Evaluating Anticoagulant and Antiplatelet Therapies in Rhesus and Cynomolgus Macaques for Predictive Modeling in Humans
Abstract
:1. Introduction
2. Materials and Methods
2.1. Unfractionated Heparin
2.2. Low-Molecular-Weight Heparin and Aspirin
2.3. Statistical Analysis
3. Results
3.1. Unfractionated Heparin
3.2. Low-Molecular-Weight Heparin and Aspirin
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lifson, J.D.; Haigwood, N.L. Lessons in nonhuman primate models for AIDS vaccine research: From minefields to milestones. Cold Spring Harb. Perspect. Med. 2012, 2, a007310. [Google Scholar] [CrossRef]
- Shen, S.; Pyo, C.-W.; Vu, Q.; Wang, R.; Geraghty, D.E. The essential detail: The genetics and genomics of the primate immune response. ILAR J. 2013, 54, 181–195. [Google Scholar] [CrossRef]
- Sibal, L.R.; Samson, K.J. Nonhuman Primates: A Critical Role in Current Disease Research. ILAR J. 2001, 42, 74–84. [Google Scholar] [CrossRef]
- Phillips, K.A.; Bales, K.L.; Capitanio, J.P.; Conley, A.; Czoty, P.W.; ‘t Hart, B.A.; Hopkins, W.D.; Hu, S.L.; Miller, L.A.; Nader, M.A. Why primate models matter. Am. J. Primatol. 2014, 76, 801–827. [Google Scholar] [CrossRef]
- Hirsh, J.; Anand, S.S.; Halperin, J.L.; Fuster, V. Guide to anticoagulant therapy: Heparin: A statement for healthcare professionals from the American Heart Association. Circulation 2001, 103, 2994–3018. [Google Scholar] [CrossRef]
- Lax, M.; Pesonen, E.; Hiippala, S.; Schramko, A.; Lassila, R.; Raivio, P. Heparin dose and point-of-care measurements of hemostasis in cardiac surgery—Results of a randomized controlled trial. J. Cardiothorac. Vasc. Anesth. 2020, 34, 2362–2368. [Google Scholar] [CrossRef]
- O’Gara, P.T.; Kushner, F.G.; Ascheim, D.D.; Casey, D.E.; Chung, M.K.; De Lemos, J.A.; Ettinger, S.M.; Fang, J.C.; Fesmire, F.M.; Franklin, B.A. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 2013, 61, e78–e140. [Google Scholar] [CrossRef]
- Ramelli, E.; Durry, A.; Ruffenach, L.; Bruant-Rodier, C.; Bodin, F. Decrease of thrombosis in microsurgical anastomoses: The use of intraoperative pure intraluminal unfractionated heparin. J. Reconstr. Microsurg. 2020, 36, 16–20. [Google Scholar] [CrossRef]
- Ruff, I.M.; Jindal, J.A. Use of heparin in acute ischemic stroke: Is there still a role? Curr. Atheroscler. Rep. 2015, 17, 51. [Google Scholar] [CrossRef]
- Simonneau, G.; Sors, H.; Charbonnier, B.; Page, Y.; Laaban, J.-P.; Azarian, R.; Laurent, M.; Hirsch, J.-L.; Ferrari, E.; Bosson, J.-L. A comparison of low-molecular-weight heparin with unfractionated heparin for acute pulmonary embolism. N. Engl. J. Med. 1997, 337, 663–669. [Google Scholar] [CrossRef]
- You, J.J.; Singer, D.E.; Howard, P.A.; Lane, D.A.; Eckman, M.H.; Fang, M.C.; Hylek, E.M.; Schulman, S.; Go, A.S.; Hughes, M. Antithrombotic therapy for atrial fibrillation: Antithrombotic therapy and prevention of thrombosis: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest 2012, 141, e531S–e575S. [Google Scholar] [CrossRef]
- Guyatt, G.H.; Eikelboom, J.W.; Gould, M.K.; Garcia, D.A.; Crowther, M.; Murad, M.H.; Kahn, S.R.; Falck-Ytter, Y.; Francis, C.W.; Lansberg, M.G. Approach to outcome measurement in the prevention of thrombosis in surgical and medical patients: Antithrombotic Therapy and Prevention of Thrombosis: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest 2012, 141, e185S–e194S. [Google Scholar] [CrossRef]
- Johnston, S.C.; Easton, J.D.; Farrant, M.; Barsan, W.; Conwit, R.A.; Elm, J.J.; Kim, A.S.; Lindblad, A.S.; Palesch, Y.Y. Clopidogrel and aspirin in acute ischemic stroke and high-risk TIA. N. Engl. J. Med. 2018, 379, 215–225. [Google Scholar] [CrossRef]
- Kay, R.; Wong, K.S.; Yu, Y.L.; Chan, Y.W.; Tsoi, T.H.; Ahuja, A.T.; Chan, F.L.; Fong, K.Y.; Law, C.B.; Wong, A. Low-molecular-weight heparin for the treatment of acute ischemic stroke. N. Engl. J. Med. 1995, 333, 1588–1594. [Google Scholar] [CrossRef]
- Segon, Y.S.; Summey, R.D.; Slawski, B.; Kaatz, S. Surgical venous thromboembolism prophylaxis: Clinical practice update. Hosp. Pract. 2020, 48, 248–257. [Google Scholar] [CrossRef]
- Zheng, S.L.; Roddick, A.J. Association of aspirin use for primary prevention with cardiovascular events and bleeding events: A systematic review and meta-analysis. JAMA 2019, 321, 277–287. [Google Scholar] [CrossRef]
- Kleindorfer, D.O.; Towfighi, A.; Chaturvedi, S.; Cockroft, K.M.; Gutierrez, J.; Lombardi-Hill, D.; Kamel, H.; Kernan, W.N.; Kittner, S.J.; Leira, E.C. 2021 guideline for the prevention of stroke in patients with stroke and transient ischemic attack: A guideline from the American Heart Association/American Stroke Association. Stroke 2021, 52, e364–e467. [Google Scholar] [CrossRef]
- Jneid, H.; Addison, D.; Bhatt, D.L.; Fonarow, G.C.; Gokak, S.; Grady, K.L.; Green, L.A.; Heidenreich, P.A.; Ho, P.M.; Jurgens, C.Y. 2017 AHA/ACC clinical performance and quality measures for adults with ST-elevation and non–ST-elevation myocardial infarction: A report of the American College of Cardiology/American Heart Association Task Force on Performance Measures. Circ. Cardiovasc. Qual. Outcomes 2017, 10, e000032. [Google Scholar] [CrossRef]
- Ortel, T.L.; Neumann, I.; Ageno, W.; Beyth, R.; Clark, N.P.; Cuker, A.; Hutten, B.A.; Jaff, M.R.; Manja, V.; Schulman, S. American Society of Hematology 2020 guidelines for management of venous thromboembolism: Treatment of deep vein thrombosis and pulmonary embolism. Blood Adv. 2020, 4, 4693–4738. [Google Scholar] [CrossRef]
- Calderone, D.; Greco, A.; Ingala, S.; Agnello, F.; Franchina, G.; Scalia, L.; Buccheri, S.; Capodanno, D. Efficacy and safety of aspirin for primary cardiovascular risk prevention in younger and older age: An updated systematic review and meta-analysis of 173,810 subjects from 21 randomized studies. Thromb. Haemost. 2022, 122, 445–455. [Google Scholar] [CrossRef]
- Kakkar, V. Effectiveness and safety of low molecular weight heparins (LMWH) in the prevention of venous thromboembolism (VTE). Thromb. Haemost. 1995, 74, 364–368. [Google Scholar] [CrossRef]
- Hirsh, J.; Warkentin, T.E.; Dalen, J.E.; Deykin, D.; Poller, L. Heparin: Mechanism of action, pharmacokinetics, dosing considerations, monitoring, efficacy, and safety. Chest 1995, 108, 258S–275S. [Google Scholar] [CrossRef]
- Sheppard, F.R.; Macko, A.R.; Glaser, J.J.; Vernon, P.J.; Burdette, A.J.; Paredes, R.M.; Koeller, C.A.; Pusateri, A.E.; Tadaki, D.K.; Cardin, S. Nonhuman primate (rhesus macaque) models of severe pressure-targeted hemorrhagic and polytraumatic hemorrhagic shock. Shock 2018, 49, 174–186. [Google Scholar] [CrossRef]
- Arndt, T.; Meindel, M.; Clarke, J.; Shaw, A.; Gregori, M. Comparison of Routine Hematology, Coagulation, and Clinical Chemistry Parameters of Cynomolgus Macaques of Mauritius Origin With Cynomolgus Macaques of Cambodia, China, and Vietnam Origin. Toxicol. Pathol. 2022, 50, 591–606. [Google Scholar] [CrossRef]
- Myers Jr, D.D. Nonhuman primate models of thrombosis. Thromb. Res. 2012, 129, S65–S69. [Google Scholar] [CrossRef]
- Aulbach, A.D.; Patrick, D.J. Nonhuman primates in preclinical research. In Biomarkers in Toxicology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 91–101. [Google Scholar]
- Kean, L.S.; Singh, K.; Blazar, B.; Larsen, C. Nonhuman primate transplant models finally evolve: Detailed immunogenetic analysis creates new models and strengthens the old. Am. J. Transplant. 2012, 12, 812–819. [Google Scholar] [CrossRef]
- Fitch, Z.; Schmitz, R.; Kwun, J.; Hering, B.; Madsen, J.; Knechtle, S.J. Transplant research in nonhuman primates to evaluate clinically relevant immune strategies in organ transplantation. Transplant. Rev. 2019, 33, 115–129. [Google Scholar] [CrossRef]
- Doganer, O.; Wiersema, A.M.; Pierie, M.; Blankensteijn, J.D.; Yeung, K.K.; Jongkind, V. More effective anticoagulation during non-cardiac arterial procedures using activated clotting time guided heparin administration. Ann. Vasc. Surg. 2021, 76, 378–388. [Google Scholar] [CrossRef]
- Council, N.R. Guide for the Care and Use of Laboratory Animals: Eighth Edition; The National Academies Press: Washington, DC, USA, 2011; p. 246. [Google Scholar]
- Graham, M.L.; Rieke, E.F.; Dunning, M.; Mutch, L.A.; Craig, A.M.; Zolondek, E.K.; Hering, B.J.; Schuurman, H.J.; Bianco, R.W. A novel alternative placement site and technique for totally implantable vascular access ports in non-human primates. J. Med. Primatol. 2009, 38, 204–212. [Google Scholar] [CrossRef]
- Graham, M.L.; Rieke, E.F.; Mutch, L.A.; Zolondek, E.K.; Faig, A.W.; DuFour, T.A.; Munson, J.W.; Kittredge, J.A.; Schuurman, H.-J. Successful implementation of cooperative handling eliminates the need for restraint in a complex non-human primate disease model: Cooperative handling in a macaque disease model. J. Med. Primatol. 2012, 41, 89–106. [Google Scholar] [CrossRef]
- Palmer, S.; Oppler, S.H.; Graham, M.L. Behavioral Management as a Coping Strategy for Managing Stressors in Primates: The Influence of Temperament and Species. Biology 2022, 11, 423. [Google Scholar] [CrossRef] [PubMed]
- Emani, S.; Zurakowski, D.; Mulone, M.; DiNardo, J.A.; Trenor, C.C., III; Emani, S.M. Platelet testing to guide aspirin dose adjustment in pediatric patients after cardiac surgery. J. Thorac. Cardiovasc. Surg. 2017, 154, 1723–1730. [Google Scholar] [CrossRef] [PubMed]
- Fung, L.S.; Klockau, C. Effects of age and weight-based dosing of enoxaparin on anti-factor xa levels in pediatric patients. J. Pediatr. Pharmacol. Ther. 2010, 15, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Monagle, P.; Michelson, A.D.; Bovill, E.; Andrew, M. Antithrombotic therapy in children. Chest 2001, 119, 344S–370S. [Google Scholar] [CrossRef] [PubMed]
- Olson, H.; Betton, G.; Robinson, D.; Thomas, K.; Monro, A.; Kolaja, G.; Lilly, P.; Sanders, J.; Sipes, G.; Bracken, W. Concordance of the toxicity of pharmaceuticals in humans and in animals. Regul. Toxicol. Pharmacol. 2000, 32, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Bogers, W.M.; Haanstra, K.G.; Verreck, F.A.; Kocken, C.H. The translational value of non-human primates in preclinical research on infection and immunopathology. Eur. J. Pharmacol. 2015, 759, 69–83. [Google Scholar]
- Assadian, A.; Senekowitsch, C.; Assadian, O.; Eidher, U.; Hagmüller, G.; Knöbl, P. Antithrombotic strategies in vascular surgery: Evidence and practice. Eur. J. Vasc. Endovasc. Surg. 2005, 29, 516–521. [Google Scholar] [CrossRef]
- Bakir, N.; Sluiter, W.; Ploeg, R.; Van Son, W.; Tegzess, A. Primary renal graft thrombosis. Nephrol. Dial. Transplant. 1996, 11, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Denize, J.; Defortescu, G.; Guerrot, D.; Jeannot, P.; Bertrand, D.; Cornu, J.-N.; Pfister, C.; Nouhaud, F.-X. Is intraoperative heparin during renal transplantation useful to reduce graft vascular thrombosis? Progrès En Urol. 2021, 31, 531–538. [Google Scholar] [CrossRef]
- Gravlee, G.P.; Haddon, W.S.; Rothberger, H.K.; Mills, S.A.; Rogers, A.T.; Bean, V.E.; Buss, D.H.; Prough, D.S.; Cordell, A.R. Heparin dosing and monitoring for cardiopulmonary bypass: A comparison of techniques with measurement of subclinical plasma coagulation. J. Thorac. Cardiovasc. Surg. 1990, 99, 518–527. [Google Scholar] [CrossRef]
- Philip, B.M.; Brock-Utne, J.G.; Lemmens, H.J.; Jaffe, R.A.; Shuttleworth, P.E. Does a delay in performing an activated clotting (ACT) test really matter? A study in nonheparinized blood and a single ACT machine. J. ExtraCorporeal Technol. 2008, 40, 193–195. [Google Scholar] [CrossRef]
- Hattersley, P.G. Activated coagulation time of whole blood. JAMA 1966, 196, 436–440. [Google Scholar] [CrossRef] [PubMed]
- Kratz, A.; Van Cott, E.M. Activated clotting time: Methods and clinical applications. Point Care 2005, 4, 90–94. [Google Scholar] [CrossRef]
- Lewandrowski, E.L.; Van Cott, E.M.; Gregory, K.; Jang, I.-K.; Lewandrowski, K.B. Clinical evaluation of the i-STAT kaolin activated clotting time (ACT) test in different clinical settings in a large academic urban medical center: Comparison with the Medtronic ACT Plus. Am. J. Clin. Pathol. 2011, 135, 741–748. [Google Scholar] [CrossRef]
- Pagana, K.; Pagana, T.; Pagana, T. Mosby’s Diagnostic & Laboratory Test Reference, 14th ed.; Elsevier: St. Louis, MO, USA, 2019. [Google Scholar]
- Shore-Lesserson, L. Coagulation monitoring. In Essentials of Cardiac Anesthesia E-Book: A Volume in Essentials of Anesthesia and Critical Care; Elsevier: Philidelphia, PA, USA, 2018; pp. 299–319. [Google Scholar]
- Chen, Y.; Qin, S.; Ding, Y.; Wei, L.; Zhang, J.; Li, H.; Bu, H.; Lu, Y.; Cheng, J. Reference values of clinical chemistry and hematology parameters in rhesus monkeys (Macaca mulatta). Xenotransplantation 2009, 16, 496–501. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.I.; Shin, J.S.; Lee, J.E.; Jung, W.Y.; Lee, G.; Kim, M.S.; Park, C.G.; Kim, S.J. Reference values of hematology, chemistry, electrolytes, blood gas, coagulation time, and urinalysis in the Chinese rhesus macaques (Macaca mulatta). Xenotransplantation 2012, 19, 244–248. [Google Scholar] [CrossRef]
- Li, X.; Li, D.; Biddle, K.E.; Portugal, S.S.; Li, M.R.; Santos, R.; Burkhardt, J.E.; Khan, N.K. Age-and sex-related changes in body weights and clinical pathology analytes in cynomolgus monkeys (Macaca Fascicularis) of Mauritius origin. Vet. Clin. Pathol. 2022, 51, 356–375. [Google Scholar] [CrossRef] [PubMed]
- Park, H.-K.; Cho, J.-W.; Lee, B.-S.; Park, H.; Han, J.-S.; Yang, M.-J.; Im, W.-J.; Park, D.-Y.; Kim, W.-J.; Han, S.-C. Reference values of clinical pathology parameters in cynomolgus monkeys (Macaca fascicularis) used in preclinical studies. Lab. Anim. Res. 2016, 32, 79–86. [Google Scholar] [CrossRef]
- Bussey, H.; Francis, J.L.; Heparin Consensus Group. Heparin overview and issues. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2004, 24, 103S–107S. [Google Scholar] [CrossRef]
- Hirsh, J.; Warkentin, T.E.; Shaughnessy, S.G.; Anand, S.S.; Halperin, J.L.; Raschke, R.; Granger, C.; Ohman, E.M.; Dalen, J.E. Heparin and low-molecular-weight heparin mechanisms of action, pharmacokinetics, dosing, monitoring, efficacy, and safety. Chest 2001, 119, 64S–94S. [Google Scholar]
- The CREATE Trial Group Investigators. Effects of reviparin, a low-molecular-weight heparin, on mortality, reinfarction, and strokes in patients with acute myocardial infarction presenting with ST-segment elevation. JAMA 2005, 293, 427–436. [Google Scholar] [CrossRef] [PubMed]
- Eikelboom, J.; Hirsh, J. Combined antiplatelet and anticoagulant therapy: Clinical benefits and risks. J. Thromb. Haemost. 2007, 5, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Wallentin, L.; Ohlsson, J. Low-molecular-weight heparin during instability in coronary artery disease. Lancet 1996, 347, 561–568. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phu, S.N.; Leishman, D.J.; Palmer, S.D.; Oppler, S.H.; Niewinski, M.N.; Mutch, L.A.; Faustich, J.S.; Adams, A.B.; Tranquillo, R.T.; Graham, M.L. Evaluating Anticoagulant and Antiplatelet Therapies in Rhesus and Cynomolgus Macaques for Predictive Modeling in Humans. Surgeries 2024, 5, 423-433. https://doi.org/10.3390/surgeries5020035
Phu SN, Leishman DJ, Palmer SD, Oppler SH, Niewinski MN, Mutch LA, Faustich JS, Adams AB, Tranquillo RT, Graham ML. Evaluating Anticoagulant and Antiplatelet Therapies in Rhesus and Cynomolgus Macaques for Predictive Modeling in Humans. Surgeries. 2024; 5(2):423-433. https://doi.org/10.3390/surgeries5020035
Chicago/Turabian StylePhu, Sydney N., David J. Leishman, Sierra D. Palmer, Scott H. Oppler, Melanie N. Niewinski, Lucas A. Mutch, Jill S. Faustich, Andrew B. Adams, Robert T. Tranquillo, and Melanie L. Graham. 2024. "Evaluating Anticoagulant and Antiplatelet Therapies in Rhesus and Cynomolgus Macaques for Predictive Modeling in Humans" Surgeries 5, no. 2: 423-433. https://doi.org/10.3390/surgeries5020035
APA StylePhu, S. N., Leishman, D. J., Palmer, S. D., Oppler, S. H., Niewinski, M. N., Mutch, L. A., Faustich, J. S., Adams, A. B., Tranquillo, R. T., & Graham, M. L. (2024). Evaluating Anticoagulant and Antiplatelet Therapies in Rhesus and Cynomolgus Macaques for Predictive Modeling in Humans. Surgeries, 5(2), 423-433. https://doi.org/10.3390/surgeries5020035