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Abstract: Monolithic reinforced concrete floor slabs are one of the most common types of building
structures, and their optimization is an urgent task. The article presents the methodology for finding
the optimal position of point supports under a reinforced concrete floor slab of arbitrary configuration
at arbitrary load. The slab is considered thin, elastic and isotropic, with constant over-the-area
stiffness, that is, the reinforcement is not taken into account or is constant. The solution is performed
using the finite element method in combination with the nonlinear optimization methods. Finite
element analysis is implemented by authors in MATLAB (R2024a) environment in such a way that
the location of the columns may not coincide with the nodes of the finite element mesh of the slab.
This allows to significantly increase the efficiency of solving the optimization problem compared to
previously used algorithms, including the Monte Carlo method. Boundary conditions are taken into
account using the Lagrange multiplier method. As an optimization criterion, the maximum deflection
value is used, as well as the value of the potential strain energy. The effectiveness of six nonlinear
optimization methods is compared in the example of a square slab under the action of a uniformly
distributed load. For solutions obtained using the pattern search, simulated annealing and internal
point methods, the maximum deflections are at least 1.2 times higher than for solutions obtained
using the particle swarm method and genetic algorithm. An example of real object optimization is
also presented. By changing the position of seven columns, it was possible to reduce the maximum
deflection of the floor slab by 1.6 times.

Keywords: finite element method; optimization; reinforced concrete; monolithic floor slab; genetic
algorithm; particle swarm method

1. Introduction

The issues of the optimal design of reinforced concrete structures are the subject
of research by many scientists. One of the most common ways to optimize reinforced
concrete structures, including monolithic reinforced concrete slabs, is the selection of
rational reinforcement [1–7] and the rational installation of ribs [8,9]. In addition to varying
the reinforcement coefficient, another way to optimize slab structures can be to vary
their thickness [10], due to which the structure becomes of equal strength. An equal
strength state can also be achieved by varying the physical and mechanical characteristics
of the material by volume [11–15]. The practical implementation of the last two methods
is associated with significant difficulties. Floor slabs of variable thickness are currently
practically not used in construction due to the complexity of their manufacturing technology.
Vibrocentrifuged columns are an example of structures with mechanical characteristics
that vary in volume [16–20]. In such structures, the modulus of elasticity of concrete
and its strength are the functions of the radius. Radial heterogeneity is created when the
hardening material rotates due to inertial forces. For slabs, it is not possible to create
artificial heterogeneity in this way.

CivilEng 2024, 5, 502–520. https://doi.org/10.3390/civileng5020026 https://www.mdpi.com/journal/civileng

https://doi.org/10.3390/civileng5020026
https://doi.org/10.3390/civileng5020026
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/civileng
https://www.mdpi.com
https://orcid.org/0000-0002-9133-8546
https://orcid.org/0000-0003-3976-9346
https://doi.org/10.3390/civileng5020026
https://www.mdpi.com/journal/civileng
https://www.mdpi.com/article/10.3390/civileng5020026?type=check_update&version=1


CivilEng 2024, 5 503

The efficient use of material in cast in situ reinforced concrete slabs can also be achieved
by the rational installation of supports [21,22]. Currently, in the literature, optimization
problems by varying the position of supports are presented mainly for beams [23–26].
Works in which slabs are the object of study contain solutions to fairly simple problems.
In [27], for example, the case of an annular plate under an axisymmetric load is considered.
Papers [28–33] present a solution for a square slab with four point supports.

When solving problems of finding the optimal supports location, various optimization
criteria are used. Quite often, the frequency of the natural vibrations of the structure acts as a
criterion. The article [34] proposes a technique for maximizing the first vibration frequency
of building structures based on the topological optimization method. The supports function
as elastic springs. Test examples are given for some beams, slabs and shells. The issue of
finding the optimal distribution of elastic springs for structures that experience vibrations
is also considered in [35] using the example of cantilever beams on an elastic foundation.
The article [36] searches for the optimal location of viscoelastic supports for the effective
damping of beam vibrations under harmonic excitation.

The magnitude of internal forces is also widely used as an optimization criterion. In
the work [37], the location of supports under the bridge in the form of a multi-span beam
is optimized from the condition of the equality of the maximum bending moments in the
span and on the supports.

In [38], when optimizing the position of supports under multi-span beams, the cri-
terion is the maximum deflection. In the article [39], the L2 norm of the structure dis-
placements is used as an optimization criterion, which, in comparison with the maximum
deflection, is a more integral characteristic that reflects the operation of the structure. Opti-
mization examples of beams and plates subjected to their own weight are considered in the
mentioned publication.

Potential strain energy can also serve as an integral measure characterizing the ef-
ficiency of a structure [40]. The paper [41] shows that the arrangement of supports in
monolithic reinforced concrete slabs, which satisfies the minimum potential strain en-
ergy, also corresponds to the minimum consumption of reinforcement. The optimization
technique presented in [42] allows for optimizing only rectangular slabs with a regular
arrangement of columns, varying only the column spacing along the x- and y-axes.

In paper [21], an algorithm was proposed for finding the optimal location of supports
under monolithic floor slabs with an arbitrary shape, based on the Monte Carlo method.
The essence of this algorithm was that n columns were randomly located at the nodes of
the finite element mesh, and a finite element calculation was carried out repeatedly with a
random arrangement of columns. The best one was chosen from many options, and with a
large number of tests, this result approached the optimal one. This approach worked well
with a small number of supports (no more than 6); but with an increase in the number of
supports, its effectiveness decreased significantly.

The purpose of this work is to develop a more effective technique for finding the
optimal position of point supports under a monolithic reinforced concrete slab. The
developed methodology must be applicable for the arbitrary configuration of the slab and
arbitrary loads. Based on the experience of previous studies, two optimization criteria will
be used: the maximum deflection of the slab wmax and the potential strain energy W. The
optimal design solution will correspond to the minimum of the objective function, which
is the value wmax or W. In the present study, the slabs are assumed to be thin, isotropic
and elastic. The fact that the slab is thin implies that transverse shear deformations are
not taken into account. Slab reinforcement is also not taken into account when solving the
optimization problem. The justification for the assumptions made will be given further in
the next section.
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2. Materials and Methods

The optimization technique will be considered using the example of a square slab
supported by n columns and subjected to a load uniformly distributed over the area. The
floor slab is considered beamless, that is, it is supported only by columns.

The optimization problem is solved using the finite element method (FEM) in combi-
nation with the nonlinear optimization methods embedded in the Optimization Toolbox
and Global Optimization Toolbox packages of the MATLAB environment. The following
nonlinear optimization methods are used:

1. Interior point method;
2. Genetic algorithm;
3. Pattern search method;
4. Surrogate optimization method;
5. Particle swarm method;
6. Simulated annealing method.

The slab, depending on the geometry, is meshed by rectangular (Figure 1) or triangular
(Figure 2) finite elements (FEs) with three degrees of freedom at the node: deflection wi and
rotation angles φx

i and φ
y
i . Columns are treated as point restraints in z direction. Punching

effects are not considered when solving an optimization problem.
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The variable input parameters of the objective function are the x and y coordinates
of each column. Thus, if there are n columns, the position of which can change, the total
number of input parameters of the objective function is 2n.

To prevent the need to re-generate the FE mesh during the optimization process when
changing the position of the supports, the finite element analysis is implemented in such a
way that the location of the columns may not coincide with the mesh nodes. This allows us
to significantly save machine time during the optimization process.

At the first stage, the stiffness matrix of the slab is formed without taking into account
the columns, the location of which can change. By default, the MATLAB environment
does not allow for calculating slabs subjected to bending using the FEM. The objective
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function is written in the MATLAB programming language which implements the FEM. In
the process of the solution, each time the objective function is called, the corresponding
boundary conditions are imposed for the x and y coordinates of each column. The method
of Lagrange multipliers is used to take into account the boundary conditions.

The process of boundary condition imposition will be considered at first on the
example of a rectangular finite element. The deflection for a rectangular FE is approximated
by the following function:

w = f1 + f2x + f3y + f4x2 + f5y2 + f6xy + f7x2y+
+ f8xy2 + f9x3 + f10y3 + f11x3y + f12xy3.

(1)

The rotation angles can be found by differentiating expression (1). The expressions for
deflections and rotation angles will take the following form:{

w ∂w
∂x

∂w
∂y

}T

=

 1 x y x2 y2 xy x2y xy2 x3 y3 x3y xy3

0 1 0 2x 0 y 2xy y2 3x2 0 3x2y y3

0 0 1 0 2y x x2 2xy 0 3y2 x3 3y2x

{ f },
(2)

where { f }T = { f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12}.
In Figure 1: φx

i = ∂wi
∂x ; φ

y
i = ∂wi

∂y .
Substituting the coordinates of the nodes of the finite element into (2), the following

equality can be obtained:
{Ue} = [C] · { f } (3)

where {Ue} =
{

w1 φx
1 φ

y
1 w2 φx

2 φ
y
2 w3 φx

3 φ
y
3 w4 φx

4 φ
y
4

}T is the ele-
ment nodal displacement vector,

[C] =



1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
1 a 0 a2 0 0 0 0 a3 0 0 0
0 1 0 2a 0 0 0 0 3a2 0 0 0
0 0 1 0 0 a a2 0 0 0 a3 0
1 a b a2 b2 ab a2b ab2 a3 b3 a3b ab3

0 1 0 2a 0 b 2ab b2 3a2 0 3a2b b3

0 0 1 0 2b a a2 2ab 0 3b2 a3 3ab2

1 0 b 0 b2 0 0 0 0 b3 0 0
0 1 0 0 0 b 0 b2 0 0 0 b3

0 0 1 0 2b 0 0 0 0 3b2 0 0



. (4)

From (3), it follows that { f } =
[
C]−1 · {Ue} .

If a point with coordinates (x0; y0) is fixed along the z axis, then, taking into account
(1), for this point, it can be written as follows:

w(x0, y0) = 0 →

→
[

1 x0 y0 x2
0 y2

0 x0y0 x2
0y0 x0y2

0 x3
0 y3

0 x3
0y0 x0y3

0
]
{ f } = 0,

(5)

or [
1 x0 y0 x2

0 y2
0 x0y0 x2

0y0 x0y2
0 x3

0 y3
0 x3

0y0 x0y3
0
]
[C]−1{Ue} = 0. (6)

For n columns, n conditions are obtained, which can be represented as

[B]{U} = 0, (7)
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where [B] is a matrix of size n · (3 · np) (np is the total number of nodes) and {U} is the
vector of the nodal displacements of the entire slab.

For a triangular element, the deflection function is approximated by a polynomial
with nine uncertain coefficients β1. . . 9 in accordance with the total number of FE bending
degrees of freedom:

w = β1L1 + β2L2 + β3L3 + β4

(
L2

2L1 +
1
2

L1L2L3

)
+ . . . + β9

(
L2

1L3 +
1
2

L1L2L3

)
. (8)

L1, L2, L3 here are the natural coordinates, which are defined as follows:

Li =
1

2A
(ai + bix + ciy), i = 1 . . . 3, (9)

where A = 1
2

∣∣∣∣∣∣
1 x1 y1
1 x2 y2
1 x3 y3

∣∣∣∣∣∣ is the area of the triangular FE, a1 = x2y3 − x3y2, b1 = y2 − y3,

c1 = x3 − x2.
The coefficients ai, bi, ci for i = 2 and i = 3 are determined by cyclically replacing the

indices 1 → 2 → 3 → 1.
Such an approximation for a triangular FE is proposed in [42]. Coefficients β j with j

in {1. . .9} can be found by substituting the nodal values of deflections and rotation angles
into expression (8). To obtain expressions for the rotation angles φx and φy, the deflection
function must be differentiated with respect to x and y, respectively. Differentiation by
Cartesian coordinates is performed as follows:

∂
∂x = ∂L1

∂x
∂

∂L1
+ ∂L2

∂x
∂

∂L2
+ ∂L3

∂x
∂

∂L3
= 1

2A

(
b1

∂
∂L1

+ b2
∂

∂L2
+ b3

∂
∂L3

)
;

∂
∂y = ∂L1

∂y
∂

∂L1
+ ∂L2

∂y
∂

∂L2
+ ∂L3

∂y
∂

∂L3
= 1

2A

(
c1

∂
∂L1

+ c2
∂

∂L2
+ c3

∂
∂L3

)
.

(10)

After determining the coefficients β1..9, the function w is expressed in terms of the
nodal displacements of the element as follows:

w =
{

{N1} {N2} {N3}
}
{Ue} = {Ψ}{Ue}, (11)

where {N1}, {N2}, {N3} are the shape functions.

{N1}T =


L1 + L2

1L2 + L2
1L3 − L1L2

2 − L1L2
3

b3

(
L2

1L2 +
1
2 L1L2L3

)
− b2

(
L3L2

1 +
1
2 L1L2L3

)
c3

(
L2

1L2 +
1
2 L1L2L3

)
− c2

(
L3L2

1 +
1
2 L1L2L3

)
. (12)

To obtain expressions for {N2} and {N3}, a cyclic substitution of indices is performed
in formula (12).

For a point with coordinates x0 and y0, at which the column is located, it can be written
as follows:

{Ψ(x0, y0)}{Ue} = 0. (13)

By writing condition (13) for n point supports, the expression in the form (7) can
be obtained.

The system of FEM equations, taking into account the boundary conditions (7) when
using the Lagrange multiplier method, has the following form [43]:[

[K] [B]T

[B] 0

]{
{U}
{λ}

}
=

{
{F}

0

}
, (14)
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where [K] is the stiffness matrix of the slab without taking into account the supports, the
position of which can change, {λ} is the vector of Lagrange multipliers, and {F} is the
vector of nodal loads.

Due to the fact that the structure stiffness matrix is generated only once taking into
account only stationary columns, significant savings in machine time are achieved.

After finding the vector of nodal displacements {U} by solving the system of Equation (14),
the potential strain energy (PSE) of the slab is calculated by the following formula:

W =
1
2
{U}T [K]{U}. (15)

The flowchart of the optimization process is shown in Figure 3.
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The stiffness matrix [K] in this study is calculated as for a thin isotropic slab without
taking into account transverse shear deformations, physical nonlinearity and reinforcement.
Transverse shear deformations are not taken into account since thin slabs are considered,
in which the thickness-to-span ratio does not exceed 1

5 . Ignoring physical nonlinearity is
justified by the fact that finite element calculations in a physically nonlinear formulation
require much more computer time compared to linear calculations. During the optimization
process, this calculation must be repeated many times. Depending on the number of input
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parameters of the target function, the number of iterations in the optimization process
can reach hundreds or more. In the case of a physically nonlinear analysis, each iteration
will include many subiterations. In addition, most structures under operational loads are
characterized by work close to the elastic range. Noticeable nonlinearity appears only
under extreme influences. We also assume that a structure that performs optimally in the
elastic stage will also perform well beyond elasticity.

As for reinforcement, in the case of constant reinforcement on the entire area of the slab,
it can be taken into account by increasing the flexural stiffness of the slab. Moreover, as has
been shown in [21], the optimal location of the supports does not depend on the stiffness of
the slab if it is constant over the slab entire area. Quite often, monolithic floor slabs have
variable reinforcement with an increase in areas with the highest bending moments. When
the position of the supports changes, the maximum bending moments are redistributed.
Considering this factor is as complicated as taking into account physical nonlinearity and
requires recalculating the slab stiffness matrix at each iteration.

It should also be noted that, as a rule, in calculation software such as CivilFEM 2022,
Lira-SAPR 2024, SCAD 11.7, etc., the selection of reinforcement is carried out according to
internal forces determined in elastic isotropic structure without reinforcement, since it is
not known in advance how much reinforcement is required.

The cross-sectional dimensions of the column are not taken into account, since this will
affect the stress pattern in the immediate vicinity of the column, but not the performance of
the slab as a whole. Taking into account the cross-sectional dimensions of the column will
have virtually no effect on the maximum deflections of the slab.

3. Results and Discussion

At the first stage, the optimization technique was tested on a square slab 10 × 10 m in
size, 0.2 m thick, subjected to the load q = 20 kN/m2 uniformly distributed over the area.
The modulus of the elasticity of concrete was E = 3.25 × 104 MPa and the Poisson’s ratio
was ν = 0.2. The number of columns varied from 3 to 10. The slab was meshed by square
finite elements. To select the optimal size of the finite element mesh, a calculation was
performed with the finite element rib size equal to 1 m, 0.5 m, 0.25 m. It was found that
with mesh sizes of 0.5 m and 0.25 m, the value of the maximum deflection and potential
strain energy practically do not change. The final value of the FE rib size was taken to be
0.5 m.

To narrow the search area and speed up the solution of the problem, the slab was
divided by x into n segments ∆x = L/n, where L is the size of the slab in plan; and for
the i-th column, the search area was limited to the i-th segment and two neighboring ones.
Constraints on the x coordinate for the i-th column can be represented as follows:

(i − 2) · ∆x ≤ xi ≤ (i + 1) · ∆x, i = 2 . . . n − 1;

0 ≤ x1 ≤ 2∆x;

L − 2∆x ≤ xn ≤ L.

(16)

The y coordinate for all columns ranged from 0 to L.
Table 1 presents the results of solving the optimization problem by various methods.

Bold indicates the best results for each n. The criterion for the efficiency of optimization
algorithms was the minimum value of the objective function at the output. For n > 3, the
surrogate optimization, pattern search, interior point, and simulated annealing methods
showed lower efficiency, and therefore, the results are not shown in Table 1. The lower
efficiency of the interior point, pattern search, and simulated annealing methods can be
explained by the fact that these methods require setting the initial search point. In the
problem under consideration, there are many local minima, which are not always global
and lead to the termination of the algorithm. As an illustration, Figure 4 shows the progress
of the optimization process at n = 5 in the case of optimization according to the criterion of
minimum deflection.
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Table 1. Results of solving the optimization problem.

Number of Columns n Algorithm Optimization Criterion wmax, mm W, kJ

3 Surrogate optimization Minimum deflection 31.9 13.8464

3 Surrogate optimization Minimum PSE 45.5 9.14

3 Pattern search Minimum deflection 49.1 18.3690

3 Pattern search Minimum PSE 43.6 8.9258

3 Interior point Minimum deflection 36.1 10.6883

3 Interior point Minimum PSE 43.6 8.9258

3 Simulated annealing Minimum deflection 44.4 9.9807

3 Simulated annealing Minimum PSE 45.3 8.9176

3 Genetic Minimum deflection 31.8 13.1231

3 Genetic Minimum PSE 47.4 8.9093

3 Particle swarm Minimum deflection 30.1 11.8760

3 Particle swarm Minimum PSE 47.4 8.9093

4 Genetic Minimum deflection 5.12 2.7803

4 Genetic Minimum PSE 5.25 2.6488

4 Particle swarm Minimum deflection 5.64 3.0189

4 Particle swarm Minimum PSE 5.25 2.6488

5 Genetic Minimum deflection 4.5 2.1360

5 Genetic Minimum PSE 5.15 2.0399

5 Particle swarm Minimum deflection 4.44 2.3249

5 Particle swarm Minimum PSE 5.36 2.0366

6 Genetic Minimum deflection 3.89 1.9124

6 Genetic Minimum PSE 5.8578 1.4440

6 Particle swarm Minimum deflection 3.35 1.6955

6 Particle swarm Minimum PSE 4.6 1.4344

7 Genetic Minimum deflection 5.15 2.3305

7 Genetic Minimum PSE 4.23 1.0243

7 Particle swarm Minimum deflection 2.95 1.3748

7 Particle swarm Minimum PSE 4.19 1.0227

8 Genetic Minimum deflection 2.47 1.1119

8 Genetic Minimum PSE 4.35 0.7327

8 Particle swarm Minimum deflection 2.17 1.1563

8 Particle swarm Minimum PSE 2.58 0.7115

9 Genetic Minimum deflection 1.71 0.7663

9 Genetic Minimum PSE 1.0621 0.4888

9 Particle swarm Minimum deflection 1.71 0.9135

9 Particle swarm Minimum PSE 2.39 0.6316

10 Genetic Minimum deflection 1.78 0.8878

10 Genetic Minimum PSE 1.56 0.4288

10 Particle swarm Minimum deflection 1.25 0.6776

10 Particle swarm Minimum PSE 1.04 0.4137
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Figure 4. Convergence plot at n = 5 when using the criterion of minimum deflection.

The genetic algorithm and the particle swarm method showed approximately the
same efficiency. For some n, the best solution was obtained by the first method, and
for others by the second. At n = 4, in the case of using the criterion of the minimum
PSE, the results obtained by the two methods are the same. Comparing the performance
of these two methods is the subject of many studies, including [44–47], etc. Our study
confirms the conclusions about the approximately equal efficiency of the genetic algorithm
and the particle swarm method made in [44–47]. Some authors use these methods in
combination [48–52].

Figures 5–12 show the obtained optimal positions of the columns for various n, as
well as the isofields of vertical displacements. The columns are marked with red markers.
The color scale shows vertical displacements in meters. At n = 3, 4, the solutions are
consistent with those given in [21,30,31,33,53]. It is noteworthy that the solutions based
on the criterion of the minimum PSE are close to the solutions based on the criterion of
the maximum first natural frequency. For example, with n = 4, the optimal ratio of a/L
(Figure 13) from the condition of the maximum of the first frequency is 0.2–0.3, and from
the condition of the minimum potential strain energy, it is 0.227. The calculation of the first
natural frequency is more expensive in terms of computer time, since it requires solving the
problem of eigenvalues instead of solving a system of linear algebraic equations. Therefore,
in our opinion, the use of the criterion of minimum potential strain energy is preferable.

It should also be noted that the solutions obtained on the basis of the minimum PSE
criterion are characterized by greater symmetry and regularity. This is due to the fact that
deflection is a local characteristic of the structure, which can change significantly with a
slight change in the position of individual columns. Potential strain energy, on the contrary,
is an integral characteristic of the structure, showing the efficiency of its operation as a
whole. For large n, the search for the optimal solution according to the minimum PSE
criterion also leads to the minimum deflection, as can be seen from Table 1 for n = 9, 10.
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In the second stage, the developed technique was tested on the real object. The object
of optimization was the beamless monolithic reinforced concrete floor slab of the scientific
and laboratory complex building, the construction of which is planned in the city of Rostov-
on-Don, Russia. The building under consideration consists of two parts separated by an
expansion joint. The optimization of the supports position under the floor slab for each part
was carried out separately. This article will present the results for the part of the building
located to the right of the expansion joint. A schematic representation of the floor slab
with columns and stiffening diaphragms is shown in Figure 14. Supports whose position
remains unchanged are highlighted in black, and supports whose position may vary are
highlighted in red. The supports along the outer contour of the building were assumed to
be stationary to ensure the fastening of standard size facade panels. The position of the
stiffening diaphragms was also assumed unchanged. The total number of columns, the
position of which can vary, was equal to 7. The only accepted constraints were that the
columns should not be outside the slab.
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Figure 14. Scheme of the optimized floor slab.

The load on the slab was assumed to be uniformly distributed over the area with
intensity q = 20 kN/m2. The modulus of the elasticity of concrete was assumed to be
3 × 104 MPa; the thickness of the slab was 0.2 m. For the finite element discretization of the
slab, triangular finite elements with a maximum side size 0.6 m were used. Figure 15 shows
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isofields of vertical displacements with the initial arrangement of columns. The maximum
deflection in the initial approximation was wmax = 19.3 mm, and the potential strain energy
was W = 43.01 kJ.

CivilEng 2024, 5, FOR PEER REVIEW 15 
 

 

 
Figure 14. Scheme of the optimized floor slab. 

 
Figure 15. Isofields of vertical displacements (m) at the initial arrangement of columns. 

When searching for the optimal location of supports based on the criterion of mini-
mum deflection, the best result was obtained using the particle swarm algorithm. The 
optimal location of supports from the condition of minimum deflection along with the 
isofields of vertical displacements is shown in Figure 16. As a result of optimization, the 
maximum deflection decreased by 1.6 times from 19.3 to 12.1 mm. The potential strain 
energy also noticeably decreased from 43.01 kJ to 33.4 kJ. 

When optimizing according to the criterion of minimum potential strain energy, the 
best result was achieved using a genetic algorithm. Compared to the initial supports’ lo-
cation, the potential strain energy decreased by almost 1.5 times to 29.1 kJ. At the same 
time, the maximum deflection remained almost unchanged and amounted to 18.8 mm. 
The optimal location of supports from the condition of minimum potential strain energy, 
as well as the corresponding isofields of deflections, are shown in Figure 17. 

Figure 15. Isofields of vertical displacements (m) at the initial arrangement of columns.

When searching for the optimal location of supports based on the criterion of minimum
deflection, the best result was obtained using the particle swarm algorithm. The optimal
location of supports from the condition of minimum deflection along with the isofields of
vertical displacements is shown in Figure 16. As a result of optimization, the maximum
deflection decreased by 1.6 times from 19.3 to 12.1 mm. The potential strain energy also
noticeably decreased from 43.01 kJ to 33.4 kJ.
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Figure 16. Optimal location of supports based on the condition of minimum deflection and the
corresponding isofields of vertical displacements (m).

When optimizing according to the criterion of minimum potential strain energy, the
best result was achieved using a genetic algorithm. Compared to the initial supports’
location, the potential strain energy decreased by almost 1.5 times to 29.1 kJ. At the same
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time, the maximum deflection remained almost unchanged and amounted to 18.8 mm. The
optimal location of supports from the condition of minimum potential strain energy, as
well as the corresponding isofields of deflections, are shown in Figure 17.
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4. Conclusions

A technique has been developed for determining the optimal location of point sup-
ports under a monolithic floor slab from the condition of minimum deflection and potential
strain energy based on the finite element method in combination with nonlinear optimiza-
tion methods. The proposed technique is implemented as the program in the MATLAB
environment and allows one to optimize slabs of arbitrary configuration under arbitrary
load. The finite element method algorithm is implemented in such a way that the position
of the columns may not necessarily coincide with the nodes of the finite element mesh of the
slab. This allows one to avoid re-generating the FE mesh when the position of the columns
changes during the optimization process. Since the finite element mesh remains unchanged
during the optimization process, at each iteration, there is no need to re-calculate the
slab stiffness matrix, which leads to significant savings in computer time for solving the
optimization problem.

The efficiency of six nonlinear optimization methods was compared using the example
of a square slab in plan. It has been established that the particle swarm method and
the genetic algorithm have the best efficiency for the considered problem. For solutions
obtained using the pattern search method, simulated annealing method and internal point
method, the maximum deflections are at least 1.2 times higher than for solutions obtained
using the particle swarm method and genetic algorithm. It was shown that, in comparison
with the criterion of minimum deflection, the criterion of minimum potential strain energy
leads to solutions with greater symmetry and regularity. It has also been established that the
results obtained from the condition of minimum potential strain energy for a square slab are
close to the analytical solutions from the condition of the maximum of the first frequency.

The developed optimization technique was tested on the real object, which was
the reinforced concrete monolithic floor slab of the scientific and laboratory complex. By
varying the position of seven columns while maintaining the same position of the remaining
columns and stiffening diaphragms, it was possible to reduce the maximum deflection by
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1.6 times compared to the initial supports’ location. When optimizing according to the
criterion of minimum potential strain energy, it was possible to reduce it by 1.5 times.

The prospect of our further research will be the development of methods for optimizing
monolithic floor slabs according to the criterion of cost, taking into account the fulfillment of
the conditions of strength and rigidity. Also, the prospects for further research may include
taking into account the influence of variable reinforcement on the optimal arrangement of
columns, taking into account physical nonlinearity, as well as taking into account transverse
shear deformations.
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