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Abstract: To minimize the impact on nearby structures during deep excavations, choosing an
appropriate soil constitutive model for analysis holds significant importance. This study aims to
conduct a comparative analysis of various constitutive soil models—namely, the Mohr–Coulomb
(MC) model, the hardening soil (HS) model, the hardening soil small strain (HSS) model, and the
soft soil (SS) model—to identify the most suitable model for the lacustrine deposit. To implement
these models, the soil’s index properties and mechanical behavior were evaluated from undisturbed
soil samples. The numerical simulation and verification of these properties were carried out by
comparing the laboratory test results with the outcome of the finite element method; the most
suitable constitutive soil model for the soil was identified as the HSS model. Upon analyzing the
wall deflection and ground settlement profiles obtained from respective constitutive models, it was
observed that the HS and HSS models exhibit similar characteristics and are well-suited for analyzing
typical lacustrine soil. In contrast, the MC and SS models yield overly optimistic results with lower
wall deflection and ground settlement and fail to predict realistic soil behavior. As a result, this
research highlights the significance of selecting the appropriate constitutive soil model and refining
the parameters. This optimization process contributes significantly to the design of support systems,
enhancing construction efficiency and ensuring overall safety in deep excavation projects.

Keywords: deep excavation; finite element method; lacustrine soil; constitutive model

1. Introduction

In cities with a high population density, such as Kathmandu, underground structures
like basements, subways, metro stations, underground parking, etc., are necessary. Con-
sidering the rapid urbanization of such cities, underground structures have become more
prominent due to a lack of space and the expensive land value. High-rise buildings for
hotels, apartments, view towers, and commercial complexes with basements are increasing
rapidly, and these require deep excavation for foundation. For traffic management in
Kathmandu, the importance of underground parking, subways, railway tunnels, and metro
stations is highlighted every day. Kathmandu Valley is composed of fluvial-lacustrine de-
posits [1–3]; therefore, deep excavation works should be conducted very carefully. During
deep excavation in such soils, settlements of foundation, cracks in structures, and even the
collapse of nearby structures might occur due to improper excavation and support systems.
Settlements and a large sinkhole in a service lane and road collapse during excavation for
the basement of a hotel in Naxal, Kathmandu; and settlements on nearby residential houses
during the foundation excavation for an apartment in Sanepa, Kathmandu (see Figure 1),
are some of the examples which directly affect daily life and the economy. These incidents
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indicate that there is a lack of research, soil investigation, and analysis and poor practice
during construction.
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Soil samples from Tukucha, Kathmandu Valley, are considered in this study. The 
study area is mainly composed of clayey, silty, sandy, and gravely sediments [1]. Earlier 
studies have reported the maximum thickness of sediments in the central part (550 m at 
Bhrikutimandap), which is close to the study area, and towards the southern part (>457 m 
at Harishidhi) of Kathmandu Valley [2]. 

1.1. Soil Constitutive Model 
In geotechnical problems, the two concepts of effective and total stress analysis are 

widely used in numerical simulation. Generally, engineers prefer total stress analysis be-
cause the parameters used are more familiar and easier to determine with conventional 
soil tests, whereas effective stress analysis is preferred more by scientists due its solid the-
oretical formulations [14]. The effective stress-based constitutive soil models are the mod-
ified Cam Clay (MCC) model, the hardening soil (HS) model, and the hardening soil small 
strain (HSS) model which are widely used nowadays. Likewise, the Mohr–Coulomb (MC) 
model and the total undrained soft clay (USC) model are based on the total stress ap-
proach. 

The MC model is highly recommended and mostly used for the initial analysis of 
geotechnical problems due to its simplicity as mentioned by Lim et al., 2010 [14]. This 
model is commonly used in deep excavation, the stability of dams, embankments, slopes, 
etc. Due to the consideration of the average stiffness, computation becomes comparatively 
fast, and a primary estimation of deformation can also be determined. The MC model is a 

Figure 1. Failures in nearby structures: (a) Sanepa [4]; (b) Naxal, Kathmandu [5], during foundation
excavation.

To lessen problems and make excavation more efficient, the identification of the
mechanical behaviors of soil [6], the selection of appropriate constitutive soil models as per
the performance evaluations of models, and the analysis and design of a support system as
per a suitable constitutive soil model are crucial [7–11]. Moreover, it is difficult to identify
the effect on the surroundings using conservative analytical methods [12,13].

Soil samples from Tukucha, Kathmandu Valley, are considered in this study. The
study area is mainly composed of clayey, silty, sandy, and gravely sediments [1]. Earlier
studies have reported the maximum thickness of sediments in the central part (550 m at
Bhrikutimandap), which is close to the study area, and towards the southern part (>457 m
at Harishidhi) of Kathmandu Valley [2].

1.1. Soil Constitutive Model

In geotechnical problems, the two concepts of effective and total stress analysis are
widely used in numerical simulation. Generally, engineers prefer total stress analysis
because the parameters used are more familiar and easier to determine with conventional
soil tests, whereas effective stress analysis is preferred more by scientists due its solid
theoretical formulations [14]. The effective stress-based constitutive soil models are the
modified Cam Clay (MCC) model, the hardening soil (HS) model, and the hardening
soil small strain (HSS) model which are widely used nowadays. Likewise, the Mohr–
Coulomb (MC) model and the total undrained soft clay (USC) model are based on the total
stress approach.

The MC model is highly recommended and mostly used for the initial analysis of
geotechnical problems due to its simplicity as mentioned by Lim et al., 2010 [14]. This
model is commonly used in deep excavation, the stability of dams, embankments, slopes,
etc. Due to the consideration of the average stiffness, computation becomes comparatively
fast, and a primary estimation of deformation can also be determined. The MC model is a
linearly elastic and perfectly plastic model. The basic parameters required for the modeling
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of the Mohr–Coulomb model are the Young’s modulus (E), Poisson’s ratio (ν), cohesion (c),
friction angle (Φ), dilatancy angle (Ψ), and tension cut-off and tensile strength (σt).

The SS model, a Cam Clay type model, is most suitable to analyze the soft soils like
normally consolidated clays, peats, etc. [15]. This model considers the associated flow on
the cap surface so that the respective components can be easily identified (Figure 2a) [16].
This model gives the best result for primary compression. This model is not categorized
under the Critical State Model (CSM) due to many upgradations in parameters. The input
parameters required for this model are the modified compression index (λ*), the modified
swelling index (k*), and the Mohr–Coulomb model failure parameters (c′, Φ′, Ψ). From
an isotropic compression test along with isotropic unloading, the modified swelling index
and modified compression index can be identified. The slope of the loading and unloading
curve plotted between the logarithm of the mean stress and the volumetric strain give the
value of λ* and k*, respectively, as shown in (Figure 2b). In the absence of an isotropic
compression test, the parameters λ* and k* can be determined from a one-dimensional
compression test. In this study, the relations given in Equations (1) and (2) below were
used to determine the parameters λ* and k*.

λ∗ =
Cc

2.3 (1 + e)
, k∗ =

Cs
2.3 (1 + e)

or
2Cc

2.3 (1 + e)
(1)

λ∗ = Cc/(2.3(1 + e))

Alternately,

λ* =
λ

(1 + e)
, k* =

k
(1 + e)

(2)

where λ and k are the Cam Clay compression and swelling index, respectively, and ‘e’ is
the void ratio.
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The HS model, a second-order model, is a more demanding and realistic model for
deep excavation analysis. It provides realistic wall deflection, a ground settlement profile
due to its nonlinearity, inelastic stiffness, and a stress-dependency principle [18]. This
model is highly recommended for excavation modeling for both soft and stiff soils. The
input parameters for this model consist of three reference stiffness parameters, along
with other parameters. They are: stiffness modulus at reference pressure (Ere f

50 ) from
triaxial compression, the elastic modulus for unloading/reloading at reference pressure
(Ere f

ur ) from triaxial unloading/reloading, the stiffness from oedometer loading (Ere f
oed), a

power m, for the stress-dependent stiffness formulation, the pure elastic Poisson’s ratio or
unloading/reloading Poisson’s ratio, νur, the Mohr–Coulomb strength parameters (Φ, c),
the Ko-value in primary one-dimensional compression (Konc), and the failure ratio [14].

The stiffness modulus Ere f
50 is the secant stiffness at 50% of the maximum deviatoric

stress for a reference minor principal effective stress of σ3
′ = pref = 100 kPa. According

to Calvello and Finno [19], the relation of Ere f
ur = 3 × Ere f

50 is used to determine the elastic
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modulus Ere f
ur (Figure 3), while Ere f

oed is evaluated from the consolidation tests as illustrated
in Figure 4. In addition, the relation with the modified compression index, λ*, can be used
to determine the Ere f

oed using the relation mentioned below:

Ere f
oed =

pre f

λ∗ , λ∗ =
λ

1 + e0
(3)

where pre f is a reference pressure.
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oed [18].

The power of the stress level-dependency of stiffness m, can be determined by plotting

ln(E50) vs. ln
(

c′cosΦ′+σ′
3sinΦ′

c′cosΦ′+pre f sinΦ′

)m
on a natural scale. The slope of the best fit straight

line is the value of m discussed in research [18]. Here, the obtained value of m was close
to 1; therefore, it was considered as 1 for simplicity [20] and νur was taken as 0.2 [18].
Furthermore, the Mohr–Coulomb strength parameters of the cohesion and friction angle
were the same as determined in the MC model.

The HSS model improves the result by considering the small strain characteristics of the
soil. The result obtained is more realistic and closer to the field data and gives better results
than the HS model [21]. The input parameters used in this model are similar to the HS model
except for two additional parameters, i.e., the reference shear modulus at small strain (Gre f

0 )
and shear strain (γ0.7). The shear strain (γ0.7) is the strain at which the secant shear modulus
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is equal to 0.7Gre f
0 . In this study, the reference shear modulus at a small strain (Gre f

0 ) was
determined using the Young’s modulus at a small strain using Equation (4).

Gre f
0 = Ere f

0 / (2 × (1 + νur)) (4)

The value of γ0.7 was determined using the relation given in the PLAXIS manual as

γ0.7 =
1

9Go
[
2c′

(
1 + cos2Φ′)– σ1

′(1 + Ko)sin2Φ′] (5)

where Ko = the earth pressure coefficient at rest, σ1
′ = the effective vertical stress (pressure

negative), and

Go = Gre f
o ×

(
c′cosΦ′ + σ′

3sinΦ′

c′cosΦ′ + pre f sinΦ′

)m

= pre f (6)

pref in Equation (6) is the reference pressure which is considered 100 kPa.

1.2. Numerical Analysis

PLAXIS 2D, a finite element-based software, is widely used in deep excavation anal-
ysis [9]. The interaction of soil elements in the model is governed by the stress–strain
relationship; therefore, no assumption for the slip surface is required. This also pro-
vides a better visualization of the deformation of the soil mass [22]. As mentioned by
Schweiger [23], models used in the PLAXIS can be categorized into five parts which have
different patterns, i.e., linear or nonlinear elastic models, elastic–perfectly plastic models,
isotropic hardening single surface plasticity models, isotropic hardening double surface
plasticity models, and kinematic hardening multi-surface plasticity models. The suitability
of the models depends on the soil behavior, type of analysis, etc. [24], which is presented
in Table 1.

Table 1. Appropriateness of different constitutive soil models for the analysis of soft soils [24].

Constitutive Models Analysis Type
Soft Soil

OCR > 1 OCR ≈ 1 OCR < 1 Sandy Soil

MC Model
Serviceability Limit State

Bearing Capacity Limit State * **

Modified Cam Clay
Serviceability Limit State * *

Bearing Capacity Limit State ** **

HS Model
Serviceability Limit State *** ** ** ***

Bearing Capacity Limit State *** ** ** ***

OCR: over consolidation ratio; *: generally applicable, the effect is not ideal; **: applicable, good effect;
***: applicable, very good effect.

The hardening soil (HS) model, an elastic–plastic soil model, is the classical plasticity
theory-based model [25]. The HS model is a more acceptable and advanced model in deep
excavation analysis which can better simulate real soil behaviors. This model is widely used
nowadays because of its capacity to simulate the nonlinear, inelastic, and stress-dependent
behavior of soil [18]. Therefore, it predicts a more realistic ground settlement profile and
wall deflection, overcoming the shortcomings of the MC model. In addition, it yields a
smaller toe movement and bottom heave than the MC model [18]. To obtain a more realistic
outcome and enhance the results obtained from the HS model, the HSS model is used more
often recently. The HSS model uses a modified hyperbolic law for the stiffness degradation
curve [26,27]. It considers the small strain characteristics of the soil, the unloading stiffness,
and the strain-dependent stiffness behaviour of the soil. Thus, the result obtained is closer
to the field response of ground excavations in soft soils.
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Lim et al. [14] performed the evaluation of constitutive soil models in clay under
undrained conditions monitoring the support deflection and settlement during the deep
excavation at Taipei National Enterprise Center and reported that the HS model results
in a slightly higher wall displacement and ground settlement in comparison to the field
observation. However, the prediction from the HS model is closer than those from the MC
and MCC models. To improve the results from the HS model, the HSS model considers
the small strain characteristics of the soil. However, on comparing the results from the
HS model and the HSS model, there is no difference in the wall displacement but little
improvement in the prediction of surface deformation. Furthermore, a similar result was
also obtained by Surarak et al., 2012 [20] on a mass rapid transit (MRT) underground
railway. This implies that both models are suitable for the analysis of deep excavation.
Similarly, in the same study, the MC model predicted the wall displacement closer to the
field measurement only after applying Eu/Su = 0. However, in the early stages, the wall
displacement predicted was significantly different from the field measurement. The results
from this research are similar to the results obtained by Likitlersuang et al., 2013 [21].
Although the model is mostly used in geotechnical analysis, this is unsuitable to determine
the stress state in deep excavation analysis.

Different types of sheet piles like steel sheet piles, precast concrete sheet piles, wooden
sheet piles, and aluminum sheet piles are used in various construction and civil engineering
projects as the retaining structures like water front structures, bridge abutments, flood
controls, retaining walls, underground structures, etc. [28,29]. Cantilever sheet piles rely
on lateral passive resistance from the embedment depth, while anchored sheet piles use
anchors to reduce the deflection, bending moment, and embedment depth for effective
design [30]. The inclination, length, and position of the anchor also have great importance
in economic design [31]. The effect of parametric variations in anchor in anchored sheet
pile and the effect of embedment depth in the sheet pile are well studied by Pokhrel [32]. A
lateral displacement of up to 2% of the maximum depth of excavation is adopted during
the stability analysis of underground projects [33–35]. Different types of failure mode
in anchored sheet pile walls are represented in FHWA [36]. Similarly, the finite element
method is employed in various studies for the analysis of safety, deflection, bending, and
stress–strain analysis of sheet piles [19,37–43].

During deep excavation, the pattern of retaining wall displacement is mainly affected
by the type of subsoil, support system, workmanship, etc. The wall movement is divided
into cantilever or deep inward or braced excavations as per Hsieh and Ou [44] (Figure 5). A
cantilever-type movement occurs during the initial stage of excavation or when the subsoil
is dominant with sandy soil. Likewise, a deep inward movement is especially seen in soft
soils from the initial stage of excavation as mentioned in Refs. [44,45]. According to Hsieh
and Ou [44], ground settlement profiles can be categorized as spandrel and concave. In
the spandrel settlement, the maximum surface settlement is observed close to the wall,
typically when the wall movement follows a cantilever pattern. Meanwhile, the concave
ground settlement occurs when there is deep inward movement of the wall, causing the
maximum surface settlement to occur at a distance from the wall [45].

In the soil of Kathmandu, many research studies related to deep excavation have been
carried out but those studies mainly focused on the parametric variation in the support
system using a conservative constitutive model like the MC model. Due to the lack of
sufficient data for an advanced constitutive model, the studies were limited to the Mohr–
Coulomb model and rarely to the MCC model. Pokhrel [32] performed a parametric
analysis on flexible and rigid support systems using the MC model. Likewise, Tiwari [46]
conducted a comparison between the MC model and the MCC model. This comparison
focused on evaluating the horizontal and vertical deformation of protective piles. However,
the rationale for choosing these specific models for the Kathmandu soil was not discussed
properly. Despite the suitability evaluation of these constitutive soil models for Kathmandu
soil, their parametric analysis for the comparison of pile deformation did not yield reliable
results. Similarly, Nyoupane et al. [47] performed numerical modeling of triaxial tests using
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some constitutive soil model on secondary data. However, these models did not account
for soil behavior under small strains, which is a critical consideration in modeling clay and
deep excavations. Additionally, no investigation has been conducted into the effectiveness
of these constitutive models in organic soil. As a result, it is crucial to evaluate different
soil constitutive models and compare the ground response predictions that appropriately
incorporate various soil behaviors with actual ground responses for future applications.
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2. Materials and Methods
2.1. Materials

Tukucha (an area at the confluence Bagmati River and Tukucha Stream) was selected
for soil sampling, which is located in between the Bagmati River and the Department of
Passport in Tripureshwor, Kathmandu. This area is in the middle of Kathmandu Valley
and has the typical geological and geotechnical characteristics of Kathmandu Valley. Kath-
mandu Valley lies within the broader Himalayan region, which began forming around
50 million years ago due to the collision between the Indian Plate and the Eurasian Plate.
This collision resulted in the uplift of the Himalayan Range [48,49]. During the early stages
of the Himalayas’ formation, sedimentation was prominent in Kathmandu Valley area.
Rivers transported sediments from the rising mountains and deposited them in basins,
including Kathmandu Valley, which began to take shape as a structural basin [50]. As the
Himalayas continued to rise and rivers continued to deposit sediments during different
geological epochs, the lake eventually got filled with sediments, forming the present-day
landscape of the valley. Tukucha features clayey lacustrine deposits; however, the upper
shallow alluvial deposits are deposited by Bagmati River and Tukucha River.

The soil profile of the site consists of a surficial soil layer up to 2 m in depth, which
contains waste materials such as cotton clothes, plastic bags, sand with silty clay, etc, while
the remaining layers are dark gray, medium-stiff to stiff organic soil of medium-to-high
plasticity.

Undisturbed samples were collected from 4.5 m, 9 m, and 12 m depths of different
boreholes using Shelby tubes and the disturbed sample from the standard penetration
tests. The sampling tube was waxed to prevent moisture exchange and taken to the soil
lab for further testing. Tests like particle size distribution, Atterberg’s limits, specific
gravity, natural moisture content, bulk unit weight, and the consolidated undrained (CU)
triaxial test, were performed in Heavy Lab, Institute of Engineering, Pulchowk Campus,
Lalitpur, Nepal. Furthermore, one dimensional consolidation test was executed in the
Central Material Testing Laboratory (CMTL), Institute of Engineering, Pulchowk Campus,
Lalitpur, Nepal.
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2.2. Experimental Equipment and Test Procedure

The Atterberg limits tests were conducted according to ASTM D4318 [51]. The specific
gravity test was conducted according to ASTM D854 [52] using a Water Pycnometer. The
natural moisture content test was conducted according to the ASTM D2216 [53] standard.
The consolidated undrained (CU) triaxial test, following the ASTM D4767 [54] standard
test method, was performed to determine the strength parameters. From each layer of
soil collected in the field, three cylindrical samples of 38 mm in diameter and 76 mm in
length were used to conduct consolidated undrained (CU) triaxial tests. The cylindrical
remolded samples were trimmed to the desired dimensions and then each sample was
encased in a rubber membrane and wrapped with a filter strip. After ensuring stability,
the sample was mounted onto a pedestal with a top cap secured by an O-ring. After that,
the sample, enclosed within the cell, was immersed in water. Cell pressure was applied
using a hydromatic system, allowing the sample to undergo saturation, consolidation, and
monotonic shear phases. Tests were performed in three stages, i.e., saturation, isotropic
consolidation, and a shearing phase, varying an effective consolidation pressure of 50,
100, 200, and 400 kPa. Eventually, by varying the consolidation pressure across different
samples, the shear strength parameters were analyzed to assess the strength characteristics
of the soil.

2.3. Parameters for Numerical Simulation

The parameters required for different constitutive models for numerical analysis were
determined as discussed in the earlier section. These parameters were utilized to model the
soil in PLAXIS 2D for finite element analysis (FEA) (Figure 6). The FEA results were then
compared with the stress–strain relationships obtained from laboratory tests. The model
that yielded results close to the laboratory results was used as a reference model for the
comparison with different models.
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For the deep excavation analysis, the geometric and material parameters employed
are presented in Figure 7 and Table 2. The mechanical properties of soil layers including
the ones obtained from tests (modulus of elasticity, effective cohesion, effective angle of
friction) are presented in subsequent sections.

A section of 100 m wide and 30 m deep, with different soil layers, was considered for
analysis (Figure 7a). The excavation of 10 m deep and 20 m wide was carried out in three
distinct stages, and anchored sheet pile walls were applied as a retaining structure. The
input properties, geometry, boundary conditions, mesh, and calculations were performed
in the software as illustrated in Figure 7b,c.
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Table 2. Geometric and material properties of the support system.

Parameter Value Unit

Size of model 100 × 30 m × m
Depth of excavation −10 m
Width of excavation 20 m

Load from excavator during excavation 10 kN/m/m
a. Diaphragm Wall

Length of diaphragm wall 20 m
Material type - Elastic, Isotropic

Normal stiffness EA 1.2 × 107 kN/m
Flexural rigidity EI 1.2 × 105 kN m2/m

b. Anchor Rod
Depth at anchor placed from ground 3, 7 m

Length of anchor 10.82 m
Angle of anchor with

horizontal 34 degree

Material type - Elastic, Isotropic
Normal stiffness EA 5 × 105 kN

Spacing out of plane Ls 2.50 m
c. Grout Body

Length of grout body 3.6 m
Material type - Elastic

Stiffness E 7.07 × 107 kN/m2

Diameter D 0.30 m
Pile spacing Lspacing 2.50 m

Skin resistance
Tskin.start.max 400.00 kN/m
Tskin.end.max 400.00 kN/m
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3. Results
3.1. Evaluation of Constitutive Model

Table 3 presents the parameters used in the MC model. Poisson’s ratio was determined
by the trial and error method to obtain a realistic value of Ko, which ranges from 0.3 to
0.4 [15]. However, the value of υ is in the range of 0.15 to 0.25 for unloading conditions.
Furthermore, the effective cohesion (C

′
) and effective friction angle (Φ

′
) were used in the

modeling. The dilatancy angle is negligible in the soil; therefore, the value was taken as
zero which complies with the condition Ψ = Φ − 30◦ [15].

Table 3. Input parameters for the MC model.

Depth (m)
Young’s

Modulus (E)
[kN/m2]

Poisson’s
Ratio (ν)

Effective
Cohesion (c′)

[kN/m2]

Friction
Angle (Φ′)

[◦]

Dilatancy
Angle (Ψ)

[◦]

Permeability

Kx
[m/day]

Ky
[m/day]

0–7.5 13235.4 0.30 53.0 13.86 - 1.69 × 10−4 1.69 × 10−4

7.5–12 1733.9 0.30 62.0 16.70 - 9.94 × 10−5 9.94 × 10−5

>12.0 22490.6 0.30 58.0 19.43 - 1.24 × 10−4 1.24 × 10−4

Similarly, the input parameters for different constitutive models are presented in
Tables 4 and 5. The SS model requires the modified compression index (λ*), the modified
swelling index (k*), and the Mohr–Coulomb failure parameters (c

′
, Φ

′
, Ψ) as presented

in Table 4. The swelling index was taken as equivalent to recompression. The ratio
λ∗/k∗ (= λ/k) varies from 3 to 6 [55], and the value found in this study was consistent
with this range.

Table 4. Input parameters for the soft soil (SS) model.

Depth (m)
Modified

Compression Index
λ*

Modified Swelling
Index

k*

Effective Cohesion
c′

[kN/m2]

Friction Angle
Φ′

[◦]

Dilatancy
Angle

Ψ
[◦]

0–7.5 0.080 0.017 53.0 13.86 -

7.5–12 0.049 0.007 62.0 16.70 -

>12.0 0.041 0.007 58.0 19.43 -

Table 5. Input parameters for the hardening soil (HS) model.

Depth [m] Eref
50

[kN/m2]
Eref

oed
[kN/m2]

Eref
ur

[kN/m2]
m

Effective
Cohesion, c′

[kN/m2]

Friction Angle,
Φ′

[◦]

0–7.5 8645.8 11,440.0 25,937.5 1.0 53.0 13.86

7.5–12 4384.6 4865.0 13,153.8 1.0 62.0 16.70

>12.0 12,840.9 12,841.0 38,522.7 1.0 58.0 19.43

Table 5 presents the input parameters for the HS model, including additional parame-
ters from the loading and unloading behavior of soil from the one-dimension consolidation
tests. For the HSS model, the input parameters are similar to the HS model except for
two additional parameters, i.e., the reference shear modulus at minor strain (G0ref ) and
shear strain (γ0.7), as presented in Table 6.
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Table 6. Input parameters for the hardening soil small strain (HSS) model.

Depth [m] Eref
50

[kN/m2]
Eref

oed
[kN/m2]

Eref
ur [kN/m2] m

Gref
0

(Calculated)
[kN/m2]

Gref
0 γ(0.7)

0–7.5 8645.8 11,440.0 25,937.5 1.0 6172.8 11,239.6 8.9 × 10−4

7.5–12 4384.6 4865.0 13,153.8 1.0 3418.8 5700.0 1.1 × 10−3

>12.0 12,840.9 12,841.0 38,522.7 1.0 6089.7 16693.2 1.6 × 10−3

The results of the numerical analysis of triaxial compression tests were compared with
the laboratory tests to determine the most suitable constitutive model. As presented in
Figure 8, the stress–strain curves obtained from the HS and the HSS models were closer to
most of the laboratory tests, consistent with the previous study’s result [47]. Furthermore,
the HSS model predicts more accurately, as shown in Figure 8, because it considers the
small strain characteristics of soils, as mentioned in the different literature [14,21,56].
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3.2. Ground Response Analysis

Since the results from the HSS model most accurately reflected the laboratory test
outcomes, the HSS model was deemed to accurately represent the real ground behavior
during excavation. Therefore, the wall deformation and ground settlement profiles obtained
from the HSS model are used as a reference for comparison of the results obtained from the
other models.

During the first, second, and final excavation stages, the maximum wall deflection
occurs at different depths, such as 5 m, 7 m, and 9 m below the ground surface. Mean-
while, the deflection profile decreases significantly at the base of the diaphragm wall
(see Figure 9a). Similarly, considerable ground settlement is seen near the wall, with the
settlement increasing and reaching its maximum value within 5 to 10 m from the wall
(Figure 9b). This indicates that deep excavation has the most pronounced impact close to
the wall and diminishes significantly as the distance increases. The study’s deflection and
ground settlement patterns align with previous studies [21,44,57,58].

Figure 10 illustrates the comparison between the wall deflection and ground settlement
profiles obtained from the MC and HSS models. In Figure 10a, it is illustrated that the
wall deflection during the initial excavation stages exceeds the predictions made by the
HSS model. However, the predicted wall deflection was lower during the final excavation
stage. Likewise, the ground settlement profiles in the initial stages of excavations were
slightly higher than anticipated by the HSS model, while the settlement profiles showed
significantly lower values during the final excavation stage (Figure 10b). It is worth noting
that this increased difference in ground settlement with excavation depth aligns with
findings from previous studies [14,21,56].
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Figure 10. Comparison of (a) wall deflection and (b) the ground settlement profile from the MC and
HSS models.

Figure 11 depicts the results from the SS and HSS models. In Figure 11a, it is evident
that the wall deflection determined by the SS model is notably smaller than that of the
HSS model. Similarly, in Figure 11b, the ground settlement profiles obtained from the SS
model are significantly lower than those obtained from the HSS model. Consequently,
the predictions of wall deflection and ground settlement profiles from this model might
be overly optimistic and substantially underestimated for deep excavations in typical
Kathmandu soil.

During the initial stages of excavation, the wall deflection determined by the HS
model closely aligned with the predictions from the HSS model, as shown in Figure 12a.
Furthermore, in the final excavation stage, the wall deflection obtained from the HS model
was slightly lower than the HSS model. Similar results were also observed in the ground
settlement profiles, as shown in Figure 12b. This suggests that both the HS and HSS models
produce similar predictions. This pattern of wall deflections and ground settlement profiles
aligns with the results reported in previous studies [23,59]. However, the inclusion of the
small strain characteristics of soil in the HSS model impacts the prediction accuracy, which
is consistent with the findings of previous studies [14,21].
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4. Conclusions

This study highlights the significance of selecting an appropriate constitutive model
for enhancing the efficiency of deep excavation support systems in the lacustrine deposits of
Kathmandu Valley. The research findings indicate that the HSS model is the most suitable
choice for modeling Kathmandu soil. It accurately predicts mechanical behavior and closely
fits with laboratory test results. The key findings can be summarized as follows:

• Wall deflection is seen near the ground surface, gradually increasing with excavation
depth and decreasing significantly towards the end of the diaphragm wall. In the final
excavation stage, the wall deflection values obtained from the MC, SS, and HS models
are 22%, 77%, and 0.1% lower than that obtained from the HSS model, respectively.

• Similarly, ground settlement increases from the wall to a certain distance and then
decrease further away from the wall. The maximum ground settlement from the MC,
SS, and HS models are 46%, 76%, and 0.09% lower than predicted by HSS models,
respectively.

• The HS model yields results similar to the HSS model, reinforcing its suitability for
analyzing Kathmandu soil. While the MC and SS models predict significantly lower
values for both maximum wall deflection and ground surface deformation, caution
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is advised when using these models to analyze deep excavation support systems in
Kathmandu Valley.

These findings underscore the importance of selecting the appropriate constitutive
model for proper analysis of deep excavation. Additionally, the study acknowledges its
limitations, particularly in the modeling of in situ soil behavior, support systems, and their
interactions, suggesting the need for field measurements and monitoring during actual
excavation processes to improve the realism of the analysis.
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