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Abstract: Simplicity and optimality are commonly associated with the particle swarm optimiza-
tion (PSO) algorithm. As a result, numerous variants and hybrids of PSO have been developed
and implemented to address structural optimization problems. The undeniable importance of the
initialization technique in determining the overall performance of a given optimization algorithm
cannot be overstated. Optimization algorithms, such as PSO, typically rely on a random, uniformly
distributed initialization. Through multiple iterations and updates, these algorithms aim to achieve
optimal results. The underlying assumption behind such an initialization approach is that a fair or
reasonable arrangement of particles is best accomplished through randomization, and thus the entire
optimization process is iterated based on this assumption. However, this initialization technique
raises concerns regarding the attainment of optimality and convergence, leaving room for further
examination. In this paper, we challenge this assumption by introducing a priority concept. The key
idea is that particles should not be initialized randomly since randomness alone does not guarantee a
reasonable allocation of design variable values in iterative optimization. This can lead to misguided
velocity updates and ultimately, a time-consuming pursuit of optimality. To address this issue,
we formulate priority criteria (PC) and propose an enhanced PSO variant called Priority Criteria
PSO (PCPSO). The PC can be incorporated into any PSO variant or hybrid without impacting the
parameter settings, constraints, and penalty approaches of the respective algorithms. A case study
involving 2D reinforced concrete frames was conducted to compare the performance of the ordinary
PSO algorithm with the PCPSO. The results clearly demonstrate that the introduction of the PC leads
to a significant cost reduction when compared to PSO with an inertia damping factor. Additionally,
the PCPSO algorithm exhibits accelerated convergence. Furthermore, to alleviate the computational
burden associated with structural analysis at each iteration, a reanalysis approach called Combined
Approximations (CA) is mathematically formulated and implemented.

Keywords: random initialization of population; priority criteria formulation; cost minimization;
reanalysis of structures; combined approximations (CA); damping inertia weight; reinforced concrete
frames optimization

1. Introduction and State of the Art

Structural optimization problems, such as those involving reinforced concrete (RC),
are inherently challenging due to their properties. These problems exhibit various character-
istics that contribute to their complexity, including multi-objective optimization, multiple
variables, complex constraints, and large search spaces [1].

Nature-inspired algorithms have experienced a surge in popularity in recent years
for tackling optimization problems in structural engineering. Genetic Algorithm [2], Ant
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Colony Optimization [3], Particle Swarm Optimization (PSO) [4], Evolutionary Optimiza-
tion [5], and Simulated Annealing [6] are some popular algorithms to be mentioned.
Additional works can also be found in Refs. [7-10].

The optimization of RC structures has been approached by using various algorithms,
each with its own advantages and drawbacks. Among these algorithms, Particle Swarm Opti-
mization (PSO) has gained recognition for its simplicity and ease of implementation [11-14].

Literature testifies that there are plenty of optimization works on truss [15-18] and
steel-frame structures [19-22] while the RC structures are not as widely dealt with [23]. In
this regard, the minimum cost design of concrete slabs using Particle Swarm Optimiza-
tion with time-varying acceleration coefficients [24], design optimization of reinforced
concrete beams [25], evaluation of enhanced particle swarm techniques for the design of
RC structural elements [26], and the optimum design of 3D reinforced concrete frames
using Decision Making PSO algorithm [27] can be mentioned.

While PSO offers several advantages, it is not without limitations. One drawback
of PSO is the potential for premature convergence, where the algorithm may converge
to a suboptimal solution before reaching the global optimum. Additionally, PSO can
be susceptible to becoming trapped in local optima, failing to explore the entire search
space effectively [28,29]. Studies have been conducted to overcome such drawbacks by
developing PSO variants [30-32] and hybrids [33-36].

It is however customary to initialize and to update the positions of PSO particles in
a randomly uniform distributed manner [37,38]. In PSO, its variants, hybrids, and initial
positions of the design variables are typically randomized, as well as in other optimization
algorithms. This approach assumes that either all design variables are of the same type
or that they have equal contributions in influencing the overall optimization process. The
entire population is subjected to this randomization process, and subsequent iterations are
carried out accordingly.

However, such an approach is not accurate when it comes to structural optimization,
particularly in the case of RC structures. For instance, the depths of cross-sections, which act
as arm length, have a much greater influence on sectional capacity compared to the widths.
Furthermore, this random initialization approach does not guarantee the generation of
reasonable combinations of positions for the variables involved, potentially leading to a
delay in achieving true convergence and optimality.

In this study, a priority concept named Priority Criteria (PC) is introduced and inte-
grated into the main PSO velocity updater. The aim is to incorporate criteria-based priority
throughout the RC structural members and variables involved in the optimization problem.
PSO will thus be equipped with the ability to purposely allocate positions of particles with
the help of priority criteria so as to develop a PSO augmentation named Priority Criteria
Particle Swarm Optimization (PCPSO). This introduces reasonable rearrangement of the
randomly generated positions of the particles.

In the case of the three considered case study frames, the newly formulated PCPSO
resulted in a minimum cost saving of 6.5% per frame. The convergence graphs correspond-
ing to the optimization process also demonstrated accelerated convergence. Additionally,
the study implemented a combined approximations method of reanalysis to avoid reliance
on software-based structural analysis, instead utilizing mathematical formulations.

The rest of this article is organized into three main sections. The first section deals with
why priority is required, the priority criteria formulation, defining an objective function,
and setting constraints accompanied by a flowchart of the proposed PCPSO algorithm. In
the second section, the structural analysis approach is discussed and it is also supported
by a flowchart describing the main steps throughout the analysis. Thirdly, a case study is
conducted to evaluate and compare the performance of the newly developed augmented
PCPSO with the standard PSO (without augmentation). The results of the case study are
presented and discussed in this section as well.



CivilEng 2023, 4

681

2. Study Approach

In this section, we will describe how we approached [39,40] our research problem.
While conducting this research, we initially examined several nature-inspired optimization
algorithms, including their variants and hybrids. Our focus was also on the initialization
approach they employed. The most commonly used type of initialization is uniformly
distributed random allocation [41,42]. Positions are randomly generated with a uniform
distribution and then allocated randomly to design variables. Due to the varied effect of
design variables on the cross-sectional capacity of RC structures, it is reasonable to develop
priority criteria as a comparable initialization approach.

We formulated priority criteria (PC) for frame-forming structural members, specifically
beams and columns. Subsequently, we designed the incorporation of PC into the selected
Particle Swarm Optimization (PSO) algorithm. Additionally, we developed a comprehen-
sive flow chart outlining the proposed method. Objective functions were formulated, along
with their respective constraints.

Given that structural analysis requires computational software such as SAP2000, and
optimization inherently involves iteration, we discuss these approaches separately. After
extracting the relevant inputs and outputs from SAP2000, v24, we utilized a reanalysis
approach called Combined Approximations (CA). This approach fully replaces the SAP2000
computations with Matlab 2021a, providing a simpler iterative approach.

Finally, we conducted a case study to compare and examine the performance of the
developed approach. The following steps summarize our approach.

¢ Discussing the need for priority criteria (PC) and PC formulation;

¢ Integrating PC to basic PSO formulation;

*  Defining objective functions, constraints, and penalty function;

*  Formulation of procedure and approach for the SAP 2000, v24 structural analysis, and
Matlab 2021a computation, and writing several Matlab functions and scripts;

*  Conducting case study for comparison and verification.

3. Priority Criteria (PC) and Priority Criteria PSO (PCPSO)
3.1. The Need for Priority

Typically, in PSO, the initialization process involves assigning uniformly generated
random values to the design variables of interest [43]. This type of initialization can be
beneficial for problems where the variables have similar impacts on the objective function
or are not strongly interdependent. It is also applicable to cases where the members can be
assumed to have an equal distribution of variables and where the position of each member
within the problem system does not significantly influence the optimization process.

In the context of Reinforced Concrete (RC) structures, design variables exhibit signif-
icant interdependencies, and it is crucial to consider that not all design variables impact
the objective function equally. For instance, when determining the moment capacity of
structural members, the depth of cross-sections plays a more substantial role compared
to the widths. This is because the effective depth acts as the arm length, affecting the
structural capacity. Therefore, it is essential to account for these dependencies and variable
contributions in RC structural optimization problems.

Furthermore, when using randomization alone, the probability of obtaining reasonably
allocated values of design variables among structural members of the same type remains
low. Moreover, this approach necessitates a larger number of iterations, consequently
consuming significant time and effort.

Therefore, a systematic allocation of the randomly generated values to member vari-
ables is necessary for such tasks. The criteria developed in this study are derived from
the specific characteristics of the structures, including the assigned loading, length, and
position of each type of member within the structure.

In the PCPSO algorithm, replacement is made on the velocity updater by using a pri-
ority parameter. The objective of incorporating the priority criteria in the PCPSO algorithm
is to enhance the performance of PSO by intelligently allocating the randomly generated
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values of design variables to their respective structural members. This modification aims to
improve the optimization process for reinforced concrete structures. The priority-based
allocation of design variables to their corresponding members is performed after every
iteration throughout the entire optimization process. This ensures that the allocation is
continuously adjusted based on the priority criteria, leading to improved optimization
outcomes for the reinforced concrete structures.

As a result, this approach leads to properly assigned combinations of values for
design variables and structural members in each iteration and population. This facilitates
convergence and enables the attainment of optimal results in the optimization process.

The priority criteria (PC) can be easily incorporated into various PSO variants and
hybrids without the need to modify all settings of the existing algorithm. Its main focus is
on generating a criteria-based distribution of the randomly generated variables prior to
deploying the algorithm. This allows for the seamless integration of the PCPSO approach
into different PSO algorithms without significant changes to their overall structure and
configuration.

3.2. Priority Criteria (PC) Formulation

The priority criteria developed can be categorized as beam priority criteria and column
priority criteria. Two criteria are formulated for each category. All the considered criteria
play the main role in governing the cost of structural members.

For the sake of practical workability, the sizes of the sections are usually rounded up
to their following higher five sizes (in centimeters). The next formulation assumes the
workable size difference among sections as f;, given in mm.

Beam Criterion 1: For the beam design, two main criteria are taken into account. The
first criterion dictates that, among the randomly generated cross-sectional values, a greater
cross-sectional depth should be assigned to the member experiencing a higher moment.
To fulfill this requirement, two parameters are taken into account: the span length and the
external loading.

Ry;=WyLi;, =1, m, (1)

where Ry ; is rank of beam i for priority, while W, ; is the externally applied load on beam i,
Ly ; is the length of beam i and 7y, is the number of beams. A greater depth will be assigned
to a beam member with a higher rank Ry ;.

If the initial analysis is conducted using analysis software such as SAP2000 and the
loading remains relatively unchanged during the iteration, the ranking R; ; can be easily
computed without considering the length and loading parameters.

Beam Criterion 2: The second criterion states that the two beam members with design
moments My ; and My ;, and if the former is larger than the latter, shall not be assigned
with the same depth Dy if the condition below is satisfied. The beam with smaller moment
M, ; shall be assigned with a depth of at least f;,, mm less than the depth of the beam with
a larger moment Dy ; as far as its depth Dy, ; is not the least possible according to the size
bound limits.

From the difference of the effective depths of the respective beams abs(dj, ; — dj, ]-) < fuw,
the following criterion is formulated. It is assumed that the concrete cover is the same and the
reinforcement to section area ratio p is the maximum possible, the balanced ratio p;, (o = 0.75p).

My giff > fo \/O‘Sfcdbb,ipm(l — 0.4pm),

@
for Mygirp = VMy; — VM,
where, My, 4iff is the beam moment difference as given above, by, ; is the width of My, foq is
the design strength of concrete, and m is the ratio of the bar to concrete design strengths
divided by 0.8.
Column Criterion 1: Similarly, columns are evaluated using two main criteria. The
first criterion categorizes columns based on their position within the frame as interior,
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intermediate, and outer. In the case of 2D reinforced concrete (RC) columns, the outer
columns are located at the edges, while half of the frame length is designated as interior
and the remaining portion as intermediate. Consequently, the column priority rank is
established as interior, intermediate, and outer, respectively.

Cintl
Rei =9 Cim, 3)
Cout/

where, R ; is the rank of column i, C;,;4, C;yy,, and Coy¢ respectively, represent the interior,
intermediate, and outer columns.

Figure 1 shows the classification of six columns as interior, intermediate, and outer
based on their locations. The grouping is achieved by dividing the length of the column axis,
Ly, into quarters. The two end columns are always classified as outer columns. Columns
within the subsequent quarter length, Ly /4, from both ends are categorized as intermediate.
The most interior column, located at L, /2, is designated as the interior column.

intermediate interior intermediate

[ B L B L |
outer Ly/4 3L./4 outer

Ly

Figure 1. Column priority rank R, ; based on location.

Similar to the ranking criterion for beams, this criterion can also easily be computed if
the initial analysis is performed using analysis software such as SAP2000 and if the loading
remains relatively unchanged during the iteration.

Column Criterion 2: Assuming a balanced reinforcement to section area ratio pj, the
priority for uniaxial columns shall be determined based on an equal contribution from the
column axial load and moment.

From the difference of the effective depths of the respective columns abs(d.; — d,, ]-) < fuw,
two column members with axial design force P, ; and P j, in which P, ; is the largest and shall
not be assigned to the same depth D, ; if the condition below is satisfied.

fya
Pediff >fwbc,ifcd(1—9< - fyd>) @
Ci
fOT Pc,diff = Pc,i — Pc,j-

where, P, 4if is the column axial force difference, f,4 is the design strength of the reinforce-
ment, and f,, is the design strength of concrete, P 4;7 in N.

For both beam and column cases, the members that are grouped together and assigned
the same depth D, ; will also receive the same width b, ;.

The mathematical model for PCPSO is given below.

?pr(t +1) = var(t) + i (ppri(t> - xpri(t)) + Cer(gPr(t) - xpri(t))r ®)
xpri(t +1) = xpri(t> + vpr<t +1),

where vy, (t + 1) is the updated priority velocity for the particle, v, (t) is the initial priority

velocity, p,ri(t) is the priority personal best position, g, () is the the global best position,

Xpri(t + 1) is the updated priority position, x,,;(t) is the priority initial position, w, c; and

cp represent the inertia weight, local acceleration, and social acceleration, respectively, and

r1 and rp are the random numbers generated between 0 and 1.

Figure 2 above shows the graphic representations of PSO and its newly formed
augmentation PCPSO. The PSO starts from a randomly located swarm of position x; while
the PCPSO applies priority criteria on x; to generate x,;(f). Their respective velocities are
also updated from these two different initialization approaches.
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gpr(t)

Figure 2. Graphical model for PSO (left) and PCPSO (right).

3.3. Objective Function Formulation
The objective function for cost minimization optimization is represented as follows.

(6)

where x is the design variable, f(x) is the objective function, g(x) is the constraint function,
xr and xy; are the lower and upper bounds of the design variable, C? is the cost of beams,
and C° is the cost of columns.

The cost of the beam and the cost of the column are expressed in terms of the respective
concrete volume, reinforcement weight, and formwork area, multiplied by their respective
unit weights.

Cb =CcVip + G Wiy, + CfAfbr @)

where C? is the cost of beams, C., C,, C ¢ is the cost of concrete per cubic meter, cost of
reinforcement per kilogram, and the cost of formwork per square meter, respectively.
Vev, Wi, and Ay respectively represent the volume of concrete of beams in a cubic meter,
the weight of reinforcement of beams in kilograms, and the area of formwork of beams per

square meter.
Ct = CcVee + G Wi + CfAfcr (8)

where, C° is the cost of columns, V.., W, and A fer respectively represent the volume of
concrete of columns in a cubic meter, weight of reinforcement of columns in kilograms, and
area of formwork of columns per square meter.

The required area of reinforcement in a given reinforced concrete cross-section can be
computed using the following formula.

Ast = pbd, ©)

where Ag; is an area of reinforcement, p is the reinforcement to concrete area ratio, which is
the effective depth considered, b is the width, and d is the effective depth of the respective
structural members.

Figure 3 shows the flow chart for the proposed augmentation, PCPSO. The left part is
the ordinary PSO, while in the right part the priority criteria for both beams and columns
are included.
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Once random positions are generated to the defined design variables, they are ranked,
compared, and then allocated based on the priority criteria. As a result, the design variables
assume the newly reallocated position. The fitness comparisons for both the local and
global bests, as well as their corresponding updates, are executed with consideration of
these priority criteria. These priority criteria can be easily incorporated into any PSO-based
algorithms, thereby enhancing their performance. Due to the fundamental concept that the
priority criteria are derived (i.e., allocating values of design variables to their corresponding
structural members based on conceptual criteria than random), the advantage of this
approach persists.

3.4. Setting Constraints

Constraints are formulated below based on the Euro Code [44] and from a practical
point of view. All constraints are normalized to minimize the differences in the scale among
them, which typically leads the objective function towards the dominant constraint. This
normalization also helps simplify the computation load [27,45]. Every internal response
must be less than or equal to the factored resistance of the material used. The constraints
are grouped as beam and column constraints.

3.4.1. Beam Constraints

Beam criterion, shear, moment, and reinforcement
The length of a beam shall not be less than three times its depth.
3D
g1 =710, (10)
’ Lh
where g}, 1 stands for the beam constraint 1, L; is the beam length, and Dy, is the beam
depth.
The moment shall not be larger than the factored cross-sectional moment resistance.

_ My
Ym Mb,res

where M, is the maximum of the span and support moments, 7, is the moment reduction
factor, and My, ;s is the moment amount that can be resisted by the given cross-section.
The design shear across any cross-section shall not exceed the factored shear resistance.

~1<0, (11)

82 =

_ Y%
Yo Vb,res

where, V}, is the design shear, <, is the shear reduction factor, and V, ,,, is the shear amount
that can be resisted by the given cross-section.
The longitudinal reinforcement area provided shall not be less than the minimum area.

1<0, (12)

8,3

goa = Dsbmin g (13)
’ Asp
where Agy iy is the minimum area of reinforcement that shall be provided and Ay is the
computed area of reinforcement.
Longitudinal reinforcement shall not be greater than the code-provided maximum area.

A
$u5= 5 —~1<0, (14)
sb,max

where Ay, is the computed area of reinforcement and Agj 5, is the maximum area of
reinforcement that can be provided.
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Longitudinal spacing for shear reinforcement shall not be greater than the allowed
maximum spacing according to the code.

~1<0, (15)

8be =
Sbl,mux

where Sy is the calculated shear reinforcement spacing longitudinally and Sp; .y is the
maximum allowed spacing of shear reinforcement in the longitudinal direction of the member.

Minimum shear reinforcement shall be provided according to the code that is given in
terms of minimum area ratio where shear reinforcement is not required.

Qh7 = Avb,mzn —1<0, (16)
’ Avb
where Ay iy is the minimum area of shear reinforcement and A, is the computed de-
sign shear.
Deflection, section, and crack
Deflection due to quasi-permanent loads shall not exceed the code provided.

G5 =~ ~1<0, 7)
‘5b,mux
where Jj, is the computed beam deflection and Jj, ,,,4, is the maximum allowed beam deflection.
Width and height of a beam, each shall not be less than the respective minimum
values.

b .
Sho = bl;’m” ~1<0, (18)
b
D .
8h10 = bD’mm -1<0, (19)
b

where, b, and D), are the computed width and depth of a beam and by, ., and Dy, ,,,;,, are
the minimum width and depth that shall be provided.

In order to control the crack width, the tensile reinforcement shall not be less than the
minimum crack controlling value.

A .
8h11 = % -1<0, (20)
sb

where Agy iy is the minimum reinforcement area to be provided to a beam to control the
crack width and Ay is the computed area of beam reinforcement.

3.4.2. Column Constraints

Column criteria, axial, shear, moment, and reinforcement
The depth D, shall not exceed four times its width b.. The length L. of the column
shall not be less than three times the depth.

D

81 = o —1<0. @)
C
D

gr = 3L c_1<o. 22)
C

where, g.1 represents the column constraint 1.
The computed axial compression P, shall not exceed the factored axial resistance P s
of the cross-section with an axial compression reduction factor of .

~1<0. (23)

gc3 =
Yr P c,res
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Computed moments M, shall not exceed factored cross-sectional moment resistance
M res moment resistance of the column cross-section 7.

M.

=— —1<0. 24
')/mMc,res o ( )

g c4

Shear V. shall not be greater than the factored cross-sectional shear resistance Vs for
7o the shear reduction factor.

~1<0. (25)

8c5 =
Yo Vc,res

Area A, for longitudinal reinforcement shall not be less than the minimum code
provision Ag. i,. Additionally, an area for longitudinal reinforcement shall not be greater
than the maximum code provision As¢ max-

A .

Sc6 = —Semit 1 <. (26)
Asc,l

8c7 = Asc,l/Asc,max —-1<0. (27)

The minimum diameter ¢ for longitudinal reinforcement shall not be less than 8§ mm.

8
810 = s 1<0. (28)

The diameter for shear reinforcement ¢, shall not be less than the minimum value
provided in code, @ ;i Additionally, the diameter for shear reinforcement shall not be
greater than the maximum value provided in code, @uc nax-

Qei1 = % —1<0. (29)
oc
Puc
Se12 = -1<0. (30)
Pvc,max

Slenderness and section
In order to avoid the second-order effect for simplicity, the slenderness ratio for sway
frames A shall not exceed the slenderness limit A 4.
As
)\s,all

—1<0. (31)

e8 =

The slenderness ratio for non-sway frames A, shall not exceed the slenderness limits
Asn a1l to avoid the second order effect.

ges = 1 —1<0. (32)

ns,all o

The provided width b, of the cross-section shall not be less than minimum width b, ,;,,
specified in the code.

b .
813 = % —-1<0. (33)

c
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3.5. Constraint Handling

One of the most affecting factors in optimization is constraint handling. The better the
handling approach, the better the optimization efficiency will be [46].

PSO itself is designed for solving unconstrained problems. However, to handle real-
world constraints, a mechanism needs to be incorporated. One common approach is the
penalty method, which transforms the constrained objective function into an unconstrained
one by introducing penalties for constraint violations. Several penalty approaches have
been developed and implemented, each with its own merits and limitations [46]. The
suitability of penalty approaches can vary depending on the type of problem. In this
papet, a quadratic penalty function is preferred, and an unconstrained objective function is
formulated accordingly.

0, for g <0.

(34)
e, for g >0.

n
F(x) = f(x) + ) cighi ¢ = {
i=1
where F(x) is the unconstrained objective function, f(x) is the constrained objective func-
tion, g; is the inequality constraint, # is the number of constraints, c; is the penalty factor,
and ¢ is the allowed constraint limit. &€ can be chosen to be 0.001.

4. Analysis Approach

Firstly, framed structures are modeled, loaded, and analyzed using software such
as SAP2000 to determine the design load combination. Subsequently, a Matlab script is
developed to utilize the Matlab-SAP API.

Secondly, a re-analysis approach is implemented to effectively estimate further analysis
without relying on software such as SAP2000. In this regard, the Combined Approximations
(CA) method, developed by Kirsch [47], is utilized. Matlab scripts are then written to
implement the CA method.

Next, multiple scripts and functions are developed to define the PSO and PCPSO
algorithms, which are capable of handling any 2D RC frame optimization problem.

Finally, the cost minimization is implemented for the 2D frame cases at hand, and a
comparison between the performance of PSO and PCPSO is conducted.

Combined Approximation method: After extracting relevant outputs, such as displace-
ment, section naming, internal force, connectivity, loading, joint and frame numbering, and
degree of freedom from the initial analysis, the mathematical reanalysis approach, known
as the Combined Approximations method, is formulated and implemented using Matlab.
This eliminates the need for structural analysis software in every iteration, making the
process more efficient.

With the linear analysis approach, given a stiffness matrix K* and a loading vector
R* from the initial analysis, for assumed changes in the stiffness matrix AK and loading
vector AR, the modified stiffness matrix and load vector are given as K = K* 4+ AK and
R = R* + AR. Thus, the displacement vector  for the same structure that undergoes such
changes is determined from (K* + AK)r = (R* + R). The stresses can thus be determined
from well-known stress-displacement relations [48].

With the help of the so-called combined approximation, the displacement vector of
a new design can then be approximated by a linear combination of linearly independent
basis vectors. ¥ = rgy where: rg = r1,¥9,...,ts and y = y1,Y2,...,Ys. Additionally, s is
much smaller than the number of degrees of freedom. Figure 4 above shows the detailed
procedure for the application of PSO and PCPSO.
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Model frames on
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Figure 4. Flow chart for PSO and PCPSO Implementation.

5. Case Study

In this section, a case study is conducted to test and verify the performance of the
Priority Criteria (PC) developed in Section 2. The PC is incorporated into the PSO algorithm,
resulting in a modified version called PCPSO. The performance of PCPSO is then compared
to the standard PSO algorithm without the inclusion of the PC. Six-story reinforced concrete
frames with three, four, and five bays are investigated in the case study. The three-bay frame
is symmetric, the four-bay frame has incrementally varying bay sizes, and the five-bay
frame has randomly sized bays. In the five-bay frame, the two outermost columns extend
only up to the third story. The frames are assumed to be external frames to a given 3D
framing system.

In Figure 5, the spacing of columns from left to right for the three-bay frame is 6 m,
4 m, and 6 m. Whereas, the four-bay frame columns are spaced at 4 m, 5 m, 6 m, and 6 m.
The five-bay frame in turn has 6 m, 4 m, 5 m, 5 m, and 4 m random column spacing. All
story heights are set to 3 m, except for the foundation column levels, which have a height
of 2.5 m. A fully fixed foundation is assumed during the modeling of each frame using
SAP2000, version 24, for the initial analysis.
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Figure 5. Frames with three, four, and five bays.

The three-bay frame is composed of 42 members, including 18 beams and 24 columns.
The four-bay and five-bay frames each consist of 54 members, with 24 beams and 30 columns.

The design actions taken into consideration are the factored gravity loads. These
loads include the loads transferred from square floor slabs assumed to be of size 6 m,
partition walls resting on the beams, and self-weight. Variable loads are also considered
and combined with the gravity loads for the design analysis (Table 1).

Table 1. Actions applied on the frames.

Type of Action Description Amount in kNm~—2 Amount in kNm~—!
Transferred from a 6 m square slab 3.75 5.625
Transferred from a floor finish 1.15 1.725
Permanent Partition wall on the beam - 7.5
Beam and Column self-weights - Program Computed
Variable Action on the slab 2 3

Values for variable actions and unit weights are read from [49]. Accordingly, the unit
weight for concrete is 25 kNm 3 and the unit weight for reinforcing bar is 78 kNm 3.

Ej = v6Gk + 10Qk (35)

where E;, Gi, Qy are the design value, permanent actions, and variable actions, respectively.
7c and 7y are their respective action factors.

Loads are combined according to Ref. [50]. The recommended action factors used in
this case study are 1.35 for g and 1.5 7.
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C30/37 concrete and reinforcing bar of strength f, 500 are used. Properties such as the
design value for concrete modulus of elasticity E.; and thermal coefficient are computed
and read, respectively, as 27.5 MPa and 107> K~ [44]. Costs are computed considering
concrete, reinforcement, and form-work with the respective unit rates taken as 130 €m—3,
4 €kg~!, and 20 €m~2, respectively.

For each case, utilizing separate scripts and functions developed in Matlab 2021a, a
complete analysis and optimization of the frames are performed. The cost minimization
optimization is carried out using both PSO and PCPSO algorithms, and the resulting values
are compared. The design variables for beam and column sections have a search space of
[0.2,1] m.

The PSO parameters used for all the cases are: inertia weight w = 1, inertia weight
damping ratio wg,,, = 0.99, local acceleration ¢; = 1.5, global acceleration ¢; = 2.0 and
the velocity limit, which is 10% of the difference of the maximum and minimum velocities.
Every case undergoes 1000 iterations with 20 population sizes. Every case is also subjected
to 5 runs in which the optimal run is preferred. A constraint penalty factor ¢ of value 103
is used. The convergence plots of both optimization types are computed for each case. It
should be noted that the costs associated with foundation design are excluded from both
the PSO and PCPSO cases. Since PSO-optimized internal responses (axial and moment)
are relatively larger than the PCPSO optimized, excluding the foundation design for both
optimization approaches makes the PCPSO more conservative.

The results obtained from the case study clearly demonstrate that the priority-based
algorithm developed in this paper outperforms the traditional optimization approaches in
terms of both the initial assignment of design variable values and the overall minimum
cost. Additionally, the convergence of the priority-based algorithm required a relatively
smaller number of iterations, indicating its efficiency and effectiveness in optimizing the
structural design of all three frames considered in the study.

The cost of the three, four, and five-bay frames computed for the first iteration in the
case of PSO are above EUR 22,000, EUR 26,000, and EUR 25,000, respectively. Whereas, in
the case of PCPSO, the initial results are much lower than that of PSO, being EUR 18,000,
EUR 23,000, and EUR 21,000, respectively. This facilitates convergence towards better
optimal values. After approximately half of the iterations, the cost gap widens, allowing
the PCPSO algorithm to achieve the minimum cost faster than PSO (Figure 6).

The optimal costs for the three, four, and five bays are EUR 10,052, EUR 12,933, and
EUR 11,805, respectively. The PCPSO method thus indicated 7.7%, 6.5%, and 7.0% of cost
savings for the respective three frames.

In the frames above, the columns are initially named and numbered from bottom
to top, and from left to right. Subsequently, the beams are named and numbered, also
following a bottom-to-top and left-to-right sequence.

Optimal cross-sectional sizes for beams and columns of the above-stated three frames
are compared according to PSO and PCPSO output. Member reinforcements are computed
and expressed in terms of workable sizes and numbers.

Every beam member is designed and detailed based on the moment and shear re-
quirements. Positive and negative moments are first determined and thus designed. The
length of negative or top-support reinforcement is one-third of its respective beam length.
Meanwhile, positive or bottom reinforcements run throughout the span length.

Since the reinforcement detailing shown is not exhaustive, nominal reinforcements
that run along the top level of a beam throughout its span are not included for both the
PSO and PCPSO cases, and thus fair comparison remains in place. The whole span of
members is also designed for maximum shear forces developed at d; distances away from
their supports. An eight millimeters diameter shear reinforcement is used for all beam and
column members.
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Figure 6. Convergence comparison for three, four, and five-bay frames.

In each output table, the following abbreviations are used. D is a beam or column
cross-sectional depth, W is a beam or column cross-sectional width, the word reinforcement
is also abbreviated as Reinft, Neg stands for top or negative reinforcement at beam supports,
Pos stands for bottom or positive reinforcement along the span, Axial stands for column
reinforcement, and C/C refers to the spacing of eight mm diameter reinforcement for shear
resistance.

D under the reinforcement sections of the tables stands for the diameter of the rein-
forcement used. For example, 3D16 means 3 reinforcing bars, each with a diameter of
16 mm.

In Table 2, it is shown that all the beams and columns of the three-bay frame used
reduced cross-sectional size when optimized using the PCPSO rather than the PSO. Rein-
forcements provided to the beams and columns are also slightly lower when computed
using the PCPSO algorithm. Whereas, stirrups do not show such significant differences.
The total PSO optimized cost of this frame is EUR 10,896.27, whereas the total PCPSO
optimized cost is EUR 10,052.56. This indicates a 7.7% cost reduction with the newly
developed augmentation.

Similarly, in Table 3, it is shown that the cross-sections for all the beams and columns
of the four-bay frame are reduced when optimized using the PCPSO rather than the PSO.
Reinforcements provided to the beams and columns are also slightly fewer when computed
with the PCPSO algorithm. Whereas, stirrups do not show such significant differences. The
total cost of this frame after optimization using PSO is EUR 13,835.95, whereas its cost after
the PCPSO optimization carried out is EUR 12,933.51, which means a 6.5% cost save.
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Table 2. Optimal sections for the three-bay frame.

Section (m)

Reinft (D in mm, Stirrup D8)

Section (m)

Reinft (D in mm)

';")am PSO PCPSO PSO PCPSO %‘;1' PSO PCPSO PSO PCPSO
D W D W Neg Pos C/C Neg Pos C/C D W D W  Axial C/C Axial C/C

25 05 035 04 03 3D16 2D16 100 3D16 2D16 100 1 045 03 035 03 6D8 250 6D10 200
26 0.5 0.3 0.4 0.3 3Dl16 2D16 100 3D16 2D16 100 2 0.4 03 035 03 4D8 160 4D8 230
27 045 03 04 025 3Dl6 2D16 100 3Dl6 2D16 100 3 0.4 03 035 025 4D8 100 4D8 220
28 045 03 035 025 3D16 2D16 120 3D16 2D14 130 4 0.4 03 035 025 4D8 100 4D8 200
29 045 0.3 03 025 3D16 2D16 100 3D16 2D14 120 5 0.4 03 035 025 4D8 160 4D8 210
30 0.4 03 035 025 4D16 2D16 100 3D16 2D14 130 6 0.4 0.3 03 025 4D8 160 4D8 210
31 0.4 0.3 0.3 025 2D12 2D12 200 2D16 2D12 100 7 035 025 04 03 6D8 160 6D8 160
32 0.4 0.3 03 025 2D14 2D12 130 2D16 2D12 100 8 035 025 035 03 6D8 160 4D8 160
33 04 025 03 025 2D12 2D12 190 2D12 2D12 160 9 035 025 035 03 6D8 230 4D8 240
34 035 025 03 025 2D12 2D12 120 2D16 2D12 100 10 035 025 035 025 4D8 220 4D8 210
35 035 025 03 025 3D12 2D12 190 2D16 2D12 100 11 035 025 035 025 4D8 250 4D8 220
36 035 025 03 025 2D12 2D12 190 2D16 2D12 100 12 035 025 035 025 4D8 160 4D8 210
37 035 025 03 025 3D20 3D16 100 2D20 3D16 100 13 035 025 035 03 6D8 190 4D8 250
38 035 025 03 025 3D20 3D16 100 4D16 2D16 100 14 035 025 035 03 6D8 220 4D8 250
39 035 025 03 025 3D16 4D20 100 4D20 4D20 240 15 035 025 035 03 4D8 220 4D8 230
40 035 025 03 025 4D20 3D16 100 4D16 2D16 100 16 035 025 035 025 4D8 210 4D8 220
41 035 025 035 025 4D20 3D16 100 4D16 2D16 100 17 035 025 035 025 4D8 210 4D8 210
42 035 025 03 025 3D16 2Dl16 100 3D16 2D16 100 18 035 025 03 025 4D8 210 4D8 210
19 035 025 035 03 6D8 200 6D8 230

20 035 025 035 025 6D8 200 4D8 230

21 035 025 035 025 4D8 140 4D8 190

22 03 025 035 025 4D8 140 4D8 120

23 03 025 035 025 4D8 210 4D8 210

24 03 025 03 025 4D8 210 4D8 200

Table 3. Optimal sections for the four-bay frame.

Section (m) Reinft (D in mm, Stirrup D8) Section (m) Reinft (D in mm)

?g‘m PSO PCPSO PSO PCPSO (I:]‘;l' PSO PCPSO PSO PCPSO
D W D W Neg Pos C/C Neg Pos C/C D W D W  Axial C/C Axial C/C

31 0.5 0.3 0.3 025 2D12 2D12 170 2D14 2D16 120 1 045 035 035 025 6D10 270 4D8 220
32 045 03 0.3 025 2D14 2D12 160 2D16 2D14 100 2 045 03 035 025 6D10 180 4D8 210
33 0.4 0.3 03 025 2D14 2D12 170 2D16 2D14 100 3 045 03 035 025 6D10 160 4D8 200
34 0.4 0.3 0.3 025 2D12 2D12 210 2Dl16 2D14 100 4 045 03 035 025 4D8 100 4D8 180
35 0.4 0.3 0.3 025 2D14 2D12 160 2D16 2D14 100 5 0.4 0.3 03 025 4D8 180 4D8 210
36 0.4 0.3 03 025 2D14 3D12 160 2D16 2D14 100 6 0.4 0.3 03 025 4D8 270 4D8 210
37 0.4 03 035 025 3D14 2D14 110 4D14 3D14 100 7 0.4 03 035 025 6D10 170 6D8 230
38 0.4 03 035 025 2D16 2D14 130 4D14 3D14 100 8 0.4 03 035 025 6D10 160 4D8 230
39 04 025 035 025 3D14 2D14 110 4D14 2D14 100 9 0.4 03 035 025 6D10 160 4D8 220
40 04 025 035 025 2D16 2D14 140 3D16 2D16 100 10 0.4 03 035 025 4D8 210 4D8 220
41 04 025 03 025 3D16 2D16 100 3D16 2D16 100 11 0.4 03 035 025 4D8 250 4D8 210
42 04 025 035 025 2D16 2D14 140 3D16 2D16 100 12 035 0.3 03 025 4D8 250 4D8 210
43 035 025 04 025 3D20 3D16 100 2D20 2D16 100 13 035 03 04 03 6D8 160 6D8 240
44 035 025 035 025 3D14 2D16 110 3D16 2D16 100 14 035 03 035 03 6D8 250 4D8 160
45 035 025 035 025 3D20 3D16 100 3D20 3D16 100 15 035 03 035 03 6D8 240 4D8 230
46 035 025 04 025 3D20 3D16 100 3D16 2D16 100 16 035 025 035 025 4D8 190 4D8 220
47 035 025 035 025 3D20 3D16 100 3D16 2D16 100 17 035 0.25 035 025 4D8 230 4D8 220
48 035 025 04 025 3D20 3D16 100 2D20 2D16 100 18 035 025 03 025 4D8 230 4D8 210
49 035 025 035 025 4D20 3D16 100 3D20 3D16 100 19 035 025 04 025 6D8 230 6D8 250
50 035 025 035 025 4D20 3D16 100 3D20 3D16 100 20 035 0.25 035 025 6D8 230 4D8 160
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Table 3. Cont.
Section (m) Reinft (D in mm, Stirrup D8) Section (m) Reinft (D in mm)

';")am PSO PCPSO PSO PCPSO %gl' PSO PCPSO PSO PCPSO
D W D W Neg Pos C/C Neg Pos C/C D W D W  Axial C/C Axial C/C
51 035 025 035 025 3D16 2D16 100 3D20 3D16 100 21 035 025 035 025 6D8 200 4D8 230
52 03 025 035 025 3D20 3D20 100 3D16 4D20 100 22 035 025 035 025 4D8 210 4D8 220
53 03 025 035 025 4D20 3D16 100 3D16 2D16 100 23 035 025 035 025 4D8 200 4D8 220
54 03 025 035 025 4D20 3D16 100 3D16 2D16 100 24 035 025 03 025 4D8 210 4D8 190
25 035 025 035 03 6D8 210 6D8 210
26 035 025 035 025 6D8 210 6D8 210
27 035 025 035 025 6D8 210 6D8 170
28 035 025 035 025 4D8 140 4D8 210
29 035 025 03 025 4D8 210 4D8 200
30 035 025 03 025 4D8 210 4D8 190

The third frame has the same number of beams and columns as the second case.
Although it has more bays, some stories from the right side of the frame do not run
throughout its full height. Thus, its cost differs from the cost incremental trend shown
between the first two frame cases.

Table 4, summarizes the output for the five-bay frame. Here also it remains true that
all respective sections of beams and columns optimized by PCPSO are smaller than that
computed by PSO. In terms of longitudinal reinforcements, the PCPSO performs slightly
better than the PSO. The stirrups still do not show such significant differences. The total
cost of this frame after PSO optimization is EUR 12,699.22, whereas its cost after PCPSO
optimization is EUR 11,804.69. Here it also achieved a 7.0% cost reduction.

Table 4. Optimal sections for the five-bay frame.
Section (m) Reinft (D in mm, Stirrup D8) Section (m) Reinft (D in mm)

];e)"‘m PSO PCPSO PSO PCPSO (1:1(;1' PSO PCPSO PSO PCPSO

D W D W Neg Pos C/C Neg Pos C/C D W D W  Axial C/C Axial C/C
31 045 03 04 03 3D16 2D16 100 3D16 2D16 100 1 045 035 035 025 6D8 160 4D8 230
32 04 03 035 025 2D14 2D14 140 2D16 2D14 100 2 04 035 035 025 6D8 160 4D8 220
33 04 03 035 025 3D14 2D14 100 2D14 2D14 130 3 04 035 035 025 4D8 160 4D8 220
34 04 03 035 025 3Dle 2D14 100 3D16 2D14 100 4 04 035 035 025 4D8 260 4D8 220
35 04 025 035 025 2D14 2D14 180 2D16 2D14 100 5 04 035 03 025 4D8 260 4D8 200
36 035 025 04 03 4D16 3D14 100 4D16 2D14 100 6 04 035 03 025 4D8 160 4D8 210
37 035 025 035 025 2D16 2D14 110 2D14 2D14 160 7 04 03 035 025 6D8 160 4D8 230
38 035 025 035 025 3D16 2D14 100 2D16 2D14 140 8 035 03 035 025 6D8 250 4D8 230
39 035 025 035 025 3D14 2D14 140 4D14 2D14 100 9 035 03 035 025 6D8 160 4D8 230
40 035 025 035 025 2D16 2D14 110 2D16 2D14 110 10 035 03 035 025 6D8 250 4D8 220
41 035 025 04 03 3D20 3D14 100 3D20 2D14 100 11 035 03 035 025 4D8 160 4D8 200
42 035 025 035 025 3D16 3D16 100 2D16 3D16 100 12 035 03 03 025 4D8 170 4D8 210
43 035 025 04 025 2D16 2D14 120 2D16 2D14 200 13 035 03 035 025 6D8 160 4D8 230
44 035 025 035 025 3D16 2D14 100 3D16 2D14 100 14 035 025 035 025 6D8 240 4D8 230
45 035 025 03 025 2D16 2D14 100 2D16 2D14 100 15 035 025 035 025 6D8 100 4D8 110
46 035 025 04 03 3D20 3Dl16 100 2D20 2D14 100 16 035 025 035 025 4D8 120 4D8 110
47 035 025 035 025 2D16 2D14 100 2D14 2D14 110 17 035 025 035 025 4D8 190 4D8 210
48 035 025 035 025 4D16 2D14 100 4D16 2D14 100 18 035 025 03 025 4D8 230 4D8 210
49 03 025 04 025 4D20 3D16 100 4D16 2D14 100 19 035 025 035 025 6D8 160 4D8 230
50 03 025 035 025 2D16 2D14 100 2D12 2D14 160 20 035 025 035 025 4D8 220 4D8 190
51 03 025 035 025 2D16 2D14 120 3D16 2D14 100 21 035 025 035 025 4D8 220 4D8 220
52 03 025 04 03 3Dle 2D14 100 3D16 2D14 100 22 035 025 035 025 4D8 100 4D8 170
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Table 4. Cont.

Section (m) Reinft (D in mm, Stirrup D8) Section (m) Reinft (D in mm)
'f]")am PSO PCPSO PSO PCPSO %‘;1' PSO PCPSO PSO PCPSO
D W D W Neg Pos C/C Neg Pos C/C D W D W  Axial C/C Axial C/C

53 03 025 035 025 2D16 2D14 100 2D12 2D14 160 23 035 025 03 025 4D8 200 4D8 210
54 03 025 035 025 3D16 2D14 100 3D16 2D14 100 24 035 025 03 025 4D8 200 4D8 210
25 035 025 035 025 6D8 200 4D8 220
26 035 025 035 025 6D8 200 4D8 220
27 035 025 03 025 4D8 200 4D8 210
28 035 025 03 025 6D8 220 4D8 190
29 035 025 03 025 6D8 190 4D8 210
30 035 025 03 025 6D8 210 4D8 210

The optimal cost trend is shown in Figure 7 for five consecutive runs. Each run consists
of 20 population and 1000 iterations. The value of each run represents the optimal value
obtained through 20 populations and 1000 iterations for the specified algorithms. It can be
seen that for almost all the runs, PCPSO performed better.
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Figure 7. Optimal costs in five successive runs.

Out of the five runs in Figure 7, the optimal values are selected for each frame and
each algorithm. Figure 8 summarizes these optimal costs. In both cases, for all three frames,
PCPSO scored optimal costs.
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Figure 8. Optimal cost summary for the three frames.

6. Conclusions

In this paper, the initialization technique, which is a crucial step in an optimization
algorithm, is the central point of focus. A priority concept is thus introduced to challenge
the random initialization approach in the case of population-based algorithms such as PSO.
The aim is to investigate the convergence and optimality of the algorithm by incorporating
priority criteria during initialization. The conducted case study verified the hypothesis,
as the PCPSO algorithm demonstrated relatively accelerated convergence and achieved
optimal cost compared to the traditional PSO algorithm.

The priority criteria can be classified into two groups: beam criteria and column
criteria. These criteria are derived from parameters that play a significant role in the
structural design, such as member lengths, loading conditions, and column locations. In
addition to these factors, the initial internal responses obtained from SAP2000 analysis can
also be used as criteria for assigning data to the design variables.

A comparison of optimization is conducted between the traditional Particle Swarm
Optimization (PSO) and the PSO augmented with Priority Criteria (PCPSO) proposed in
this article. Each method is configured with a population size of 20, 1000 iterations, and
5 runs. The optimal run is selected for each frame and optimization method to assess the
performance.

The results demonstrate that the developed algorithm is cost-effective in all three
considered cases, with a minimum cost reduction of 6.5% compared to the corresponding
PSO optimization. Convergence graphs are compared, and the cross-sectional sizes for
beams and columns in the frames are tabulated to verify the algorithm’s performance.
Furthermore, it is observed that by using PCPSO with a reduced population size of 10 while
keeping the number of iterations unchanged, over 10% cost savings can be achieved. This
reduction in population size significantly reduces the required computational time.

Significant cost reduction is observed in all three cases due to the optimal sizing of
member cross-sections. While the impact on cost reduction from reinforcements is relatively
smaller, it still contributes to overall savings. This can be attributed to the fact that member
cross-sections are the primary and direct design variables considered in this study. As
future work, it would be valuable to explore the interchangeability of design variables and
compare the resulting optimizations.

The priority criteria (PC) developed in this study can be easily integrated into various
PSO variants or hybrid algorithms, leading to improved performance. The main concept
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behind the priority criteria is the distribution of randomly generated variable values based
on conceptual criteria before the algorithm is fully implemented. This approach offers
advantages, as it allocates values to structural members based on conceptual criteria rather
than random allocation. As a result, the benefits of this approach intuitively extend to
other algorithms that utilize random initialization techniques, allowing for enhanced
performance in those cases as well.

While the priority concept introduced in this study can be applied to structural opti-
mization in materials other than reinforced concrete (RC) and potentially extended to other
disciplines, there are certain limitations that need to be addressed. One drawback is the
need to derive formulations for important design variables specific to the problem at hand,
which may require additional effort.

Additionally, the case study conducted in this paper is limited to three frames with
six stories, which may not fully capture the complexity and variability of high-rise and
multi-bay structures. Future works could focus on expanding the study to include such
cases, taking into account considerations such as different loadings, analysis variabilities,
and other factors that may impact the optimization process.

By addressing these limitations and exploring broader application domains, further ad-
vancements can be made in utilizing the priority criteria approach for structural optimization.
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Abbreviations

The following abbreviations are used in this manuscript:

CA Combined Approximations

PCPSO Priority Criteria Particle Swarm Optimization
PSO Particle Swarm Optimization

RC Reinforced Concrete

Afgp, Afe area of formwork for beam, column

Agt Area of reinforcement

by, be width of beam, column

chb, ce cost of beam, column

C.,C s C, unit rate of concrete, formwork, reinforcement
Ci, Cim, Co interior, intermediate, outer column

cj penalty factor

Dy, D, depth of beam, column

dp, dc effective depth of beam, column

E4 design load

fw workable size difference of sections
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F(x), f(x)

objective function unconstrained, constrained

fedr fyd design strength of concrete, reinforcement

Gy, Ge constraint of beam, column

G; inequality constraint

Gi permanent actions

g(x) constraint function

Ly, Lc length of a beam, column

m design strength ratio of reinforcement to concrete divided by 0.8

My, M, design moment of beam, column

My giff beam moment difference

My s, M res moment capacity of beam, column

ny number of beams

P, design axial of a column

Peify column moment difference

Pe res axial capacity of a column

Qk variable actions

Ry, R priority rank of beam, column

Vy design shear of a beam

Vi res shear capacity of a beam

Vb, Ve volume of concrete for beam, column

Wy externally applied load on a beam

Wip, Wie weight of reinforcement for beam, column

€ allowed constraint limit

As, Ans slenderness ratio for sway, non sway frames

Op beam deflection

Pv, Poc column reinforcement diameter longitudinal shear

[y reinforcement to section ratio

0p balanced reinforcement to section ratio

Y6, 7Q actions factors for permanent, variable actions

Y Yo, Vp moment, shear, axial reduction factor
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