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Abstract: Background: Lung cancer surgery often involves complex decision-making,
where accurate and interpretable predictive models are crucial for assessing postoperative
risks and optimizing outcomes. This study presents XplainLungSHAP, a novel framework
combining SHAP (SHapley Additive exPlanations) and attention mechanisms to enhance
both predictive accuracy and transparency. The aim is to support clinicians in preoperative
evaluations by identifying and prioritizing key clinical features. Methods: The framework
was developed using data from 470 patients undergoing lung cancer surgery. Key clinical
features were identified through SHAP, ensuring alignment with medical expertise. These
features were dynamically weighted using an attention mechanism in a neural network,
enhancing their impact on survival predictions. The model’s performance was evaluated
through accuracy, confusion matrices, and ROC analysis, demonstrating its reliability and
interpretability. Results: The XplainLungSHAP model achieved an accuracy of 91.49%, out-
performing traditional machine learning models. SHAP analysis identified critical predic-
tors, including pulmonary function, comorbidities, and age, while the attention mechanism
prioritized these features dynamically. The combined approach ensured high accuracy
and offered actionable insights into survival predictions. Conclusions: XplainLungSHAP
addresses the limitations of black-box models by integrating explainability with state-
of-the-art predictive techniques. This framework provides a transparent and clinically
relevant tool for guiding surgical decisions, supporting personalized care, and advancing
Al applications in thoracic oncology.

Keywords: attention mechanism; explainable AI; machine learning in healthcare;
postoperative survival; predictive modeling; precision medicine; SHAP; thoracic surgery

1. Introduction

Thoracic surgery plays a vital role in treating lung cancer, often offering the possibility
of a cure through major lung resections [1]. However, predicting survival after surgery
remains difficult, requiring precise models to guide decision making, assess risks, and use
resources efficiently. These models must also be interpretable so clinicians can understand
and trust their predictions. This study used data from the Wroclaw Thoracic Surgery
Centre in Poland, involving 470 patients who underwent major lung resections for primary
lung cancer between 2007 and 2011. The dataset focuses on a binary classification task:
predicting whether a patient survives more than one year after surgery (class 2) or dies
within a year (class 1). It includes information on preoperative health, demographics,
procedural details, and survival outcomes, providing a valuable foundation for creating
interpretable predictive models [2].
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Post-surgery survival depends on comorbidities, lung function, and surgical complex-
ity. While traditional machine learning (ML) models can be accurate, they often operate
as “black boxes”, offering little explanation for their predictions. This lack of transparency
limits their use in clinical settings, where interpretability is relevant. Explainable Al tools
like SHAP overcome this by showing how each feature influences a model’s predictions.
SHAP helps prioritize significant factors, such as tumor size and pulmonary function,
aligning the model with clinical reasoning while also improving performance on challeng-
ing datasets [3]. Attention mechanisms, commonly used in fields like natural language
processing and computer vision, can also enhance interpretability by focusing on key input
features dynamically. In healthcare, they can highlight important clinical factors such as
comorbidities and pulmonary function. However, traditional attention mechanisms also
face challenges in being fully interpretable, which is important in high-stakes areas like
medicine [4]. This study combines SHAP and attention mechanisms into a novel framework
to predict survival outcomes after thoracic surgery. SHAP first identifies and ranks key
features, while an attention mechanism implemented in PyTorch dynamically emphasizes
these features during predictions. This hybrid approach improves both accuracy and
efficiency. Post hoc XAI methods further validate the XplainLungSHAP model, ensuring
insights are actionable for clinicians.

The approach addresses challenges in thoracic surgery by narrowing the focus to clini-
cally significant features and dynamically adjusting their weight during prediction. This
results in a model that is both high-performing and transparent. Clinicians gain a reliable
tool for decision making in thoracic oncology, paving the way for better outcomes and
wider use of ML in precision medicine. By integrating SHAP to identify important features
and using a feature-based attention mechanism, the XplainLungSHAP model achieved
improved accuracy and efficiency. SHAP's feature ranking reduced noise, allowing the
model to concentrate on meaningful data, which enhanced its ability to generalize. This
led to better performance in predicting whether patients survived beyond one year [5].
The attention mechanism further optimized performance by prioritizing these features dur-
ing prediction, reducing computational requirements and training time. This combination
of accuracy and efficiency demonstrates the potential of this approach to deliver reliable,
interpretable solutions for clinical decision making in thoracic surgery [6].

The novelty of this article lies in integrating SHAP for feature selection with a feature-
based attention mechanism in a unified framework. This enables high predictive accuracy
(91.49%) and clinical interpretability for postoperative survival in thoracic surgery, address-
ing the limitations of existing black-box models.

This paper is structured as follows: Section 2 provides an overview of the materials
and methods, including feature engineering, SHAP analysis, and the implementation of the
attention mechanism; Section 3 presents the experimental results and performance metrics
of the model; Section 4 discusses the implications and significance of our findings; and
Section 5 concludes with key insights and outlines future directions.

2. Materials and Methods

For this study, we utilized a public dataset available on Kaggle [2], which contains
17 characteristics in total. Of these, 16 are independent variables that represent a combina-
tion of clinical, demographic, and procedural factors. The dependent variable indicates
whether the patient survived beyond one year after undergoing major lung resection
surgery for primary lung cancer. This binary classification problem forms the core of the
analysis, distinguishing between survival within one year (class 1) and survival beyond one
year (class 2). In a correlation matrix, values range from 1 to 1, where 1 indicates a perfect
positive linear relationship, meaning both variables increase together in exact proportion.
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A value of 0 means there is no linear relationship between the variables, though they may
still have a non-linear connection. A value of —1 represents a perfect negative linear rela-
tionship, where one variable increases as the other decreases in perfect inverse proportion.
Values between 0 and 1 indicate varying degrees of positive correlation, where one variable
tends to increase as the other increases, while values between 0 and —1 represent varying
degrees of negative correlation, where one variable tends to increase while the other de-
creases. The closer the value is to 1 or —1, the stronger the linear relationship, and values
near 0 suggest a weaker or no linear relationship. In Figure 1, the correlation matrix is
presented exclusively for the relevant features extracted from the dataset.

Correlation Matrix for Relevant Features
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Figure 1. Correlation matrix of relevant features from the dataset.

We summarize the most relevant characteristics in the dataset:

e  FEV1 (Forced Expiratory Volume in One Second): A measure of lung function, FEV1
evaluates the volume of air exhaled in one second. Lower values indicate impaired
pulmonary function, which increases the risk of complications and affects recov-
ery post-surgery.

e Before Surgery: This binary variable reflects whether the patient experienced signifi-
cant preoperative pain, often associated with advanced disease or tumor involvement
in sensitive areas, which can negatively impact recovery.

*  Age: Older patients face higher surgical risks due to reduced physiological reserves
and comorbidities, while younger patients generally experience better outcomes.
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¢ Dyspnea (Shortness of Breath): This symptom signals compromised respiratory func-
tion, increasing the likelihood of perioperative complications such as hypoxia or
ventilation issues.

*  Cough: Chronic cough, a symptom of lung conditions like cancer or bronchitis, can
exacerbate discomfort and indicate advanced airway involvement.

¢  Hemoptysis: Coughing up blood is an important symptom often linked to severe
underlying pathologies like advanced lung cancer or airway damage, increasing
surgical risks.

e Tumor Size and Extent: Larger tumors or those involving relevant structures require
more extensive resections, elevating surgical complexity and affecting recovery.

*  Surgical Approach: The type of procedure (e.g., lobectomy or pneumonectomy) sig-
nificantly impacts postoperative outcomes. Minimally invasive methods like VATS
reduce complications and recovery time.

*  Air Leak and Pneumothorax: Postoperative complications such as prolonged air leaks
or collapsed lungs delay recovery and may require additional interventions.

e  Performance Status Scores: These scores evaluate the patient’s overall ability to
perform daily activities, predicting their tolerance to surgical stress and recov-
ery prospects.

*  Comorbidity Indices: Chronic conditions like diabetes or hypertension are important
factors that influence recovery and overall surgical risk.

¢ Dependent Variable: Survival Outcome: The binary outcome indicates whether the
patient survived beyond one year (class 2) or not (class 1). This serves as the central
variable for modeling postoperative survival probabilities [2].

In this study, we employed a combination of feature engineering, scaling, and machine
learning techniques enhanced by XAI using SHAP to interpret the predictions of our
XplainLungSHAP model. Below, we describe each step in detail, starting from feature
engineering, data preparation, and model development and ending with applying SHAP
for explainability.

2.1. Feature Engineering

Feature engineering is relevant in preparing data for machine learning, especially in
clinical applications where expert knowledge can greatly enhance a dataset’s predictive
capabilities. In this study, we worked with the thoracic surgery dataset and developed
new features by exploring relationships and interactions between existing variables. These
features were crafted to emphasize meaningful clinical patterns and improve the model’s
ability to make accurate predictions. Below is an explanation of the logic, mathematical
approach, and clinical importance of the derived features [7].

One of the key engineered features is the FEV1/FVC ratio, calculated by dividing
Forced Expiratory Volume in One Second (FEV1) by Forced Vital Capacity (FVC). This ratio
is a measure in pulmonary medicine and is commonly used to diagnose obstructive lung
conditions, such as chronic obstructive pulmonary disease (COPD). The formula for this

ratio is as follows:
FEV1

1)

where the following are true:

*  FEVI (PRE5) represents the volume of air a patient can forcefully exhale in one second.
*  FVC (PRE4) represents the total volume of air exhaled during a forced breath.

In this study, the FEV1/FVC ratio provides an aggregated measure of lung function,
which is important in assessing whether a patient’s respiratory capacity can tolerate surgical
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interventions. Patients with a lower ratio are likely to have compromised pulmonary
function, increasing the risk of postoperative complications.

Next, we derived the Symptom Index, which quantifies the burden of preoperative
symptoms reported by each patient. Symptoms such as dyspnea, cough, and hemopt-
ysis are not only indicative of disease severity but also predictive of surgical outcomes.
To capture this symptom burden, we summed five binary variables:

Symptom_Index = PRE7 + PRE8 + PRE9 + PRE10 + PRE11, (2)

where each term represents the presence (1) or absence (0) of specific symptoms. This
composite score reflects the overall physiological distress of the patient, helping the model
to incorporate non-invasive indicators of disease progression.

The comorbidity scorewas introduced to capture the cumulative effect of chronic
conditions on surgical outcomes. Pre-existing conditions such as diabetes, cardiovascular
disease, and hypertension can significantly influence postoperative recovery and mortality
risk. This score is defined as:

Comorbidity_Score = PRE17 + PRE25 + PRE32, 3)

where each binary variable represents the presence (1) or absence (0) of a specific comorbid-
ity. This aggregation ensures that the model accounts for the holistic impact of a patient’s
overall health status on their survival probability.

Recognizing the interplay between age and pulmonary function, we created the
Age-Pulmonary Function Interactionfeature. This interaction term is designed to capture
how age-related declines in respiratory capacity exacerbate surgical risks. It is mathemati-
cally expressed as:

Age_Pulmonary_Function = AGE x FEV1_FVC_Ratio. 4)

where AGE represents the chronological age of the patient. Multiplying it with the
FEV1/FVC ratio highlights patients who, due to advanced age and poor lung function, are
at heightened risk of complications or mortality.

Once these engineered features were generated, the dataset underwent preprocessing
to ensure uniformity across variables. Specifically, numerical features, including AGE, PRE4,
PRES5, FEV1_FVC_Ratio, and Age_Pulmonary_Function, were standardized using z-score
normalization: X -

X' = T’ ®)

where X is the original value of the feature, i is the mean, and ¢ is the standard devia-
tion. This scaling ensures that all features are on the same scale, facilitating faster model
convergence and improving numerical stability during training [8].

2.2. SHAP for Feature Relevance Extraction

SHAP is a state-of-the-art XAl technique grounded in cooperative game theory, de-
signed to attribute the contribution of each feature to the predictions made by a machine
learning model. In the context of this study, SHAP was employed to identify the most
relevant features influencing the postoperative survival outcomes of thoracic surgery pa-
tients. By quantifying the importance of each feature, SHAP provides a transparent and
interpretable framework for understanding XplainLungSHAP model behavior, ensuring
that the predictions align with clinical reasoning and domain knowledge [9].

The fundamental concept of SHAP is the Shapley value, which originates from game
theory and represents a fair distribution of a collective payoff among contributors. In ma-
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chine learning, the collective payoff corresponds to the model’s prediction, and the contrib-
utors are the features involved in generating that prediction. Mathematically, the SHAP
value for a feature j is calculated as:

o= ¥ BRI Dss0 ) - s, ©

SCN\{j}

where the following are true:

*  Nis the set of all features.
*  Sisasubset of features excluding j.
*  f(S) is the model prediction when only features in S are considered.

This formula ensures that each feature’s contribution is assessed across all possible
subsets of features, capturing both its individual and interactive effects on the prediction.
The weighting term, derived from the factorial of subset sizes, guarantees fairness by
accounting for all permutations of feature inclusion [10].

In this study, SHAP was applied to the thoracic surgery dataset to identify the most
significant features influencing patient survival. Using a trained neural network as the
predictive model, SHAP values were computed for all features to rank their contributions
to the model’s predictions. This analysis highlighted the importance of core variables
like age and pulmonary function measures, as well as engineered features such as the
FEV1/FVC ratio and comorbidity score. Features with high SHAP values consistently
shifted predictions toward either mortality within one year (class 1) or survival beyond
one year (class 2), showcasing their role in the decision making process.

One of SHAP’s strengths is its ability to provide both local and global explanations.
Locally, SHAP values illustrate how each feature affects a patient’s survival prediction,
helping clinicians understand the reasoning behind specific outcomes [11]. Globally, ag-
gregated SHAP values uncover overall trends and rank features by importance across the
dataset, ensuring the model’s predictions remain interpretable and clinically meaningful.
By integrating SHAP into the feature selection process, we balanced clinical relevance
with data-driven insights [12]. This approach allowed us to prioritize the most influential
predictors, such as age, pulmonary function, and comorbidities, while reducing the impact
of less relevant variables. As a result, SHAP not only enhanced the interpretability of the
model but also improved its predictive accuracy by focusing on the features most strongly
associated with thoracic surgery outcomes [13].

The pseudocode for computing SHAP values is outlined in Algorithm 1. It iteratively
calculates the marginal contribution of each feature for all possible subsets of the dataset,
summing these contributions with appropriate weights [11].

In this study, SHAP was applied to interpret predictions made by a neural network
trained on the thoracic surgery dataset. A subset of the data (B) was used as background
data to compute the baseline predictions, providing a reference point for feature contri-
butions. The SHAP values were calculated for both original and engineered features,
including:
¢ TheFEV1/FVC ratio, capturing pulmonary function.
¢ The Symptom Index, reflecting the cumulative symptom burden.

* The comorbidity score, indicating the impact of chronic conditions.
*  The Age-Pulmonary Function Interaction, highlighting the interplay between age

and respiratory capacity [7].

After identifying the most relevant features using SHAP, we integrated these features
into an attention-based deep learning framework to predict postoperative survival out-
comes. Attention mechanisms are widely used in modern machine learning architectures,
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particularly for tasks requiring dynamic weighting of input features. In this study, the at-
tention mechanism enabled the XplainLungSHAP model to focus on the most important
features, as determined by SHAP, while dynamically adjusting their contributions based
on the input data.

Algorithm 1 SHAP for Feature Relevance Extraction

1: Input: Trained model f, dataset X with features N, background data B C X for SHAP
baseline

2: Output: SHAP values ¢; for each feature j € N

3: procedure COMPUTE SHAP VALUES

Initialize SHAP value vector ¢ = [0, ..., 0] of size |N|

5 for all features j € N do

6: Pj 0 //Initialize SHAP value for feature j

7: for all subsets S C N\ {j} do

8: Compute model predictions:

f(SU{j}) and f(S)

9: Compute marginal contribution:

A= f(SU{j}) = £(S)

10: Update SHAP value:
SI'(IN] —[S] —1)!
gbj — gb]‘ + | N‘! -A
11: end for
12: end for

13: end procedure
14: Return: SHAP values ¢ = [¢1, P2, ..., P|n|]

The attention mechanism works by assigning a weight «; to each feature x;, which
represents its relative importance for the given prediction. These weights are computed

as follows:
exp(e) -
Zjl\il exp(e j)

N, =

where the following are true:

* ¢; is the relevance score of feature x;, calculated using a trainable scoring function
e; = WTx; + b, where W and b are learnable parameters.

. Z]-I\il exp(e;) ensures that the weights a; sum to 1, making them interpretable as
probabilities.

The weighted sum of the feature embeddings is then calculated as:

N
z=Y apx;, (8)
i-1

where z is the attention-weighted representation of the input features. This representation
is passed through the subsequent layers of the neural network to make the final prediction.

Incorporating the attention mechanism significantly improves the model’s inter-
pretability and adaptability by emphasizing the features that have the greatest influence
on individual predictions [4]. For example, in predicting survival outcomes, factors like
age, comorbidity score, or FEV1/FVC ratio may be assigned higher attention weights for
patients with compromised pulmonary function, whereas different features might domi-
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nate in the case of younger, healthier individuals. This mechanism was implemented in
PyTorch using a structured approach:

1. Theinput features, including those identified as important by SHAP, were transformed
into high-dimensional embeddings through a linear layer.

2. Attention scores ¢; were calculated for each feature and normalized using the softmax
function to generate weights «;.

3. A weighted sum z of the features was then computed, and this output was fed
into subsequent fully connected layers to perform the binary classification (survival
or mortality).

The attention mechanism works in tandem with SHAP, leveraging SHAP’s insights
into feature relevance to inform the model’s focus during predictions. This creates a unified,
interpretable framework for clinical decision making. By prioritizing the most relevant
features as identified by SHAP, the model dynamically adjusts to the specific attributes of
each patient. This approach not only achieves strong predictive accuracy but also ensures
transparency, making it particularly suitable for high-stakes medical applications [14].

3. Results

After applying the SHAP explainability method to the dataset, we identified the most
relevant features to predict postoperative survival outcomes. These features, presented
in the figure below, highlight the variables with the highest impact on the XplainLung-
SHAP model’s decision making process. The identified features include the following:
PRE14, DGN, Symptom_Index, PRE10, PRE30, PRE11, PRE17, PRE9, PRE6, Comorbidity_Score,
Age_Pulmonary_Function, and FEV1_FVC_Ratio (see Figure 2).

Following the application of the attention mechanism to the relevant features identified
by SHAP, the model achieved a notable accuracy of 0.9149 (see Figure 3). This demon-
strates the effectiveness of dynamically prioritizing the most significant features during
prediction, enhancing the model’s performance in distinguishing between postoperative
survival outcomes.

The results are further validated by the confusion matrix, which provides a detailed
breakdown of true positives, true negatives, false positives, and false negatives. This matrix
highlights the model’s ability to accurately classify survival probabilities, ensuring its
robustness and reliability for clinical applications. At the same time, Figure 4 shows the
ROC curve, which also attests to the performance of the developed model.

Logistic regression, Random Forest, and XGBoost are widely used and effective ma-
chine learning models for classification problems. However, they failed to outperform the
performance of XplainLungSHAP for several reasons. Logistic regression, being a linear
model, has limitations in capturing complex non-linear relationships between features and
outcomes. In our dataset, the non-linear relationships between factors such as age, pulmonary
function, and comorbidities are important for prediction [15]. Although Random Forest is
strong in capturing non-linear relationships, it is not optimal for small datasets with com-
plex dependencies. The model tends to overfit noisy data and faces challenges in clinical
interpretation [16]. XGBoost achieved the highest accuracy among traditional models due
to its advanced techniques for loss reduction and feature weighting [17]. However, it lacks
intrinsic interpretability mechanisms comparable to SHAP and feature-based attention.
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Figure 2. Relevant features identified by SHAP. The figure highlights the most impactful features

contributing to the prediction of postoperative survival outcomes.
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Figure 3. Confusion matrix obtained from XplainLungSHAP.



Surgeries 2025, 6, 8

10 of 13

Shap And Feature Attention Mechanism For Dataset
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Figure 4. ROC curve obtained from XplainLungSHAP.

1.0

In contrast, XplainLungSHAP combines the explanation of important features (using

SHAP) with the attention mechanism to prioritize the dynamics of relevant factors, de-

livering both high precision and interpretability—relevant for medical applications. This

approach enables clinicians to understand why and how a particular feature influences pre-

diction. As shown in the table above (see Table 1), the results obtained before implementing

XplainLungSHAP were 11% lower. In Figure 5, another result is presented, obtained after

training the model using an attention mechanism and when using the custom model. A

consistent increase in the accuracy of the developed model can be observed, reaching over

90% at some point.

Table 1. Models” accuracy comparison.

Model Accuracy (%)
Logistic regression 78.65
Random Forest 79.12
XGBoost 80.49
Attention mechanism only 80.97
XplainLungSHAP model 91.49

95

90

=)
[l

Accuracy (%)

@
S

Model Training Accuracy Over Epochs

Attention Mechanism Only
—=— XplainLungSHAP

70

10 20 30 40
Epochs

50

Figure 5. Training accuracy progression for attention mechanism and XplainLungSHAP models.
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4. Discussion

The incorporation of an attention mechanism into the neural network greatly im-
proved both the accuracy and interpretability of the model. By dynamically assigning
importance to features based on their relevance to each prediction, the mechanism effec-
tively highlighted key clinical variables such as pulmonary function, comorbidity scores,
and age. This dynamic weighting process aligned the model’s functionality with clinical
reasoning, supported by a carefully designed architecture and thoughtful selection of
model components.

The neural network’s structure begins with an input layer that processes 12 essential
features identified through SHAP, including variables like the FEV1/FVC ratio, Symptom
Index, and comorbidity score. This ensures the input data are compact yet clinically
relevant. Following the input layer, two fully connected hidden layers refine the data.
The first hidden layer, comprising 64 neurons, applies a ReLU activation function, enabling
the model to capture complex, non-linear relationships between the features. This step is
particularly important for understanding the intricate patterns present in medical datasets.
The second hidden layer, with 32 neurons and also employing a ReLU activation function,
narrows the model’s focus further, emphasizing the most relevant patterns uncovered in
the previous layer. This progression enables the model to extract and prioritize information
effectively. The design not only enhances the model’s predictive performance but also
ensures interpretability. The attention mechanism allows for the dynamic prioritization
of significant features, resulting in a reliable and transparent model tailored to clinical
applications. This structure offers a robust framework for decision making, aligning with
medical requirements while delivering valuable insights.

The attention mechanism refines the predictive process by assigning different levels of
importance to each feature based on its relevance to the specific case. It evaluates how much
each feature contributes to the overall prediction and adjusts their influence accordingly.
This process creates a weighted combination of the features, emphasizing the most relevant
ones. The resulting representation is then used by the model to make predictions, offering a
clear and interpretable way to understand which factors are most significant in determining
postoperative survival outcomes [4].

To train the model effectively, we employed binary cross-entropy loss, a standard
choice for binary classification tasks [18]. This loss function calculates the difference
between the predicted probabilities and the actual binary outcomes, penalizing the model
proportionally to its confidence in incorrect predictions. The binary cross-entropy loss is
defined as:

1 m
£=——3 [yilog(9) + (1 —y;) log(1 — )], ®)
i=1

To optimize the model, we used the Adam optimizer, which combines the advantages
of momentum and adaptive learning rates. Adam adjusts the learning rate for each
parameter dynamically, improving convergence speed and stability, particularly in sparse
or noisy datasets. The optimizer updates the parameters using the following equations:

me = Brmy_1+ (1—B1)gt, vt = Bavsi_1+ (1 — Pa)g?, (10)

0; = 6,1 — (11)

«
My
/Ot + €
where m; and v; are the first and second moment estimates, g; is the gradient, and 6; repre-
sents the updated parameters. This adaptive nature of Adam makes it particularly suitable
for the complex optimization landscape of neural networks with attention mechanisms [19].
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feature for individual predictions, the model allowed clinicians to validate its reasoning
and integrate its outputs into clinical decision making with confidence. This combination of
accuracy, interpretability, and computational efficiency highlights the potential of attention-
based approaches in medical prediction tasks, offering a robust and transparent framework
for improving outcomes in thoracic surgery [5].

5. Conclusions

This study introduces an innovative framework leveraging Al for predicting postoper-
ative survival outcomes in lung cancer surgery, demonstrating a high predictive accuracy
of 91.49%. By combining SHAP-based feature selection and an attention mechanism,
the model enhances interpretability, aligning with clinical reasoning and focusing on impor-
tant features like pulmonary function and comorbidities. These advancements showcase
how Al can go beyond traditional statistical methods, offering a deeper understanding of
complex medical data while preserving transparency and trust in the decision making pro-
cess. Integrating Al in this framework is pivotal to precision medicine, enabling clinicians
to make more informed decisions tailored to individual patients. The model’s ability to
pinpoint key prognostic factors allows for personalized preoperative assessments and risk
stratifications. This supports optimizing treatment plans, improving postoperative care
and potentially leading to better survival rates for lung cancer patients.
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