, K.H.; Beam, A.L.; Kohane, I.S. Artificial intelligence in healthcare. Nat. Biomed. Eng. 2018, 2, 719–731. [Google Scholar] [CrossRef] [PubMed]
- Pucchio, A.; Rathagirishnan, R.; Caton, N.; Gariscsak, P.J.; Del Papa, J.; Nabhen, J.J.; Vov, V.; Lee, W.; Moraes, F.Y. Exploration of exposure to artificial intelligence in undergraduate medical education: A Canadian cross-sectional mixed-methods study. BMC Med. Educ. 2022, 22, 815. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.R.; Lu, L.; Zhang, J.Y.; Huo, T.T.; Liu, S.X.; Ye, Z.W. Application of Artificial Intelligence in Medicine: An Overview. Curr. Med. Sci. 2021, 41, 1105–1115. [Google Scholar] [CrossRef]
- Masters, K. Artificial intelligence in medical education. Med. Teach. 2019, 41, 976–980. [Google Scholar] [CrossRef]
- Rampton, V.; Mittelman, M.; Goldhahn, J. Implications of artificial intelligence for medical education. Lancet Digit. Health 2020, 2, e111–e112. [Google Scholar] [CrossRef] [Green Version]
- Baartman, L.; Bastiaens, T.; Kirschner, P.; Van der Vleuten, C. Evaluating assessment quality in competence-based education: A qualitative comparison of two frameworks. Educ. Res. Rev. 2007, 2, 114–129. [Google Scholar] [CrossRef]
- Pakkasjärvi, N.; Krishnan, N.; Ripatti, L.; Anand, S. Learning Curves in Pediatric Robot-Assisted Pyeloplasty: A Systematic Review. J. Clin. Med. 2022, 11, 6935. [Google Scholar] [CrossRef]
- Winkler-Schwartz, A.; Bissonnette, V.; Mirchi, N.; Ponnudurai, N.; Yilmaz, R.; Ledwos, N.; Siyar, S.; Azarnoush, H.; Karlik, B.; Del Maestro, R.F. Artificial Intelligence in Medical Education: Best Practices Using Machine Learning to Assess Surgical Expertise in Virtual Reality Simulation. J. Surg. Educ. 2019, 76, 1681–1690. [Google Scholar] [CrossRef]
- Seil, R.; Hoeltgen, C.; Thomazeau, H.; Anetzberger, H.; Becker, R. Surgical simulation training should become a mandatory part of orthopaedic education. J. Exp. Orthop. 2022, 9, 22. [Google Scholar] [CrossRef]
- Gazis, A.; Karaiskos, P.; Loukas, C. Surgical Gesture Recognition in Laparoscopic Tasks Based on the Transformer Network and Self-Supervised Learning. Bioengineering 2022, 9, 737. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Silverio, G.A.; Perez-Escamirosa, F.; Bruno-Sanchez, R.; Ortiz-Simon, J.L.; Munoz-Guerrero, R.; Minor-Martinez, A.; Alarcón-Paredes, A. Development of a Laparoscopic Box Trainer Based on Open Source Hardware and Artificial Intelligence for Objective Assessment of Surgical Psychomotor Skills. Surg. Innov. 2018, 25, 380–388. [Google Scholar] [CrossRef] [PubMed]
- Oquendo, Y.A.; Riddle, E.W.; Hiller, D.; Blinman, T.A.; Kuchenbecker, K.J. Automatically rating trainee skill at a pediatric laparoscopic suturing task. Surg. Endosc. 2018, 32, 1840–1857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moglia, A.; Morelli, L.; D’Ischia, R.; Fatucchi, L.M.; Pucci, V.; Berchiolli, R.; Ferrari, M.; Cuschieri, A. Ensemble deep learning for the prediction of proficiency at a virtual simulator for robot-assisted surgery. Surg. Endosc. 2022, 36, 6473–6479. [Google Scholar] [CrossRef] [PubMed]
- Secinaro, S.; Calandra, D.; Secinaro, A.; Muthurangu, V.; Biancone, P. The role of artificial intelligence in healthcare: A structured literature review. BMC Med. Inform. Decis. Mak. 2021, 21, 125. [Google Scholar] [CrossRef]
- Arora, V.M. Harnessing the Power of Big Data to Improve Graduate Medical Education: Big Idea or Bust? Acad. Med. 2018, 93, 833–834. [Google Scholar] [CrossRef]
- Shorten, G.; Srinivasan, K.K.; Reinertsen, I. Machine learning and evidence-based training in technical skills. Br. J. Anaesth. 2018, 121, 521–523. [Google Scholar] [CrossRef] [Green Version]
- Winkler-Schwartz, A.; Yilmaz, R.; Mirchi, N.; Bissonnette, V.; Ledwos, N.; Siyar, S.; Azarnoush, H.; Karlik, B.; Del Maestro, R. Machine Learning Identification of Surgical and Operative Factors Associated with Surgical Expertise in Virtual Reality Simulation. JAMA Netw. Open 2019, 2, e198363. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Talha, M. A Coordinated and Optimized Mechanism of Artificial Intelligence for Student Management by College Counselors Based on Big Data. Comput. Math. Methods Med. 2021, 2021, 1725490. [Google Scholar] [CrossRef]
- Schwalbe, N.; Wahl, B. Artificial intelligence and the future of global health. Lancet 2020, 395, 1579–1586. [Google Scholar] [CrossRef]
- Dedy, N.J.; Bonrath, E.M.; Zevin, B.; Grantcharov, T.P. Teaching nontechnical skills in surgical residency: A systematic review of current approaches and outcomes. Surgery 2013, 154, 1000–1008. [Google Scholar] [CrossRef] [PubMed]
- Jackson, J.W. Enhancing self-efficacy and learning performance. J. Exp. Educ. 2002, 70, 243–254. [Google Scholar] [CrossRef]
- Ounounou, E.; Aydin, A.; Brunckhorst, O.; Khan, M.S.; Dasgupta, P.; Ahmed, K. Nontechnical Skills in Surgery: A Systematic Review of Current Training Modalities. J. Surg. Educ. 2019, 76, 14–24. [Google Scholar] [CrossRef] [PubMed]
- Milne-Ives, M.; de Cock, C.; Lim, E.; Shehadeh, M.H.; de Pennington, N.; Mole, G.; Normando, E.; Meinert, E. The Effectiveness of Artificial Intelligence Conversational Agents in Health Care: Systematic Review. J. Med. Internet Res. 2020, 22, e20346. [Google Scholar] [CrossRef]
- Tanaka, H.; Nakamura, S. The Acceptability of Virtual Characters as Social Skills Trainers: Usability Study. JMIR Hum. Factors 2022, 9, e35358. [Google Scholar] [CrossRef]
- Shorey, S.; Ang, E.; Yap, J.; Ng, E.D.; Lau, S.T.; Chui, C.K. A Virtual Counseling Application Using Artificial Intelligence for Communication Skills Training in Nursing Education: Development Study. J. Med. Internet Res. 2019, 21, e14658. [Google Scholar] [CrossRef]
- Antel, R.; Abbasgholizadeh-Rahimi, S.; Guadagno, E.; Harley, J.M.; Poenaru, D. The use of artificial intelligence and virtual reality in doctor-patient risk communication: A scoping review. Patient Educ. Couns. 2022, 105, 3038–3050. [Google Scholar] [CrossRef]
- Turner, K.; Bolderston, H.; Thomas, K.; Greville-Harris, M.; Withers, C.; McDougall, S. Impact of adverse events on surgeons. Br. J. Surg. 2022, 109, 308–310. [Google Scholar] [CrossRef]
- Modarai, B. Progressive Guidance on the Modern Management of Abdominal Aorto-iliac Artery Aneurysms. Eur. J. Vasc. Endovasc. Surg. 2019, 57, 4–5. [Google Scholar] [CrossRef] [Green Version]
- Aggarwal, R.; Sounderajah, V.; Martin, G.; Ting, D.S.W.; Karthikesalingam, A.; King, D.; Ashrafian, H.; Darzi, A. Diagnostic accuracy of deep learning in medical imaging: A systematic review and meta-analysis. NPJ Digit. Med. 2021, 4, 65. [Google Scholar] [CrossRef]
- Kuo, R.Y.L.; Harrison, C.; Curran, T.A.; Jones, B.; Freethy, A.; Cussons, D.; Stewart, M.; Collins, G.S.; Furniss, D. Artificial Intelligence in Fracture Detection: A Systematic Review and Meta-Analysis. Radiology 2022, 304, 50–62. [Google Scholar] [CrossRef] [PubMed]
- Li, M.D.; Ahmed, S.R.; Choy, E.; Lozano-Calderon, S.A.; Kalpathy-Cramer, J.; Chang, C.Y. Artificial intelligence applied to musculoskeletal oncology: A systematic review. Skeletal Radiol. 2022, 51, 245–256. [Google Scholar] [CrossRef] [PubMed]
- Kelly, B.S.; Judge, C.; Bollard, S.M.; Clifford, S.M.; Healy, G.M.; Aziz, A.; Mathur, P.; Islam, S.; Yeom, K.W.; Lawlor, A.; et al. Radiology artificial intelligence: A systematic review and evaluation of methods (RAISE). Eur. Radiol. 2022, 32, 7998–8007. [Google Scholar] [CrossRef] [PubMed]
- Puliatti, S.; Eissa, A.; Checcucci, E.; Piazza, P.; Amato, M.; Ferretti, S.; Scarcella, S.; Rivas, J.G.; Taratkin, M.; Marenco, J.; et al. New imaging technologies for robotic kidney cancer surgery. Asian J. Urol. 2022, 9, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Moglia, A.; Georgiou, K.; Georgiou, E.; Satava, R.M.; Cuschieri, A. A systematic review on artificial intelligence in robot-assisted surgery. Int. J. Surg. 2021, 95, 106151. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, D.A.; Rosman, G.; Rus, D.; Meireles, O.R. Artificial Intelligence in Surgery: Promises and Perils. Ann. Surg. 2018, 268, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Anteby, R.; Horesh, N.; Soffer, S.; Zager, Y.; Barash, Y.; Amiel, I.; Rosin, D.; Gutman, M.; Klang, E. Deep learning visual analysis in laparoscopic surgery: A systematic review and diagnostic test accuracy meta-analysis. Surg. Endosc. 2021, 35, 1521–1533. [Google Scholar] [CrossRef] [PubMed]
- Chang, T.; Seufert, C.; Eminaga, O.; Shkolyar, E.; Hu, J.; Liao, J. Current trends in artificial intelligence application for endourology and robotic surgery. Urol. Clin. N. Am. 2021, 48, 151–160. [Google Scholar] [CrossRef]
- Assis-Hassid, S.; Reychav, I.; Heart, T.; Pliskin, J.S.; Reis, S. Enhancing patient-doctor-computer communication in primary care: Towards measurement construction. Isr. J. Health Policy Res. 2015, 4, 4. [Google Scholar] [CrossRef] [Green Version]
- Van der Niet, A.G.; Bleakley, A. Where medical education meets artificial intelligence: ‘Does technology care?’. Med. Educ. 2021, 55, 30–36. [Google Scholar] [CrossRef]
- Moglia, A.; Georgiou, K.; Morelli, L.; Toutouzas, K.; Satava, R.M.; Cuschieri, A. Breaking down the silos of artificial intelligence in surgery: Glossary of terms. Surg. Endosc. 2022, 36, 7986–7997. [Google Scholar] [CrossRef] [PubMed]
- Bedrikovetski, S.; Dudi-Venkata, N.N.; Kroon, H.M.; Seow, W.; Vather, R.; Carneiro, G.; Moore, J.W.; Sammour, T. Artificial intelligence for pre-operative lymph node staging in colorectal cancer: A systematic review and meta-analysis. BMC Cancer 2021, 21, 1058. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Wang, Z.; Cui, R.; Xiao, M.; Gao, H.; Bai, H.; Delvoux, B.; Zhang, Z.; Dekker, A.; Romano, A.; et al. Clinical analysis and artificial intelligence survival prediction of serous ovarian cancer based on preoperative circulating leukocytes. J. Ovarian Res. 2022, 15, 64. [Google Scholar] [CrossRef] [PubMed]
- Xue, B.; Li, D.; Lu, C.; King, C.R.; Wildes, T.; Avidan, M.S.; Kannampallil, T.; Abraham, J. Use of Machine Learning to Develop and Evaluate Models Using Preoperative and Intraoperative Data to Identify Risks of Postoperative Complications. JAMA Netw. Open 2021, 4, e212240. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, A.Y.; Wu, S.; Ngo, J.; Feng, Y.; He, X.; Zhang, Y.; Wu, X.; Hong, D. Artificial intelligence for the prediction of acute kidney injury during the perioperative period: Systematic review and Meta-analysis of diagnostic test accuracy. BMC Nephrol. 2022, 23, 405. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, D.A.; Witkowski, E.; Gao, L.; Meireles, O.; Rosman, G. Artificial Intelligence in Anesthesiology: Current Techniques, Clinical Applications, and Limitations. Anesthesiology 2020, 132, 379–394. [Google Scholar] [CrossRef] [PubMed]
- Matava, C.; Pankiv, E.; Ahumada, L.; Weingarten, B.; Simpao, A. Artificial intelligence, machine learning and the pediatric airway. Paediatr. Anaesth. 2020, 30, 264–268. [Google Scholar] [CrossRef] [PubMed]
- Wijnberge, M.; Geerts, B.F.; Hol, L.; Lemmers, N.; Mulder, M.P.; Berge, P.; Schenk, J.; Terwindt, L.E.; Hollmann, M.W.; Vlaar, A.P.; et al. Effect of a Machine Learning-Derived Early Warning System for Intraoperative Hypotension vs Standard Care on Depth and Duration of Intraoperative Hypotension During Elective Noncardiac Surgery: The HYPE Randomized Clinical Trial. JAMA 2020, 323, 1052–1060. [Google Scholar] [CrossRef]
- Lee, S.; Lee, H.C.; Chu, Y.S.; Song, S.W.; Ahn, G.J.; Lee, H.; Yang, S.; Koh, S.B. Deep learning models for the prediction of intraoperative hypotension. Br. J. Anaesth. 2021, 126, 808–817. [Google Scholar] [CrossRef]
- Carson, T.; Ghoshal, G.; Cornwall, G.B.; Tobias, R.; Schwartz, D.G.; Foley, K.T. Artificial Intelligence-enabled, Real-time Intraoperative Ultrasound Imaging of Neural Structures Within the Psoas: Validation in a Porcine Spine Model. Spine 2021, 46, E146–E152. [Google Scholar] [CrossRef]
- Massalimova, A.; Timmermans, M.; Esfandiari, H.; Carrillo, F.; Laux, C.J.; Farshad, M.; Denis, K.; Fürnstahl, P. Intraoperative tissue classification methods in orthopedic and neurological surgeries: A systematic review. Front. Surg. 2022, 9, 952539. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Zhou, F.; Sun, Y.; Chen, X.; Diao, Y.; Zhao, Y.; Huang, H.; Fan, X.; Zhang, G.; Li, X. The application of artificial intelligence in spine surgery. Front. Surg. 2022, 9, 885599. [Google Scholar] [CrossRef]
- Lonsdale, H.; Jalali, A.; Ahumada, L.; Matava, C. Machine Learning and Artificial Intelligence in Pediatric Research: Current State, Future Prospects, and Examples in Perioperative and Critical Care. J. Pediatr. 2020, 221S, S3–S10. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Afzal, N.; Sohn, S.; Habermann, E.B.; Naessens, J.M.; Larson, D.W.; Liu, H. Postoperative bleeding risk prediction for patients undergoing colorectal surgery. Surgery 2018, 164, 1209–1216. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.S.; Nedelcu, E.; Bai, Y.; Wahed, A.; Klein, K.; Tint, H.; Gregoric, I.; Patel, M.; Kar, B.; Loyalka, P. Post-operative bleeding risk stratification in cardiac pulmonary bypass patients using artificial neural network. Ann. Clin. Lab. Sci. 2015, 45, 181–186. [Google Scholar]
- Fontaine, D.; Vielzeuf, V.; Genestier, P.; Limeux, P.; Santucci-Sivilotto, S.; Mory, E.; Darmon, N.; Lanteri-Minet, M.; Mokhtar, M.; Laine, M.; et al. Artificial intelligence to evaluate postoperative pain based on facial expression recognition. Eur. J. Pain 2022, 26, 1282–1291. [Google Scholar] [CrossRef]
- Lotsch, J.; Ultsch, A.; Mayer, B.; Kringel, D. Artificial intelligence and machine learning in pain research: A data scientometric analysis. Pain Rep. 2022, 7, e1044. [Google Scholar]
- Bian, Y.; Xiang, Y.; Tong, B.; Feng, B.; Weng, X. Artificial Intelligence-Assisted System in Postoperative Follow-up of Orthopedic Patients: Exploratory Quantitative and Qualitative Study. J. Med. Internet Res. 2020, 22, e16896. [Google Scholar] [CrossRef]
- Obata, S.; Ichiyama, Y.; Kakinoki, M.; Sawada, O.; Saishin, Y.; Ito, T.; Tomioka, M.; Ohji, M. Prediction of postoperative visual acuity after vitrectomy for macular hole using deep learning-based artificial intelligence. Graefe’s Arch. Clin. Exp. Ophthalmol. 2022, 260, 1113–1123. [Google Scholar] [CrossRef]
- Chidambaram, S.; Sounderajah, V.; Maynard, N.; Markar, S.R. Diagnostic Performance of Artificial Intelligence-Centred Systems in the Diagnosis and Postoperative Surveillance of Upper Gastrointestinal Malignancies Using Computed Tomography Imaging: A Systematic Review and Meta-Analysis of Diagnostic Accuracy. Ann. Surg. Oncol. 2022, 29, 1977–1990. [Google Scholar] [CrossRef]
- Stam, W.T.; Goedknegt, L.K.; Ingwersen, E.W.; Schoonmade, L.J.; Bruns, E.R.J.; Daams, F. The prediction of surgical complications using artificial intelligence in patients undergoing major abdominal surgery: A systematic review. Surgery 2022, 171, 1014–1021. [Google Scholar] [CrossRef] [PubMed]
- Hemachandran, K.; Verma, P.; Pareek, P.; Arora, N.; Rajesh Kumar, K.V.; Ahanger, T.A.; Audumbar Pise, A.; Ratna, R. Artificial Intelligence: A Universal Virtual Tool to Augment Tutoring in Higher Education. Comput. Intell. Neurosci. 2022, 2022, 1410448. [Google Scholar] [CrossRef] [PubMed]
- Troussas, C.; Krouska, A.; Kabassi, K.; Sgouropoulou, C.; Cristea, A.I. Editorial: Artificial intelligence techniques for personalized educational software. Front. Artif. Intell. 2022, 5, 988289. [Google Scholar] [CrossRef] [PubMed]
- Chaudhry, M.A.; Kazim, E. Artificial Intelligence in Education (AIEd): A high-level academic and industry note 2021. AI Ethics 2022, 2, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Park, J.J.; Tiefenbach, J.; Demetriades, A.K. The role of artificial intelligence in surgical simulation. Front. Med. Technol. 2022, 4, 1076755. [Google Scholar] [CrossRef]
- Bhandari, M.; Zeffiro, T.; Reddiboina, M. Artificial intelligence and robotic surgery: Current perspective and future directions. Curr. Opin. Urol. 2020, 30, 48–54. [Google Scholar] [CrossRef]
- Yang, J.H.; Goodman, E.D.; Dawes, A.J.; Gahagan, J.V.; Esquivel, M.M.; Liebert, C.A.; Kin, C.; Yeung, S.; Gurland, B.H. Using AI and computer vision to analyze technical proficiency in robotic surgery. Surg. Endosc. 2022. [Google Scholar] [CrossRef]
- Nema, S.; Vachhani, L. Surgical instrument detection and tracking technologies: Automating dataset labeling for surgical skill assessment. Front. Robot. AI 2022, 9, 1030846. [Google Scholar] [CrossRef]
- Zhao, B.; Waterman, R.S.; Urman, R.D.; Gabriel, R.A. A Machine Learning Approach to Predicting Case Duration for Robot-Assisted Surgery. J. Med. Syst. 2019, 43, 32. [Google Scholar] [CrossRef]
- Loftus, T.J.; Tighe, P.J.; Filiberto, A.C.; Efron, P.A.; Brakenridge, S.C.; Mohr, A.M.; Rashidi, P.; Upchurch, G.R., Jr.; Bihorac, A. Artificial Intelligence and Surgical Decision-making. JAMA Surg. 2020, 155, 148–158. [Google Scholar] [CrossRef]
- Alip, S.L.; Kim, J.; Rha, K.H.; Han, W.K. Future Platforms of Robotic Surgery. Urol. Clin. N. Am. 2022, 49, 23–38. [Google Scholar] [CrossRef] [PubMed]
- Ullrich, F.; Bergeles, C.; Pokki, J.; Ergeneman, O.; Erni, S.; Chatzipirpiridis, G.; Pané, S.; Framme, C.; Nelson, B.J. Mobility experiments with microrobots for minimally invasive intraocular surgery. Investig. Ophthalmol. Vis. Sci. 2013, 54, 2853–2863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jamjoom, A.A.B.; Jamjoom, A.M.A.; Thomas, J.P.; Palmisciano, P.; Kerr, K.; Collins, J.W.; Vayena, E.; Stoyanov, D.; Marcus, H.J.; iRobotSurgeon Collaboration. Autonomous surgical robotic systems and the liability dilemma. Front. Surg. 2022, 9, 1015367. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yang, X.; Chu, G.; Feng, W.; Ding, X.; Yin, X.; Zhang, L.; Lv, W.; Ma, L.; Sun, L.; et al. Application of Improved Robot-assisted Laparoscopic Telesurgery with 5G Technology in Urology. Eur. Urol. 2023, 83, 41–44. [Google Scholar] [CrossRef] [PubMed]
- Egert, M.; Steward, J.E.; Sundaram, C.P. Machine Learning and Artificial Intelligence in Surgical Fields. Ind. J. Surg. Oncol. 2020, 11, 573–577. [Google Scholar] [CrossRef] [PubMed]
- Tuong, M.N.E.; Winkelman, A.J.; Yang, J.H.; Sorensen, M.D.; Kielb, S.J.; Hampson, L.A.; Hagedorn, J.C.; Conti, S.L.; Borofsky, M.S.; Ambani, S.N.; et al. Evaluation of the Educational Impact of the Urology Collaborative Online Video Didactics Lecture Series. Urology 2022, 167, 36–42. [Google Scholar] [CrossRef]
- Fazlollahi, A.M.; Bakhaidar, M.; Alsayegh, A.; Yilmaz, R.; Winkler-Schwartz, A.; Mirchi, N.; Langleben, I.; Ledwos, N.; Sabbagh, A.J.; Bajunaid, K.; et al. Effect of Artificial Intelligence Tutoring vs Expert Instruction on Learning Simulated Surgical Skills Among Medical Students: A Randomized Clinical Trial. JAMA Netw. Open 2022, 5, e2149008. [Google Scholar] [CrossRef]
Limitation | Consequences |
---|---|
Lack of human judgment | Decisions are based on data, rules, and prior experience, but lacks ability to understand context and nuances |
Lack of domain expertise | AI systems may lack deep knowledge and experience, risk of incorrect diagnoses and treatment plans |
Bias in data | AI systems rely on the data they are trained on; if data are limited, decisions have weak background and may be biased |
Need for interpretability | The decisions made by AI systems may be difficult to interpret and thus trust |
High cost | AI systems are expensive to develop, implement, and possibly also to maintain |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pakkasjärvi, N.; Luthra, T.; Anand, S. Artificial Intelligence in Surgical Learning. Surgeries 2023, 4, 86-97. https://doi.org/10.3390/surgeries4010010
Pakkasjärvi N, Luthra T, Anand S. Artificial Intelligence in Surgical Learning. Surgeries. 2023; 4(1):86-97. https://doi.org/10.3390/surgeries4010010
Chicago/Turabian StylePakkasjärvi, Niklas, Tanvi Luthra, and Sachit Anand. 2023. "Artificial Intelligence in Surgical Learning" Surgeries 4, no. 1: 86-97. https://doi.org/10.3390/surgeries4010010
APA StylePakkasjärvi, N., Luthra, T., & Anand, S. (2023). Artificial Intelligence in Surgical Learning. Surgeries, 4(1), 86-97. https://doi.org/10.3390/surgeries4010010