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Abstract: This work presents a state-of-the-art review of existing fireproof construction guidelines
for dwellings against wildfires. The most important wildfire-proof construction guidelines and
codes for dwellings are presented, and these are later associated with existing fire engineering
chapters associated with building codes. It was concluded that the variability in this subject is
very high, and the approach to classifying the thermal effects in construction still lags behind
scientific consensus. Moreover, the constructive requirements depend severally on the country’s
building code when assessing the fireproof requirements for wildfire. Moreover, the thermal actions
of wildfires in dwellings are presented and compared with classical ISO-834 standard fire curves,
in which the maximum equivalent fire exposure time can range from 2 to 4 h depending on the
country’s code. The key contributions of this work consist of (i) thoroughly disseminating codes
and guidelines to promote scientific discussion in order to advance the wildfire fireproof standards
dedicated to WUI; (ii) emphasizing the void in current codes in order to promote conversation
between future researchers.

Keywords: fireproof construction guidelines; wildfire temperature curves; dwelling localize ignitions;
codes and standards

1. Introduction

Forest fires, also known as wildfires in North America and Europe and bushfires in
Oceania, have become the most significant risk in recent years, accounting for the majority
of environmental and economic losses and having a significant impact on society. Around
40,000 fires were reported in southern Europe between 2010 and 2016 [1]. However, these
values vary from year to year, and it has been observed that the average area burned has
doubled or even tripled. Climate change is a factor to consider, and studies have shown
that the fire season has become more severe in the last 30 years, with a peak between June
and October [1]. Wildfires in wildland–urban interface (WUI) areas spread rapidly over
vegetation and buildings as fuel elements. So, at this point, the main problem of fires in
WUI areas is the ignition of surrounding buildings or structural elements [2] Therefore, the
best alternative to reduce the severity of the attack on dwellings is to reduce the potential
ignition [3]. As a result, governments and the scientific community have studied fires and
their behavior in recent decades in order to learn how to prevent, contain, and reduce the
public’s impact in terms of lives and property damage [4].

Therefore, to measure the cost of the problem in both forest and WUI areas, risk assess-
ment methods have been applied to prioritize risk reduction activities at different scales
(macro, meso, and micro) [5]. The first two scales focus on maintenance and prevention
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strategies, respectively, but the last scale where focus in the last decades to prevent the loss
of human lives and properties because the micro-scale focuses on combustible elements
around the structure and the structure itself [5]. As a result, after years of research, many
countries have developed codes and standards that are used as a last line of defense at the
micro-scale. Therefore, a process has been initiated to identify the materials and properties
that are suitable for the construction of houses in order to minimize the possibility of
ignition. Initially, these materials were tested for indoor fires, but the remarkable increase
in wildfires has led authorities to create standards for external protective elements as well.

Self-protection has grown in importance for communities to adapt to and coexist with
wildfires in recent years as various technologies have also been tried to reduce or confine
forest fires [6]. Therefore, some studies have developed a vulnerability assessment tool [5,6]
that can help homeowners determine the risk and vulnerability of their properties located
in WUI zones. Using a checklist, one can then check the different ways a fire can enter
the house and based on a fault tree analysis, analyze the elements of the house, and the
types of natural or ornamental fuels within a 30 m radius. Finally, a result with a consistent
quantification and probability of fire penetration into the house is obtained [1,6]. On the
other hand, post-fire studies and assessments have been conducted to study the behavior
of structures during wildfires and to consider the characteristics of wild landscapes. These
evaluations’ findings can be used to forecast structural deterioration, which is crucial for
creating mitigation plans and identifying a home’s most vulnerable areas. In addition,
graph theory could be used to quantify the likelihood of resilience of individual buildings
in WUI zones [1,7].

The goal of this work is to describe various types of guidelines and codes for fireproof-
ing dwellings in countries with large and frequent wildfires. A brief overview is presented
of the current approach to addressing the WUI fire problem, and how the codes focus
on reducing ignition of the structure with these standards. In addition, a discussion and
evaluation of other needs and/or gaps to provide better and more adequate protection
against WUI fires in future developments is presented.

2. Guidelines and Codes Urban Planning Measures

In this section, a short presentation is performed on some of the most popular guide-
lines and codes to promote urban measures planning in the WUI. It is beyond the scope
of this work to fully detail or compare guidelines/codes on this topic, and only a brief
presentation is undertaken. For full detail on this theme, it is recommended to read the
reports WP2 “WUI Natural fuels hazard characterization” and WP3 “Artificial fuels hazard
characterization” from the Horizon Europe research project WUIVIEW.

WUI can be defined as an interface where the fuel that feeds a fire change from natural
fuel (vegetation) to synthetic fuel (urban) [8]. In a forest fire, vegetation is the primary
fuel, but in a WUI, building materials are the combustion elements that carry the fire from
the outside in. In order to build a house that can withstand the onslaught of a wildfire,
authorities and countries have worked on fire suppression strategies [9].

Forest fires can be reduced by prevention policies depending on the environment of
the forest or savannah reducing the vulnerability to these fires in the WUI [1]. As observed
in the last years these have not been enough, entering into the WUI at an increased rate [1,4].
Therefore, changes in the social and economic characteristics of the population must be
considered so that building codes complement the prevention policies with an additional
focus on material and structural resistance to the thermal effects of a wildfire [1,10].

Historically, regions such as North America, Southern Europe and Oceania are the
most prone to wildfires in the WUI regions, with many similarities in their environment,
industrial, and social development. Therefore, codes and guidelines, such as that from
the USA (Californian) [11], Australia [12], New Zealand [13], and Canada [14], have pro-
vided protection plans for their respective regions and collaborated with the international
wildland–urban interface code [15], which includes the analysis of fire risk zones and desig-
nate risk maps to define levels of exposure to wildfire. Additionally, in parallel, standards
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have been developed to assess which materials are the most suitable for housing construc-
tion and can withstand or diminish the effects of a wildfire as well as the categorization of
requirements according to risk zones [10].

Designing standards and guidelines for fire design in WUI areas mentioned above,
cross-referencing national and transnational regulations, studies, and research on past wild-
fire events should also be conducted [10]. The WUI problem can be categorized at different
scales due to the different levels of interaction with the environment and communities [2,5].
Therefore, the WUI problem can be categorized into three scales (Figure 1). The first (WUI
I) is related to the global environment, which includes operational management strategies
and large forest fires. The second (WUI II) corresponds to the planning and application
of fire prevention policies and keeping vulnerable points in order, and the third (WUI III)
corresponds to what can be called the “home ignition zone” [5].
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The codes presented were selected because of their similarities, completeness, and
relevance in their respective regions Table 1. Other codes exist, but their importance to
scientific discussion in order to advance the wildfire fireproof standards is smaller. This
document’s scope is focused on (WUI I) building construction materials, so there is no
emphasis on topics such as risk classification, topographical analysis, water resources, and
environment. These topics are relevant for a general analysis of wildfires but not when the
fire has already reached a building. For this reason, they will be mentioned briefly.
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The local standards of each country generally also refer to the management of fuels
in the two rings (or more depending on the code) already mentioned, and especially with
regard to the outer ring, it is necessary to avoid any kind of corona or top tree activity and
to reduce possible fuels to a certain level in order to significantly reduce the intensity of
fire exposure [19] In addition, regulations require that tree canopies or large bushes be
spaced apart by a distance that can range from 3–9 m, depending on local standards. These
distances are important to prevent the spread of fire and should additionally be checked
for slopes and areas of high winds that increase the likelihood of wildfire [24,25]. Another
important preventive measure is to cut lower branches to the height specified in local
regulations to ensure vertical discontinuity and prevent fire from moving from the ground
to the tree canopy. Some standards specify heights from 2 m to 4 m or 1/3 of the height of
the tree [25]. This distance should be measured from the surface fuel layer, and, therefore, a
limit of 10 cm was established for the surface fuel layer height, to avoid a vertical transition
of the fire [26].

Portugal has been one of the countries most affected by forest fires in recent years, and
this urged them to update its legislation [21,27] in line with international recommendations.
The first requires protective strips with a width of at least 50 m between the outside
of the building and the adjacent forest, meadow, or pasture as was mentioned before.
Second, an additional width was established by the Portuguese Municipal Wildland Fire
Protection Plan (MWFPP) [28], with a minimum distance of 10 m and a maximum of 50 m,
for special cases. On the other hand, the third decree establishes that for all dwellings
located within a forest, the collection of wood is mandatory, by creating a protective strip
of more than 100 m wide [29]. Besides that, the Portuguese Civil Protection Authority has
presented complementary measures to protect property and life from wildfire [30]. One of
the measures stipulates that all trees and bushes in the gardens of houses must be at least
5 m away from a house. In addition, entrances to houses must always be clean and free of
obstructions, and roofs and gutters must be free of leaf accumulation.

3. Guidelines and Codes for Fireproof Dwellings against Wildfires

Fire codes or standards are designed to establish minimum parameters for the pro-
tection of life and property of the community due to the increased number of buildings
in wildland fire hazard areas (WUI) [4]. A building that can resist the intrusion of flames
or embers (firebrands) projected by a vegetation fire contributes to the systematic reduc-
tion of losses. Therefore, governments have been working on fire protection plans and
documents specific to urban interface zone (WUI) [31]. First, it outlines contingency plans
to minimize and mitigate the potential loss from wildfire exposure. Then, each code has
implemented different levels of contingency according to specific characteristics such as
topography, climate, water resources, etc. [4,10,14,32]. For this reason, it can be generalized
into three levels high, medium, and low. In addition, sub-levels can be defined between
them depending on the Region. This happens due to different regulations in each country
and also in their internal regions and states [4,10,12,14].

Therefore, materials and possible combinations should be tested to see if their prop-
erties are suitable for building systems. Codes have suggestions regarding the material
type to be tested, the amount of power and time of exposure to fire, and the procedure and
elements to be included to know if the material complies or not with the code’s require-
ments. They will be accepted for use when they meet the conditions of such tests, in which
a summary of the most relevant standards are mentioned in Table 1.

3.1. United States (California)

In recent decades, some local jurisdictions and regulations were adopted in California
and some states of the US. Figure 2 shows that the western side of the United States is
prone to strong wildfires. For that reason, with the support of the fire departments, fire
regulations were enacted for new development in high-risk areas. Thus, codes such as
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California’s required fire-resistant building materials and parallel developments to facilitate
access for emergency vehicles [33].
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Chapter 49 of the California Fire Code [11] regulates the minimum mitigation require-
ments for conditions that can cause wildfires in a WUI zone. This, in turn, means that a
wildfire burning through vegetative fuels will spread to buildings threatening lives and
loss of fire suppression control. Section 2 of this document established the defense of space,
but Chapter 49 also regulates the construction of buildings to protect against forest fires.
Therefore, materials and construction methods for external protection against forest fires
shall be applied in areas with flammable vegetation that can easily spread to buildings
and become a threat in WUI areas. This code in Section 4906.3 works in conjunction with
the California Building Code [35] in Chapter 7A to define the materials and construction
assemblies used in the design and construction of dwellings located in WUI areas. This
section shares the same objective as the California Fire Code in Chapter 49 which is estab-
lishing the standards that are shown in order to protect life and property from wildland
fires in WUI areas.

Therefore, the purpose of Chapter 7 of the California Building Code [35] applies to
building materials and building systems to be used on building facades. In addition, it
establishes standards for the protection of life and property by increasing the ability of a
building located in WUI zones to resist the penetration of flames or embers thrown up by
vegetation fire. In that way, the standard requirements contribute to a systematic reduction
in losses from fires. Thus, that chapter generally covers the fire protection plan and defines
the risk zones and the standards used to evaluate the resistance to ignition of the building
materials, which are distinguished from the structural elements of the building shown in
Table 2. This code already possesses some fire standards, in order to test external elements
such as roofs, walls, windows, and doors for the external action of outdoor fires Figure 3.
The California building code also possesses its own standard to test the thermal effect and
ignition of firebrands in construction materials Figure 4. This test setup was used recently
by several authors to inquire about the heat flux, convection, and radiation due to firebrand
accumulation [36].
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Table 2. California Building Code Chp. 7A, exterior wildfire exposure methods and standards.

Section 703A Standars of Quality
(Materials) Section 704A Ignition-Resistant Construction

SFM Standard 12-7a-1 Exterior walls and sheathing.
SFM Standard 12-7a-5 Exterior walls and sheathing.

SFM Standard 12-7a-2 Exterior windows.

SFM Standard 12-7a-3 Horizontal projection
underside. ASTM E84 Standard test method for surface

burning.
SFM Standard 12-7a-4 Decking.

SFM Standard 12-7a-4a Decking alternative method.
UL 723 Surface burning characteristics of

building materials.SFM Standard 12-7a-5 Ignition resistant material.

Section 705A Roofing Section 706A Vents

705A.2/ASTM D3909 Roof coverings.

706A.2

Ventilations openings for attics,
enclosed eave soffit spaces, enclosed
rafters spaces, and underfloor
ventilation openings.

705A.3/ASTM D3909 Roof Valleys.

705A.4 Roof gutters 706A.3 Ventilations openings on the
underside of eaves and cornices.

Section 707A Exterior Covering Section 708A Exterior Windows and Doors

707A.1

Resist building ignition
and/or safeguard against the
intrusion of flames resulting
from small ember and
short-term direct flame
contact exposure.

708A.2 The following exterior glazing
materials and/or assemblies.

NFPA 257 Exterior windows.

SFM Standard 12-7a-2 Exterior windows.

NFPA 252 Exterior doors.

SFM Standard 12-7a-1 Exterior doors.

Section 709A Decking Section 710A Accessory Structures

SFM Standard 12-7a-4 Decking.

SFM Standard 12-7a-3
Accessory and miscellaneous
structures, other than buildings
covered by Section 701A.3.

SFM Standard 12-7a-4a Roof coverings.

SFM Standard 12-7a-5 Ignition resistant material.
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However, the code [35] is not limited to standards characterizing building materials
but also imposes requirements on how building elements must be installed. For example,
the requirements for roofs recommend how they should be constructed to prevent flames
or embers from entering the building. It specifies that the roof should be covered with
mineral layers and not perforated. It also recommends the use of metal meshes or other
materials that meet the requirements set forth in Section 706A, which must meet the national
standards. These meshes must in turn have a geometry with a maximum opening of 1/16”.

In Section 707A, regarding exterior walls, it states that the exterior sheathing or wall
construction shall be made of (i) noncombustible material, (ii) ignition-resistant material,
(iii) heavy timber exterior wall construction of heavy wood, and (iv) log wall construction
assembly. In the case of decking, which is one of the most vulnerable points of a building,
it establishes that the material must be resistant to ignition, complying with national
fire standards.

The California building code [35] allows different standards to be used for the same
element, as is the case for exterior windows that can be tested to NFPA 257 [32] or SFM
Standard 12-7a-2 [36]; the first is in the national group of standards and the second belongs
to a more state-wide group of standards, due to the federal organization of the United States.

3.2. Canada

In Canada, wildfire intensity typically varies from 10 kW/m to 100,000 kW/m [17].
Thus, fire intensity scales linearly with the amount of fuel burned in the combustion and
with the speed of fire spread [17]. Moreover, in a forest fire, the flames are the main feature
because they release energy to the environment, increasing the temperature [17]. A large
amount of energy is released when elements burn during the spread of forest fires, although
most of the energy released flows vertically. However, the energy released is transmitted in
all directions in the form of radiation, with radiant energy accounting for 15% to 20% of the
total energy released in a wildfire [10,17].

Therefore, depending on the level of risk, the Canadian National WUI Guide Code [17]
has created methods for assessing exposure in the ignition zone of the structure. One of
these, the most widely used method, is the simplified method that evaluates the expected
exposure to radiant heat and embers based on the type of fuel surroundingthe building [10,17].

This method considers four levels of exposure to radiant heat: Nil, Low, Moderate,
and High (Table 3). These levels correspond to different exposure to flames and consider
two levels for exposure to embers.

Additionally, it presents the historical wildfire hazard level mapped from spatial burn
probability outputs based on wildfire growth simulations driven by historical weather and
wildfire locations shown in Figure 5 [17].
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Table 3. Determination of Exposure Level Using Simplified Method for 100 m radius.

Fuel Type (0–100 m) Type of Fuel Description Exposure Level

F0
Non-vegetated land. Irrigated or cultivated landscapes and
cropland (excluding cereal crops).
Non-coniferous shrubs. Treeless bogs, fens, and swamps.

Nil

Ember-only

F1
Deciduous forest. Mixed coniferous and deciduous forest
with ≤25% conifers. Grassland and cereal cropland. Logging
and land-clearing slash.

Low

F2
Mature conifer forest (excluding upland boreal black spruce
forest) with ≤20% standing dead trees. Mixed coniferous and
deciduous forest with >25% conifers.

Moderate

F3 Upland boreal black spruce forest. Dense immature jack pine
forest. Mature conifer forest with >20% standing dead trees. High
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The level of exposure and the priority building zones [17] determine the appropriate
construction class shown in Table 4. Thus, the type of construction determines the type
of material that can be used. However, it should be noted that the requirements of the
NBC [37], provincial codes, or local standards are more valid if the requirements are
exceeded by those of the Canadian National WUI Guide Code [17].

Table 4. Determination of Construction Classes.

Exposure Level

Recommended Construction Classes for Use with Mitigation Measures.
Applied in the Listed Priority Zones

None 1A 1A-1 1A-2 1A-3

Embers-Low CC1(FR) CC1 CC3 CC3 CC3

Moderate CC1(FR) CC1(FR) CC2 CC3 CC3

High CC1(FR) CC1(FR) CC1 CC2 CC3

The objective of the National Urban–Wildland Interface Fire Guide in Chapter 3 is
to distribute the plan and annual updates [14], to enclose what concerns based on the
risk wildfire assessment in Chapter 3 [14] (microscale), to design construction measures to
limit the probability of building ignition, and to minimize building damage. Construction
measures are categorized according to construction class shown in Table 5, reflecting the
exposure level and may be used for new and existing buildings within a WUI area.
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Table 5. Canadian construction class classification.

Construction Class (CC) Minimum Recommended Exterior Wall Cladding

CC1 (FR), CC1 Noncombustible
CC2 Ignition-Resistant
CC3 Limited Ignition-Resistant

Note: buildings in CC1 should have a fire-resistance rating of not less than 60 min based on fire exposure,
buildings in CC1 (FR) should have a fire-resistance rating of not less than 45 min based on fire exposure.

On that account, knowing the exposure levels and the construction class, it is possible
to determine the type of material that can be used in the building and the corresponding
standard (Table 6) to determine its final properties [17]. Although Table 6 only mentions
the standards that must be implemented to know if the material is or is not suitable for
construction use, it is important to mention that each paragraph of Chapter 3 of the National
Guide for Wildland–Urban Interface Fires [17] contains additional specifications specific
for each type of construction class which may vary in geometric properties or even use
other types of elements. It is also not limited to using the codes of (UL) Underwriters
Laboratories of Canada and implements standards of the American Society for Testing and
Materials (ASTM).

Table 6. Canadian Building Code Standards for fire behavior of materials.

Section 3.3.2 Exterior Walls

CAN/ULC—S101 Fire endurance test of building construction and materials.
ASTM E2707 Fire Penetration of Exterior Wall Assemblies Using a Direct Flame Impingement Exposure.

CAN/ULC—S102 Test for Surface Burning Characteristics of Building Materials and Assemblies.
ASTM2768 Duration Surface Burning Characteristics of Building Materials (30 min Tunnel Test).

ASTM D2868 Accelerated Weathering of Fire-Retardant-Treated Wood for Fire Testing.

Section 3.3.5 Roofing Materials

CAN/ULC-S107 Fire Tests of Roof Coverings.

Section 3.3.7 Eaves, Soffits and Roof Projections

CAN/ULC-S108 Fire Tests of Roof Coverings.
ASTM E2957 Resistance to Wildfire Penetration of Eaves, Soffits and Other Projections.

Section 3.3.8 Openings and Vents

ASTM E2886 Evaluating the Ability of Exterior Vents to Resist the Entry of Embers and Direct Flame.

Section 3.3.9 Doors and Windows

CAN/ULC-S104 Standard Method for Fire Tests of Door Assemblies.

Section 3.3.10 Windows Glazing

SFM Standard 12-7-A-2 Exterior Windows.

3.3. Australia

The Australian government has decided to generate community impact campaigns to
reduce the risk of fire, creating guidelines that can mitigate the actions and damage to life
and property [38]. There are two types of fire classification systems in Australia: the first
is the forest system, and the second is the grassland system; fire behavior considerations
are different between these two systems, and the main factor is fuel type [38]. Therefore,
the risk classification depends on the characterization of these two systems for properly
planning building codes concerning land use in bushfire-prone regions [12].

For this reason, proper building design and construction improve bushfire surviv-
ability. Structural measures cannot be applied as a stand-alone solution, but must be part
of the protection solution in asset protection zones. The building design should ensure
adequate protection of the most vulnerable elements of a house or building. Construction
standards are embodied in the AS3959:2018 [12] code and NASH (National Association



CivilEng 2023, 4 666

of Steel-Framed Housing), which provide different levels of protection for different con-
struction elements in order to resist wildfire attacks and protect the occupants and the
building until the bushfire front passes. This standard categorizes the fire by definition
and calculation of Bushfire Attack Level (BAL), which ranges from the firebrand’s attack,
indirect flame radiation, and direct flame contact. Planning for Bush Fire Protection (PBP)
was developed as a methodology for determining BAL and appropriate Asset Protection
Zones (APZs) [18]. Therefore, the steps to establish the APZs are described in Table 7. The
evaluation of the slope results from a detailed inspection of the surrounding area carried
out with the help of topographic maps. The slope can also be classified into one of the
following classes, depending on where the hazard is located. (i) All upslope vegetation
(considered 0 degrees), (ii) >0 to 5 degrees downslope vegetation, (iii) >5 degrees to 10 de-
grees downslope vegetation, (iv) >10 degrees to 15 degrees downslope vegetation, and (v)
>15 degrees to 20 degrees downslope vegetation APZ [18].

Table 7. Identify APZs and BAL classification.

Step Description

1 Determine the vegetation formation in all directions around the building at 140 m, using the combination of
vegetation and slope that gives the worst-case scenario [24].

2
Determine the effective slope of the terrain from the building over 100 m (Figure 6). The slope and the
classification of the vegetation have a direct influence on the rate of propagation, the intensity of the fire, and the
ultimate level of radiation heat flux.

3
Determine the bushfire hazard index relevant to the area based on the degree of fire hazard in Australian
vegetation. For bushfire protection planning (PBP), the hazard index should be used based on the assessment of
local management development.

4 After performing steps 1 to 3, you can fill in the APZ or BAL according to the parameters in [18].

In addition, the Construction Standard AS3959:2018 [12] provides a set of standards,
shown in Tables 8 and 9, to determine the thermal properties and fire performance of each
element of a building such as window glazing, roofs, and walls, according to the BAL
classification. The biggest advancement in testing structural elements against wildfires
was published in 2018 adding two new sections Part 8.1 and Part 8.2 in AS1530. These
are related to heat flux attacks due to radiation and large flames in structural elements,
using heat flux variations, and localized flames test setups Figure 7a. The level of heat flux
will largely depend on the BAL described in Table 8. Moreover, several test configurations
are also suggested for the laboratory tests, for roofs and exterior facades (either walls or
openings) Figure 7b. According to this standard, the maximum equivalent fire exposure
time is 2 h, when compared with classical interior fire curves.

Table 8. Radiant heat flux exposure and appropriate Bush Fire Attack Level (BAL).

Heat Flux [kW/m2] Description Bal Level Construction
Section AS. 3959:2018

N/A There is insufficient risk to warrant specific
construction requirements Low 4

≤12.5 Embers attack (Firebrands) 12.5 3 and 5

>12.5 ≤ 19
Increasing levels of embers attack and burning

debris ignited by windborne embers together with
increasing heat flux.

19 3 and 6
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Table 8. Cont.

Heat Flux [kW/m2] Description Bal Level Construction
Section AS. 3959:2018

>19 ≤ 29 Increasing levels of embers attack, some flame
contact is possible 29 3 and 7

>29 ≤ 40 Same >19 ≤ 29, and likelihood of direct contact
with flames. 40 3 and 8

>40 Direct exposure to flames from fire front in
addition to head FZ 3 and 9

Table 9. Australian Building Code Standards for fire behavior material.

Standard Description

AS 1288 Glass in buildings.

AS 1530 Methods for fire tests on building materials, components, and structures.

Part 1 Combustibility test for materials.

Part 2 Test for flammability of materials.

Part 4 Fire-resistance test of elements of construction (Doors, windows,

Part 8.1 Tests on elements of construction for buildings exposed to simulated bushfire attack—Radiant heat and small
flaming sources.

Part 8.2 Tests on elements of construction for buildings exposed to simulated bushfire attack—Large flaming sources.

AS 2047 Windows and external glazed doors in buildings.

AS 2049 Roof tiles.

AS 3999 Bulk thermal insulation—Installation.

AS 4859 Materials for the thermal insulation of buildings.

AS 4505 Garage doors and other large access doors.
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3.4. Europe

The European Union has focused its standards and legislation on the management
of fuels in rings 1 and 2 [19,21], so it needs to address the WUI problem in depth after a
fire [6]. Consequently, standards for wildland fire attacks in WUI areas are scarce, dispersed,
and generally succinct when compared to North America and Oceania ones. Thus, the
current standards leave aside the requirements concerning the structure itself, but these
requirements are important in order to reduce the wildfire vulnerability of structures in
the WUI [19]. Figure 8 shows some topics concerning wildfires from a recent report of the
European Commission, in an effort to build common policies in Europe. It is interesting to
note the lack of appropriate focus on building materials and construction requirements in
this context. Despite that, the different countries in Europe are learning from the experience
of the other continents and doing their one research. Therefore, it is expected that some
improvements will come soon, such as the new Portuguese regulation enacted in 2021 that
will be explained below.
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The European Union’s Construction Products Regulation (CPR) [39] regulates the
products used in all member states. This regulation requires all construction products
to be re-classified using the new test methods. The classification is often derived using
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each member state’s national fire test methods. The CPR’s classification criteria and
test method used to evaluate the fire resistance and reaction to building product fire are
described in the standard [40,41]. This fire reaction standard is divided into three sets:
construction products (excluding flooring), flooring products, and linear pipes thermal
insulation products. Although the European Building Code [42] is constituted and divided
for each type of material, subpart 2 of each chapter clarifies the handling of fire actions and
fire design.

However, this does not mean that fire engineering in Europe is deficient, on the
contrary, the Euro building code has developed an excellent classification of materials and
the standards to evaluate the reaction for fire and properties of materials. Figure 9 shows
the Eurocode structure and how the fire requirements and relevant standards for testing
are included for each of the structural materials regulated. The most well-known standards
for testing fire reaction tests in Europe are displayed in Table 10.

CivilEng 2023, 4, x FOR PEER REVIEW 13 of 22 
 

 

 
Figure 9. Euro code division. 

Table 10. European building code standards for fire behavior material. 

Standard Description 

EN 13501-1 Fire Classification of Construction Products and Building Elements - Part 1: Classification Using 
Data from Reaction to Fire Tests. 

EN 13501-2 Fire Classification of Construction Products and Building Elements - Part 2: Classification using 
data from fire resistance tests, excluding ventilation services. 

EN 13823 Reaction to fire tests for building products excluding floorings exposed to thermal attack by a 
single burning item. 

EN ISO 9239-1 Reaction to fire tests for building products—Horizontal surface spread of flame for floor cover-
ings. 

EN ISO 11925-2 Reaction to fire tests for building products—Ignitability of building products subjected to direct 
impingement of flame. 

IN ISO1716 Reaction to fire tests for building products—Determination of the heat of combustion. 
EN ISO 1182 Reaction to fire tests for building products—Non-combustibility test. 

EN 1363-1 Fire resistance tests—Part 1: General Requirements. 

3.5. Recent Recommendations in Portugal 
Concerning new regulations regarding the wildfire safety of structures, Portugal en-

acted new regulations for the integrated management of forest fires in the continental ter-
ritory [21,43]. This law established that the National Authority of Emergency and Civil 
Protection is responsible for the specification of construction requirements for buildings 
in wildfire-prone zones. Therefore, Despacho n.º 8591/2022 [27] regulates the measures of 
protection against the passage of forest fires according to the usage of a building and con-
sidering also the performance of the elements and construction materials to the exposure 
of forest fires. This regulation is based on the Australian Standard [12] referred to in that 
document. 

Following the Australian line of WUI fire protection, Portugal proposes separation 
distances (DS—Distâncias de Separação in Portuguese), not for fire prevention but to eval-
uate the potential wildfire heat flux. Still, estimating the proximity of a dwelling to a tree, 
determines the heat flux to which a building can be subjected, consequently proposing 
exposure classes (CEIR—Classe de Exposição ao Incêndio Rural in Portuguese), and conclud-
ing in an exposure class (Table 11). According to [27], it is only necessary to build dwell-
ings with fireproof resistance, if the dwelling is less than 50 meters from a tree. For supe-
rior distances the Portuguese Law (Decreto—Lei n.º 82/2021) [21] is directly applied. In any 
case, for distances up to 300 meters, it is still necessary to use construction materials that 
pass a given fire reaction test for the roof. For openings and walls, this distance is below 
50 meters. According to this standard, the maximum equivalent fire exposure time is 4 h, 
when compared with classical interior fire curves. In any case, it is important to point out 
that this high fire exposure time is due to buildings with strategic importance, during the 
occurrence of a wildfire, for example hospitals. 

Figure 9. Euro code division.

Table 10. European building code standards for fire behavior material.

Standard Description

EN 13501-1 Fire Classification of Construction Products and Building Elements—Part 1: Classification Using Data from
Reaction to Fire Tests.

EN 13501-2 Fire Classification of Construction Products and Building Elements—Part 2: Classification using data from
fire resistance tests, excluding ventilation services.

EN 13823 Reaction to fire tests for building products excluding floorings exposed to thermal attack by a single
burning item.

EN ISO 9239-1 Reaction to fire tests for building products—Horizontal surface spread of flame for floor coverings.

EN ISO 11925-2 Reaction to fire tests for building products—Ignitability of building products subjected to direct
impingement of flame.

IN ISO1716 Reaction to fire tests for building products—Determination of the heat of combustion.

EN ISO 1182 Reaction to fire tests for building products—Non-combustibility test.

EN 1363-1 Fire resistance tests—Part 1: General Requirements.

3.5. Recent Recommendations in Portugal

Concerning new regulations regarding the wildfire safety of structures, Portugal
enacted new regulations for the integrated management of forest fires in the continental
territory [21,43]. This law established that the National Authority of Emergency and Civil
Protection is responsible for the specification of construction requirements for buildings
in wildfire-prone zones. Therefore, Despacho n.º 8591/2022 [27] regulates the measures
of protection against the passage of forest fires according to the usage of a building and
considering also the performance of the elements and construction materials to the exposure
of forest fires. This regulation is based on the Australian Standard [12] referred to in
that document.
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Following the Australian line of WUI fire protection, Portugal proposes separation
distances (DS—Distâncias de Separação in Portuguese), not for fire prevention but to evaluate
the potential wildfire heat flux. Still, estimating the proximity of a dwelling to a tree,
determines the heat flux to which a building can be subjected, consequently proposing
exposure classes (CEIR—Classe de Exposição ao Incêndio Rural in Portuguese), and concluding
in an exposure class (Table 11). According to [27], it is only necessary to build dwellings
with fireproof resistance, if the dwelling is less than 50 m from a tree. For superior distances
the Portuguese Law (Decreto—Lei n.º 82/2021) [21] is directly applied. In any case, for
distances up to 300 m, it is still necessary to use construction materials that pass a given
fire reaction test for the roof. For openings and walls, this distance is below 50 meters.
According to this standard, the maximum equivalent fire exposure time is 4 h, when
compared with classical interior fire curves. In any case, it is important to point out that this
high fire exposure time is due to buildings with strategic importance, during the occurrence
of a wildfire, for example hospitals.

Table 11. Fire Resistance classification for structural elements—Portuguese regulation.

Structure Type
of Use

Exposure Fire
Classes (CEIR)

Risk Category

1 2 3 4

I, III, IV, V, VI, VII,
IX and X

Low or Medium R60/REI60 R60/REI60 R90/REI90 R120/REI120

High R60/REI60 R60/REI60 R90/REI90 R120/REI120

Extreme R90/REI90 R90/REI90 R120/REI120 R180/REI180

II, XI and XII

Low or Medium R90/REI90 R90/REI90 R120/REI120 R180/REI180

High R90/REI90 R120/REI120 R180/REI180 R180/REI180

Extreme R90/REI90 R120/REI120 R180/REI180 R240/REI240

Note: Risk category number represents the time of fire exposure.

The type of fuel scenario, terrain slope and the distance of horizontal separation
between the building and the vegetation are considered in determining the exposure class
(Table 12). In situations where there are several types of surrounding vegetation, a specific
calculation must be made to consider which produces the greatest exposure and heat flux
in a forest fire. According to the radiation heat flux calculated, five exposure classes are
defined as shown in Table 13.

Table 12. Exposition fire class parameters.

Scenario Description Slope Terrain

1 Herbaceous terrain (<20 cm high)

0◦–10◦–20◦–30◦–40◦
2 Terrain with grasses and trees;

3 Land with bushes

4 Land with bushes and trees

Table 13. Exposition fire class for WUI fire.

Rural Fire Exposure Classes (CEIR) Low Medium High Extremely High Extreme

Heat Flux Exposure [kW/m2] 0–12,5 ≥12.5–19 ≥19–29 ≥29–40 ≥40

Some lessons have been learned from reports of the effects of fires on structures in
different time periods, but the results are not standardized, and they are described in
reports and surveys [44,45]. It was possible to gather important information in the surveys
about the main cause and location of the ignition and this enabled to make observations
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about the actual risk to the houses (Figure 10), where the weak points are and how to
protect their exterior elements against a wildfire [2].
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The main cause of ignitions 61% was due to firebrand accumulation in the roofs
and openings, and only 21% of houses actually burned due to the direct contact with
flames. These percentages are according to some observations presented by the scientific
community, in which the weak points in dwellings are addressed [6].

These reports lead to the fireproof construction guidelines recommended by [2], using
existing materials in the construction industry, and providing an exterior fire resistance of
60 min (EI60) for the roofs, walls, and openings (doors and windows). For the fire reaction,
it was admitted that openings and walls needed at least fire reaction B-s2-d0, but roofs
could go to fire reaction C-s2-d0 (recommend B with s2 and d0). These recommendations
were enough to prevent the burning of dwellings and provide protection for the dwellers
inside them when a wildfire hits.

4. Wildfire Thermal Actions in Dwellings

According to [5], there are four possible phases of exposure: Pre-impact, Impact, Fire
transfer, and post-frontal combustion which are shown is shown Figure 11. The pre-impact
phase has a thermal effect that is currently being studied as one of the possible factors that
cause fires without coming into contact with the flames, namely the firebrands transported
by the wind [46]. This firebrand is able to start a fire with the help of vegetation layers
accumulated on the structure, ornamental elements, or the building structure itself. It is
also a phase in which the air is hot and prepares everything around the structure as a
possible combustible element, this effect is called the “desiccant effect” [47].

In addition, the impact phase, in which the flame is in direct contact with the structure
and can already guarantee a possible ignition of the housing parts. After that, the trans-
mission phase occurs when prior inflammation has already occurred and spreads through
the structural components. This phase can also occur through the pre-impact phase, due
to the new production of firebrands and not necessarily through the impact phase [2,5].
In addition, finally, there is the post-frontal combustion phase in which the elements of
the structure that have already ignited in the previous phases can continue to burn for a
long time. This causes further damage and generates gases and energy that increase the
damage and the difficulty of combating the fire [47]. During a wildfire, it is quite normal for
specific components of the structure (Figure 12) to react to radiation, contact with flame, or
firebrands. These ignition spots have been identified and studied by [2] and its components
analyzed in the appropriate codes and standards already mentioned.

Currently, there are several approaches to obtaining possible fire design scenarios. The
most used approach follows the parameters set forth in design guidelines and standards,
which together provide an evaluation of minimum fire design requirements, using the ISO
834 standard fire curve [48]. Another option is to create fire scenarios where the characteris-
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tics of the project, inventory, and occupancy are defined based on a risk assessment for a
particular building.
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Therefore, fire design parameters must be defined and converged on a fuel load
function, an occupancy and inventory function, or both [3]. These options are not realistic
for wildfires due to several reasons. The first reason is that the fire design requirements
were mainly designed for indoor fires, and they are too conservative for wildfire actions.
The ISO 834 is the basis for a uniform fire test of elements and allows the classification
into fire resistance classes. In many cases, the use of this standard allows conservative
results [2,46] and does not take into account the effect of cooling which is fundamental
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in the simulation of the thermal behavior of wildfires. The second reason is the level of
uncertainty in designing the fire scenarios based on the real risk assessment for a particular
building location [3]. Thus, a more general standard wildfire temperature curve for design
should be developed and tested in isolated construction elements (roofs, walls, doors,
and windows).

4.1. Direct Thermal Action of Wildfires

At the moment there is no standard wildfire curve to be used in the design of fireproof
protection of dwellings. There is always the possibility of using the ISO 834 standard
nominal fire curve (Figure 13) for fire testing and designing of structures [49]. However,
this curve is usually used for fire design and structural design purposes and does not fully
simulate the fire phases (growth, flashover, and cooling), so it is more rigorous than natural
fire conditions. For this reason, some authors have suggested using performance-based
design curves, which can produce a much more efficient and realistic curve [2,46]. This
curve assumes that the flames can only be cooled by the air outside of the building when
the maximum temperature is below ISO 834.
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Moreover, it is important to point out that the passage of a wildfire in a dwelling lasts
around 3 to 10 min and possesses a maximum temperature of 800 to 900 ◦C depending
on wind, fuel, and topography [50,51]. Therefore, even if a WLF endures for 30 min its
maximum temperature is clearly below 950 ◦C, usually associated with 60 min in ISO 834.

For this reason, the authors [52] used extensive experimental data from the scientific
community from burning trees and bushes to propose a standard wildfire curve that
simulates the flame thermal effect in terms of convection and radiation which is illustrated
in Figure 14. These curves were obtained using the 95% characteristic values in Annex
D “Design Assisted by Testing” in EN 1991-1-1 [53]. It is proposed two different types of
curves, one for trees, which are characterized by high temperatures but short duration, and
another for bushes and savanna, which have low temperatures but long duration. The
adoption of different fire curves for trees and bushes rises from the uncertainty where the
wildfire may occur. An example is Australia, where most fires occur in savannas and bushes,
as opposed to North America or southern Europe with large forests and trees. Finally, by
combining them and creating an envelope between trees and bushes it was possible to
propose a final standard wildfire curve to be used in the fireproof design of dwellings.
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4.2. Indirect Thermal Action of Wildfires

An indirect action of wildfire is the accumulation of firebrands in the exterior elements
of the dwellings, these have been proven in recent studies to present a maximum contact
surface temperature between 400 and 500 ◦C [54], which can ignite some construction
materials (Figure 15). These high temperatures can be maintained for more than 30 min
and, with the presence of wind, almost one hour. Some studies have presented results
on firebrands mainly on the measurement of internal firebrand temperatures [47,55,56]
and contact surface temperatures [47,54,57,58], a problem that has not been given as much
importance. These studies of internal temperatures of firebrands are important in under-
standing the thermal behavior and their effect on temperature transfer to other components
of the structure. Some recent studies [55,56,59] showed that the internal temperature of
firebrands can reach 900 ◦C to 1000 ◦C, which is unrealistic and higher than the measured
contact surface. However, they concluded that the firebrand geometric properties and the
vegetation species are important for reaching high temperatures and transferring enough
energy to ignite the structural components of a house [46]. It is important to point out that
firebrands can travel more than 2 km [45]; therefore, even in an isolated dwelling with no
trees or bushes near, in the middle of a field, the thermal action of the firebrands is always
a factor to consider in design.

According to an experimental campaign carried out by [46], the wind must be included
as a relevant factor and worst-case scenario so that the fire curve can be considered for real
fire design situations. This fact guides the idea that the proposed design standard firebrand
curve must maintain its maximum temperature after a few minutes. In a wildfire situation,
the engineer must always take into account the worst possible scenario which is with
wind exposure and the design curve should endurances for 60 min without cooling. The
proposed standard firebrand accumulation curve [46] is divided into two phases, heating,
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and cooling. The heating phase has a duration of 60 min and its shape is similar to the
External Fire Curve presented in Eurocode 0 (simple function based on exponential grow
until it reaches the maximum temperature (Tmax)) and the cooling phase admits a linear
variation for another 60 min until it reaches the ambient temperature (Tamb) as shown
in Figure 16.
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According to [46], this fire curve is only used to simulate the thermal behavior of
the accumulation of firebrands on the surface of some structural elements, which is the
most serious case when a wildfire occurs. Because there are cases where the firebrands can
penetrate into the dwellings in some places and produce different damages, these need to
be analyzed independently and protected against the entry of firebrands.

5. Final Remarks and Discussion

Understanding how the countries most affected by wildfires in WUI zones have
established their defense criteria is critical for characterizing the differences in these fires
based on their environment and weather. These distinctions can then be used to develop
guidelines that apply from the macro to the micro scale. Fire safety concepts are also
important in fire protection and safety engineering. This is due to the importance of
understanding the basic guidelines and codes that have already been established in each
country when developing a basic fire safety plan. In addition, this work names different
ways to deal with fire design: fire load fuel density and risk assessment as a solution to the
increase of “mega fires” in WUI areas; focus on the micro-scale in order to contribute to a
new set of standards for the protection of residential buildings from wildfires.

It was determined that there is a lot of variety in this area, and there is not yet scientific
agreement on how to categorize the thermal effects on buildings. When assessing the
fireproof requirements for wildfires, the constructive criteria also depend in various ways
on the country’s construction code. Additionally, the thermal behavior of wildfires, when
compared with fires inside of buildings is discussed and contrasted with the classical
ISO-834 standard fire curves, where the corresponding maximum fire exposure period
varies by country from 2 to 4 h.
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Standards now being developed should combine sets of building materials using new,
more precise curves, even if the majority of standards intend to work independently by
characterizing the thermal behavior of individual materials using the ISO 834 [48] curve. In
this way, one moves away from a more general approach to more specific fire protection
engineering. However, while many codes range from the macro- to the micro-scale, it is
critical to focus on the micro-scale when developing specific fire design scenarios. This is a
step forward to using more specific wildfire curves such as the ones presented in this work.
Exposure classes are also a priority in the characterization of fire attacks on residential
buildings due to exposure of firebrands and direct contact with flames. Thus, based on
exposure and fire attack mechanisms, specific scenarios can be defined for glazing, roofs,
gutters, and cavities in buildings.

Future Developments

Using information from several codes from different countries, as well as the proposed
direct (flame and radiation contact) and indirect (firebrand accumulation) wildfire tem-
perature curves, it will be possible to present guidelines on how to perform the fire-proof
design of dwellings against the action of a wildfire, thus filling this knowledge gap.

Finally, for future research, it is strongly suggested that the geometry and architecture
of a house be evaluated for fire density loading analysis. As a result, it will be possible to
concentrate not only on materials but also on common building components and systems
that are considered ignition pathways in WUI zones. This enables not only the assessment
of various building materials, but also the development of more comprehensive fire designs.
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