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Abstract: This research, with its potential to revolutionise the construction industry, aims to de-
velop quaternary-blended composites (QBC) by replacing 80% of ordinary Portland cement (OPC)
with metakaolin, rice husk ash, and wood ash combined with discrete hybrid natural fibres at a
volume fraction of 0.5%. This study investigates the mechanical properties, including compressive
strength, split tensile strength, and impact strength of the QBC at various curing ages of 7, 28, and
56 days. Scanning electron microscopy (SEM) analysis was performed to assess the microstructural
characteristics. This research aimed to formulate a novel quaternary binder that may minimise our
reliance on cement. The experimental results indicate that the mix labelled M4L2 exhibited superior
compressive and split tensile strength performance, with percentage increases of approximately
51.03% and 29.19%, respectively. Meanwhile, the M5L1 mix demonstrated enhanced impact energy,
with a percentage increase of about 36.40% in 56 days. SEM observations revealed that the MC4 mix
contained unhydrated portions and larger cracks. In contrast, the presence of fibres in the M4L2 mix
contributed to crack resistance, resulting in a denser matrix and improved microstructural properties.
This study also employed an artificial neural network (ANN) model to predict the compressive,
tensile, and impact strength characteristics of the QBC, with the predictions aligning closely with
the experimental results. An investigation was conducted to determine the ideal number of hidden
layers and neurons in each layer. The model’s effectiveness was evaluated using statistical metrics
such as correlation coefficient (R), coefficient of determination (R2), root mean square error (RMSE),
mean absolute error (MEA), and mean absolute percentage error (MAPE). The findings suggest that
the developed QBCs can effectively reduce reliance on conventional cement while offering improved
mechanical properties suitable for sustainable construction practices.

Keywords: quaternary blends; SCM; fibres; RHA; metakaolin; wood ash; ANN; synergic effect

1. Introduction

In recent years, climate change and resource depletion have drawn more attention.
Ordinary Portland cement (OPC) is a key ingredient of the concrete to act as a hydraulic
binder. However, it is still extensively utilised, and its production poses severe environmen-
tal problems by producing a large quantity of CO2 in the atmosphere. It has been reported
that 1 tonne of cement releases 0.87 tonnes of carbon dioxide [1,2]. Industrial waste must be
disposed of safely to protect the environment. Agro-based waste disposal also harms the
environment. Over 600 MT of agro-based trash is produced in India [3]. Sustainable con-
crete materials are a priority in the building industry. By using industrial and agro-based
wastes with pozzolanic behaviour, concrete manufacturing could change significantly. The
supplementary cementitious materials (SCMs) from industrial wastes such fly ash (FA),
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ground granulated blast furnace slag (GGBS), silica fume, metakaolin (MK), and agro-based
wastes like rice husk ash (RHA), sugarcane bagasse ash, groundnut shell, coconut shell,
and sawdust. SCMs are rich in silica, calcium oxide, and alumina. Pozzolanic substance can
replace cement in concrete manufacture. Thus, it lowers carbon footprint and material pro-
duction costs [4–7]. Studies show that SCMs improve concrete’s mechanical and durability
properties [8,9]. Several studies found that OPC with industrial and agro-based wastes
influenced cement or concrete behaviour. MK greatly enhanced binary blend workability.
Binary mixtures in concrete utilise more cement and thus may be expensive [10,11]. FA
significantly enhanced slump flow diameter in binary blends, but metakaolin decreased
it. FA and MK in ternary mixes reduced setting time [12]. As grinding time increased,
RHA particle size decreased. Grinding increases material pozzolanic activity [13]. The
combined usage of cement, FA and RHA/bagasse ash reduced the porosity of mortar [14].
Researchers are showing interest in the utilisation of bottom ash in concrete production.
The ultra-fine coal bottom ash blended with cement showed an increase in workability and
setting time [15]. Ternary blends are more effective than binary blends because they limit
corrosion; hence, using additional RHA reduces strength [16]. Self-compacting concrete
compositions using ternary blends of oil palm fuel ash, FA, and hybrid-blended aggre-
gates had decreased calcium hydroxide and ettringite formation [17]. The development
of quaternary-blended cementitious materials is an innovative step in the construction
industry. While binary and ternary blends have been studied extensively, quaternary
blends offer a new frontier with the potential for enhanced performance characteristics. For
self-compacting concrete (SCC), quaternary blending of cement with mineral admixtures
was tested. Binary and ternary blend with cement, slag, and silica fume demonstrated bet-
ter compressive strength than fly ash-incorporated concrete. Quaternary cement–mineral
admixtures reduced SCC sorptivity [18]. Choudhary et al. studied the quaternary influence
of marble slurry waste, fly ash, and silica fume [19]. The microstructure analysis showed
that the mortar matrix was dense, improved the packing of aggregate, and had fewer
voids [20]. The synergy of different SCMs in cementitious materials would enhance the
strength properties of concrete [21,22]. From past studies, adding SCMs to concrete reduces
the amount of cement needed—but the unreinforced system may fracture at low strain
capacity—which greatly improves concrete properties with discrete fibres [23]. The discrete
hybrid fibres in concrete showed potential benefits over the mono discrete fibres. From the
literature, a variety of hybrid discrete fibres incorporated in concrete enhance the properties
of concrete [24–26]. Natural fibre composite (NFC) research and innovation are cheaper
and more environmentally friendly than synthetic fibre composites, which supports their
use in diverse fields [27]. The combination of fibres with quaternary blends offers a novel
approach to addressing the limitations of traditional concrete, such as susceptibility to
cracking, limited durability, and a high environmental footprint. The use of fibres improves
tensile strength, flexural strength, and impact resistance, which are critical for structural
applications. The quaternary blend further enhances these properties by optimising the
microstructure and reducing porosity [28]. Soft computing tackles complicated issues
cost-effectively. Artificial neural networks (ANNs) mimic human neurons. They have
three layers—input, hidden, and output—connected by brain-like neurons. Civil engineers
are increasingly using ANNs to address several difficulties [29]. ANNs can understand
complicated variables from training data, making them a prominent deep learning ap-
plication for regression [30]. Researchers use machine learning to manage metadata-rich
datasets with various calculations [31]. Several research studies have been investigated for
predicting the workability [32], strength properties [33], and durability properties [34] of
normal and high-strength concrete [35], binary and ternary blended concrete [36], high-
performance concrete [37], fibre reinforced concrete [38], geopolymer concrete [39,40], as
well as the load-carrying capacity of structural members [41,42]. ANNs can eliminate
the need for extensive experimental work. This approach offers significant advantages in
saving time, reducing costs, and minimising labour [43]. In summary, this work contributes
to sustainable construction and predictive modelling by targeting environmental issues,
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the progress of quaternary-blended composites, and harnessing the capabilities of artificial
intelligence [44].

In this study, cementitious materials rich in silica and calcium oxide from agro-
industrial wastes were utilised to reduce the amount of OPC needed. RHA, WA, and
MK were replaced with OPC to make quaternary-mixed cementitious materials. Fibre-
reinforced quaternary-blended composites were developed from these blended cemen-
titious materials with discrete hybrid natural fibres. Furthermore, we analysed RHA,
WA, and MK efficiency factors on which Bolomey’s equation could calculate compressive
strength. This work also creates an ANN model to predict QBC compressive, split tensile,
and impact energy.

2. Materials and Methods
2.1. Materials

The materials used in the present work are ordinary Portland cement of 53 grade,
confirming IS 12269: 2013 [45]. The physical and chemical properties of OPC, MK, RHA,
and WA are presented in Table 1. Figure 1a–d show SEM images of the cement and SCM
materials. The SEM image exhibits the irregular shape of the cement particles and coarser
particles in metakaolin. A porous surface with an irregular shape is noticed in RHA,
whereas a rough and smooth surface with an irregular shape is observed in wood ash.
Metakaolin and RHA particles are found to be smaller than cement particles. Locally
available river sand of zone II, confirming to IS 383 [46], was used as fine aggregate. The
physical properties of fine aggregate were tested as per IS 2386 (Part 3) [47], and the results
of specific gravity, fineness modulus, bulk density, water absorption, and moisture content
were 2.64, 2.58, 1510 kg/m3, 0.80%, and 6% respectively.
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Figure 1. SEM images: (a) ordinary Portland cement; (b) metakaolin; (c) rice husk ash; (d) wood ash. 
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Table 1. Physical and Chemical Composition of OPC, MK, RHA, and WA.

OPC MK RHA WA

Physical Properties

Specific gravity 3.14 2.30 2.14 1.71
Specific surface area (cm2/g) 2285 8735 3750 1203

Mean particle size (µm) 90 2 4 180

Chemical Composition (%)

SiO2 20.38 55.25 97.32 9.29
CaO 71.60 0.40 --- 58.27

Na2O 0.18 0.18 0.26 6.96
K2O 0.09 1.40 -- 3.95

Al2O3 3.22 44.14 0.20 3.03
FeO 2.88 0.09 7.68
MnO 0.07 0.08 0.01 0.24
MgO 0.98 0.08 0.21 5.03
TiO2 0.29 --- 0.19 0.27
SO3 0.26 --- --- 2.88

P2O5 0.05 --- --- 0.62
ZnO --- --- --- ---
LoI 2.20 0.25 4.0 20.1

2.2. Processing and Properties of Natural Fibres

The locally available banana and jute fibres were used in this study. The banana and
jute fibres were treated using a 5% sodium hydroxide (NaOH) solution for 2 h [48]. The
alkaline treatment process of banana and jute fibres is represented in the flow chart, as
shown in Figure 2a. The fibres were cut into two different lengths of 10 mm and 20 mm.
Figure 2b,c depict processed, cut banana, and jute fibres of various lengths. The salient
properties of the fibres are presented in Table 2.
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Table 2. Properties of natural fibres.

Plant Fibre
Type

Density
(g/cm3)

Tensile
Strength

(MPa)

Elongation
(%) Failure Strain Moisture

Regain
Avg. Dia. (d)

(mm)
Length (l)

(mm) l/d

BF 1.3 780 3 2 60 0.16
10 63
20 125

JF 1.3 750 1.7 3 17 0.20
10 50
20 100

2.3. Mix Proportions of Quaternary-Blended Composites

Based upon the initial trial, OPC of 20% and MK of 30% were maintained constant for
all the mixes. The percentage of WA content was varied from 5% to 25%. The RHA content
balanced the remaining percentage of material. The binder/sand ratio was kept at 1:2 [41].
Accordingly, the binder materials are 334 kg/m3, and the fine aggregate is 666 kg/m3. The
volume fraction of each fibre was maintained at 0.25%; hence, the total volume fraction of fibres
was 0.5%. The water-to-binder ratio was maintained at 0.5 for all the mixes. Fifteen mixes were
proposed for QBC, as presented in Table 3. The powdered materials, viz., OPC, MK, RHA, and
WA, were dry-mixed for 1 min at moderate speed in a mixer and river sand was added to the
mix [49]. The natural fibres were added slowly and evenly to the mixtures. Water was added at
intervals and proportionately for about 3–4 min, and a uniform distribution of natural fibres
was ensured in the mixture to avoid the balling effect of fibres. The experimental methodology
is added in Figure 3.

Table 3. Mix proportions of quaternary-blended composites.

Mix ID Length of Fibers
(mm)

OPC
(kg/m3)

MK
(kg/m3)

RHA
(kg/m3)

WA
(kg/m3)

FA
(kg/m3)

MC1 - 66 101 150 17 666
MC2 - 66 101 134 33 666
MC3 - 66 101 117 50 666
MC4 - 66 101 101 66 666
MC5 - 66 101 84 83 666

M1L1 10 66 101 150 17 666
M2L1 10 66 101 134 33 666
M3L1 10 66 101 117 50 666
M4L1 10 66 101 101 66 666
M5L1 10 66 101 84 83 666

M1L2 20 66 101 150 17 666
M2L2 20 66 101 134 33 666
M3L2 20 66 101 117 50 666
M4L2 20 66 101 101 66 666
M5L2 20 66 101 84 83 666CivilEng 2024, 5, FOR PEER REVIEW 6 
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2.4. Experimental Test Methods

Forty-five mortar cube specimens of 70.6 mm × 70.6 mm × 70.6 mm were tested
for compressive strength [50]. For the split tensile strength [51], 45 cylindrical specimens
(100 mm in diameter and 200 mm in height) were cast. A drop-weight hammer of an impact
testing set-up is shown in Figure 3. The impact strength test of mortar specimens was
carried out following ACI 544.2R—89 [52]. The specimens in disc form 150 mm in diameter
with a thickness of 50 mm were cast for the impact strength test. The impact on the surface
of the disc specimen was produced by dropping a hammer of 4.54 kg from a height of
457 mm, as presented in Figure 4. The hammer was dropped, and the number of blows
essential to cause the first visible crack on the topmost surface of the disc specimen (N1)
and the ultimate failure (N2) was recorded. At every crack level, the impact energy (IE)
was computed by Equation (1).

Impact Energy, IE = N·m·g·h (1)

where N = number of blows at the crack formation; m = mass of the drop hammer in kg;
g = acceleration due to gravity in m/s2; h = drop height in mm. Three sample specimens
in all the tests were performed at 7, 28, and 56 days. The scanning electron microscope
(SEM) test was conducted to study the morphological characteristics of the selected mortar
specimens.
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2.5. Neural Network Modelling

In the present study, the “tool” in MATLAB was employed to process the data. An
ANN model was developed by using these experimental values. The testing data were
chosen as the subset of the training dataset (Appendix A) for improved accuracy and
predictability of the ANN model [53]. This was randomly be selected from the total dataset.
During ANN processing, the entire dataset was randomly be allocated into train–test–
validation sets of 70–15–15%, respectively. For the prediction of compressive strength,
tensile strength, and impact strength of QBC, the “Feed-Forward Back-Propagation” frame-
work was used. A basic ANN model generally consists of input and output layers along
with one hidden layer. The inputs were considered as the length of the fibre, RHA, WA, and
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curing days. The target outputs were compressive strength, tensile strength, and impact
strength of QBC. The ranges of input and output parameters for ANN modelling are shown
in Table 4.

Table 4. Ranges of input and output parameters for ANN.

Input/Output Parameters Range

Input

Fibre length 0–20
RHA 0–150
WA 0–100

Curing days 7–56

Output
Compressive strength 2.07–12.56

Tensile strength 0.42–2.94
Impact strength 977–3969

2.6. Training Methodology

The gradient descent momentum and adaptive learning rate (traingdx) were chosen
as the training function with a “LOGSIG” as the transfer function. The number of epochs
and validation checking were kept at 10,000 and 1 × 10−5 as a minimum gradient for more
accuracy. During the training stage, the number of hidden layers and their neurons was
altered to obtain the closest results to the experimental values so that the errors would be
minimal. Since a simplified ANN model was chosen, only one hidden layer with various
hidden neurons, such as 5, 7, 8, 9, and 10 [54,55], was performed. The performance of the
ANN model in predicting compressive strength, tensile strength, and impact energy was
evaluated using several error metrics, including the correlation coefficient (r), coefficient
of determination (R2), root mean squared error (RMSE), mean absolute error (MAE),
and mean absolute percentage error (MAPE) [56–58]. The network architecture is given
in Figure 5.
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3. Test Results and Discussions
3.1. Compressive Strength

The average compressive strength of various mixes for different curing days are
presented in Figure 6. From the results obtained from 7 days of testing, M4L2 performed
well in terms of strength, preceding the strength values of M4L1 due to the presence of
fibre length, which arrests the cracks for a longer application of load. Lower strength
was attained in MC1. The mixes M1L1 and M1L2 produced similar strength results of
2.34 N/mm2. The results obtained from the control mixes were lower when compared to
the mixes incorporated with fibres. Short fibres of 10 mm in length incorporated in the
mixes resulted in lower strength than the 20 mm fibres. The mix M4L2 of 10.97 N/mm2

performed well at 28 days of curing, whereas M1L2 resulted in lower strength results due
to the incorporation of 45% rice husk ash. As the age of curing increases, the strength
values increase, and a similar trend was observed in the earlier findings [20]. By observing
the results, it was found that there is a gradual increase in strength with the replacement of
wood ash ranging from 5% to 20%, after which there is a reduction in the strength values.
While comparing the results of 56 days of testing, mix M4L2 performed well in terms of
strength results, whereas MC5 resulted in a lower strength value. There is a percentage
increase in strength of about 51.03% for mix M4L2 compared to control mix MC4. On
comparing the results of 56 days of testing with 28 days, there is an increase in strength of
12.70%.

CivilEng 2024, 5, FOR PEER REVIEW 9 
 

 

While comparing the results of 56 days of testing, mix M4L2 performed well in terms of 
strength results, whereas MC5 resulted in a lower strength value. There is a percentage 
increase in strength of about 51.03% for mix M4L2 compared to control mix MC4. On 
comparing the results of 56 days of testing with 28 days, there is an increase in strength of 
12.70%. 

 
Figure 6. Results of compressive strength of QBC. 

The failure patterns of cube specimens subjected to the compressive strength test are 
shown in Figure 7. The type of failure that occurred in the cube specimens of QBC is crush-
ing failure. Upon observing the specimens during the test, the failure of control specimens 
was brittle and destructive, with a loud noise. In contrast, the failure pattern was found to 
be similar to that of the control specimen incorporated with a 10 mm length of fibres, 
which consumes a certain amount of energy and postpones the crack formation. However, 
specimen M4L2 consumes an enormous amount of energy and develops fine cracks at a 
later period, and the resulting failure pattern changes from brittle to quasi-ductile. 

Figure 6. Results of compressive strength of QBC.

The failure patterns of cube specimens subjected to the compressive strength test are
shown in Figure 7. The type of failure that occurred in the cube specimens of QBC is crushing
failure. Upon observing the specimens during the test, the failure of control specimens was
brittle and destructive, with a loud noise. In contrast, the failure pattern was found to be
similar to that of the control specimen incorporated with a 10 mm length of fibres, which
consumes a certain amount of energy and postpones the crack formation. However, specimen
M4L2 consumes an enormous amount of energy and develops fine cracks at a later period,
and the resulting failure pattern changes from brittle to quasi-ductile.
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3.2. Splitting Tensile Strength

The average results of the split tensile strength for various ages of testing (7, 28, and
56 days) are depicted in Figure 8. At 7 days of testing, mix M4L2 produced a higher strength
value, whereas M5L1 produced a lower strength value. Observing the results illustrates that
there is a gradual increase in strength with the replacement of wood ash ranging from 5% to
20%, after which there is a reduction in the strength values. From the results obtained from
28 days of curing, the higher tensile strength was attained in M4L2. Mixes MC1 and MC2
produced similar strength results. When comparing the results of all mixes, the control mixes
attained lower strength values. Observing the results, it was concluded that the increase in
RHA content beyond 25% and WA content beyond 20% leads to lower strength values. A
similar trend pattern of strength results was observed from the research work of Kanchan
Mala et al. [59]. Similar strength results were observed in mixes MC4 and M2L2.

The highest strength value was achieved in M4L2 at 56 days of testing, whereas the
lowest strength was obtained in MC3. There is an increase in the strength percentage of
about 29.19% for mix M4L2 when compared to control mix MC4. The mixes M4L1 and
M5L2 produced similar strength results. On comparing the results of 56 days of testing
with 28 days, there was an increase in strength of 31.84%. The failure pattern of cylindrical
specimens subjected to the spilt tensile strength test is shown in Figure 9. Failure of control
specimens was accompanied by a huge noise separated into two halves due to brittle
nature [60]. The failure mode of cylindrical specimens incorporated with a 10 mm length
of fibres was similar to that of the control mixes, and there was a delay in the formation
of cracks, which occurred due to the presence of fibres in the mix. The type of failure that
occurred in M4L2 is a columnar fracture with lower noise in which the finer cracks were
arrested by the presence of 20 mm fibres, and the crack formation was prolonged more
when compared to the other mixes.
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3.3. Impact Strength

The results obtained from the impact strength test of QBC are illustrated in Table 5.
The initial value denotes the number of blows required to make the first visible crack (N1),
whereas the final value denotes the ultimate failure (N2) of the specimen. If the number of
blows increases, it leads to an increase in the impact energy value. Figure 10 represents the
impact energy values of QBC for different ages of curing obtained from the average results
of the impact strength test. Observing the results obtained, control mixes suddenly failed,
compared to those incorporated with fibres of various lengths. From the results obtained at
7 days of curing, the mix M5L1 withstands a larger number of blows due to the presence
of fibres of length 10 mm when compared to all the other mixes; hence, the impact energy
produced is greater. The lesser impact energy values were obtained in MC1. Comparing
the results of M5L1 with control mix MC5, we see an increase in its impact energy value of
about 17.37%. The results obtained at 28 days of curing showed that mix M5L1 produced
a higher impact energy value than the other mixes, whereas mix MC1 produced a lower
value. Hence, the impact energy value obtained at 28 days is slightly higher than the values
obtained in the 7 days of curing.

Table 5. Number of blows at initial and final stage of impact strength test of QBC.

Mix ID

Number of Blows

7 Days 28 Days 56 Days

Initial Stage
(N1)

Final Stage
(N2)

Initial Stage
(N1)

Final Stage
(N2)

Initial Stage
(N1)

Final Stage
(N2)

MC1 20 48 25 53 38 71
MC2 26 57 31 63 40 73
MC3 33 82 39 82 47 94
MC4 31 74 36 81 30 80
MC5 38 100 43 107 53 124

M1L1 59 123 66 128 72 159
M2L1 54 112 58 115 66 168
M3L1 67 115 73 123 81 186
M4L1 60 108 65 110 75 173
M5L1 74 121 80 126 91 195

M1L2 55 109 58 113 67 154
M2L2 52 105 55 107 58 163
M3L2 60 111 63 113 75 175
M4L2 52 96 57 100 69 179
M5L2 70 116 74 118 90 182

Comparing the results of M5L1 with control mix MC5, there is an increase in its impact
energy value of about 15.08%. From the results obtained from 56 days of curing, it was
concluded that due to the presence of wood ash in the mix, its impact energy value increases
as the age of curing increases, and a similar trend pattern was observed [61]. M5L1 obtained
a higher energy value because it had withstood a greater number of blows compared to the
other mixes. The results obtained from mix MC1 produced the lowest impact value of all the
mixes. There is a percentage increase in energy value of about 36.40% for mix M5L1 when
compared to control mix MC5 at 56 days of testing. On comparing the results of 56 days of
testing with 28 days, there was a percentage increase in its energy value of about 35.37%.

The failure patterns of specimens subjected to the impact strength test are shown in
Figure 11. Figure 12 depicts the formation and propagation of cracks at (a) the first crack
stage, (b) the post-cracking stage, and (c) the failure stage of QBC disc specimens. Based
on the results obtained from this test, it was found that the control mix specimens had
been broken down and shattered into small multiple fragments, which had a minimum
blow number of 50. Whereas the specimens incorporated with the fibres in the mix had
withstood a larger number of blows, having a minimum value of 110 blows for mixes
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having a 10 mm fibre length and 90 blows for mixes having a 20 mm fibre length. Hence,
fibres of 10 mm in length were found to be more effective than those of 20 mm in length.
There was a gradual increase in impact energy value by using WA up to 15% and RHA up
to 35%, beyond which there was a slight decrease in the impact energy value.
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Figure 12. Formation and propagation of cracks in QBC disc specimens.

3.4. Microstructural Study

The SEM analysis was carried out for the control mix (MC4) and mix M4L2, presented
in Figures 13 and 14, respectively. One of the interesting features of the microstructural
study reveals that the fine strands of hybrid fibres were extended longitudinally among
all composites. SEM analysis was conducted qualitatively and quantitatively to assess the
microstructure of the cement matrix and the chemical composition of the C–S–H (calcium
silica hydrate) gel present in the QBC. It was observed that there is a huge difference in
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the surface texture of MC4 and M4L2. Observing the SEM images, the control mix shows
the maximum surface of the sample is covered by the unhydrated portions. In contrast,
the unhydrated portions of cement were found to be lesser in the case of M4L2. Larger
crack formation was observed in the control mix. In contrast, the formation of cracks was
resisted by the presence of hybrid natural fibres in the quaternary-blended mix of M4L2.
Larger voids were present in MC4. The microstructure of M4L2 resulted in the denser
composition of the matrix with less porosity, which was attributed to the synergic action of
QBC. Supplementary cementitious materials such as metakaolin (30%), rice husk ash (30%),
and wood ash (20%) are composed of finer particles that, when replaced by cement (20%),
tend to occupy the spaces of voids, thereby reducing the formation of pores, which results
in dense matrix formation. Hence, microcrack formation was greatly reduced and contact
with fine aggregates was improved. In addition, C–S–H gel formation was observed, which
is one of the important elements present in QBC, as it improves the cementitious/binding
properties of the end product, hence resulting in increased strength. Due to the presence
of fibres, even the minute cracks had been arrested, resulting in higher strength. The use
of SCM, in addition to cement, significantly improves the morphology and enhances the
microstructural aspects of quaternary-blended composites.
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4. Proposed Expressions for Synergic Action of Binder Materials

The present study is focused on obtaining the efficiency factor for various SCMs,
including metakaolin, rice husk ash, and wood ash, based upon which compressive strength
can be predicted. To obtain the efficiency factor of QBC, an equation was developed based
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on the findings of Bolomey’s equation to predict the results of compressive strength [62], as
given in Equation (2).

fc(days) = A1

(
C
W

)
+ A2 (2)

By considering the individual effect of SCM, Bolomey’s equation is modified as given
below in Equation (3). The equation to obtain the efficiency factor of individual admixture
kMA is given in Equation (4).

fc(days) = A1

[
(C + kMA PMA )

W

]
+ A2 (3)

kMA =

(
1

PMA

)[
−C + W

(
fc − A2

A1

)]
(4)

Since the efficiency factor of individual admixture can be obtained from the above
equation, it is essential to compute the combined effect of SCM, which is expressed in
terms of kTB and can be calculated using Equation (5). The final efficiency factor (k′MA) is
calculated by using Equation (6).

kTB = {W[( fc − A2)/A1]− C}/(kMA PMA) (5)

k′MA = kTB kMA (6)

where k′MA = final efficiency factor.
An equation was developed to predict the strength of the binary mix, as given in

Equation (6). Similarly, Equation (7) is modified to compute the strength of ternary and
quaternary mixes and is given in Equations (8) and (9).

fc(days) = A1

[
C
W

+ kTB (kMA PMA)
/W

]
+ A2 (7)

fc(days) = A1

[
C
W

+ kTB (kMA1 PMA1 + kMA2 PMA2)
/W

]
+ A2 (8)

fc(days) = A1

[
C
W

+ kTB (kMA1 PMA1 + kMA2 PMA2 + kMA3 PMA3 )/W

]
+ A2 (9)

where k’MA = final efficiency factor; fc = predicted compressive strength in N/mm2; A1 and
A2 = coefficients for dissimilar ages of testing; C = amount of cement (kg/m3); W = amount of
water (kg/m3); kMA = efficiency factor; PMA = quantity of admixture (kg/m3); kTB = synergic
factor of admixtures. In this study, Equation (9) was modified to predict the compressive
strength of QBC with coefficients such as αMA, αMK, αRHA, and αWA, as shown in Equation (10)

fc(days) = X1

[
C
W

+αMA

(
αMK PMK +αRHA PRHA +αWA PWA + Vf 1 + Vf 2

)/W

]
+ X2 (10)

where X1 and X2 = coefficients for different ages of curing; αMA = synergic factor of mineral
admixtures; αMK = factor of efficiency for metakaolin; αRHA = factor of efficiency for rice
husk ash; αWA = factor of efficiency for wood ash; PMK = amount of metakaolin (kg/m3);
PRHA= amount of rice husk ash (kg/m3); PWA = amount of wood ash (kg/m3); Vf1 = volume
fraction 1 (0.25%); Vf2 = volume fraction 2 (0.25%).

The following steps were adopted to obtain the synergistic action of QBC:
Step 1: The compressive strength results of control mixtures by maintaining a constant

w/b ratio of 0.5 were fed into Origin Pro software (2022) as input.
Step 2: Equation (10) was used to compute the coefficients X1 and X2 at the ages of 7,

28, and 56 days.
Step 3: Then, αMA was computed for various mixes at different curing ages.
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Table 6 lists the constants X1 and X2 of various mixes for different ages of testing. Table 7
lists the synergic factor and analogous coefficients of SCM for different ages of testing.

Table 6. Constants X1 and X2 for different ages of testing.

Mix ID Age of Testing X1 X2

MC1
7 −5.20 2.60

28 5.22 −2.61
56 −2.60 1.30

MC2
7 −5.22 2.61

28 −5.20 2.60
56 5.22 −2.61

MC3
7 −0.53 2.67

28 5.20 −2.60
56 1.04 −5.20

MC4
7 −4.99 2.49

28 0 4.81
56 5.22 −2.61

MC5
7 −5.22 2.61

28 −1.04 5.22
56 −1.04 5.22

M1L1
7 5.22 −2.61

28 5.22 −2.61
56 5.22 −2.61

M2L1
7 −1.04 5.22

28 −5.20 2.60
56 −1.04 5.20

M3L1
7 −1.04 5.20

28 −1.04 5.22
56 −1.04 5.22

M4L1
7 −1.04 5.20

28 −5.22 2.61
56 1.65 −8.26

M5L1
7 −2.08 1.04

28 −1.04 5.22
56 −5.22 2.61

M1L2
7 5.22 −2.61

28 −5.22 2.61
56 −1.04 5.20

M2L2
7 5.22 −2.61

28 0 4.61
56 5.22 −2.61

M3L2
7 −5.22 2.61

28 −1.04 5.20
56 −1.04 5.22

M4L2
7 −1.04 5.20

28 −1.04 5.22
56 5.20 −2.60

M5L2
7 −5.22 2.61

28 −5.22 2.61
56 −5.22 2.61
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Table 7. Synergic factor and analogous coefficients of SCM.

Mix ID Age of
Testing αMA αMK αRHA αWA

MC1
7 0.042 0.296 0.199 1.760
28 −0.091 1.988 1.338 11.813
56 0.041 −2.413 −1.624 −14.337

MC2
7 0.034 0.233 0.176 0.715
28 0.094 −0.418 −0.315 −1.279
56 −0.090 2.570 1.937 7.868

MC3
7 0.003 2.068 1.785 4.177
28 −0.090 2.186 1.887 4.416
56 −0.016 17.311 14.944 34.970

MC4
7 −4.306 0.002 0.002 0.003
28 0 0 0 0
56 −0.089 2.700 2.700 4.131

MC5
7 0.034 0.233 0.281 0.284
28 0.011 2.366 2.845 2.879
56 0.002 0.743 0.893 0.904

M1L1
7 −0.093 1.470 0.990 8.739
28 −0.091 2.053 1.382 12.198
56 −0.089 2.764 1.861 16.426

M2L1
7 0.013 3.989 3.007 12.211
28 0.088 −0.612 −0.462 −1.876
56 0.021 −1.561 −1.176 −4.778

M3L1
7 0.006 1.036 0.894 2.093
28 0.020 −1.854 −1.600 −3.745
56 0.018 −2.828 −2.441 −5.713

M4L1
7 0.019 −2.210 −2.210 −3.382
28 0.077 −2.224 −2.224 −3.404
56 −0.026 19.925 19.925 30.491

M5L1
7 0.034 −2.469 −2.969 −3.005
28 0.020 −1.854 −2.229 −2.256
56 0.079 −1.577 −1.896 −1.919

M1L2
7 −0.093 1.470 0.990 8.739
28 0.105 −0.283 −0.191 −1.685
56 0.019 −2.210 −1.488 −13.132

M2L2
7 −0.092 1.535 1.157 4.700
28 0 0 0 0
56 −0.089 2.700 2.035 8.263

M3L2
7 0.084 −0.801 −0.691 −1.618
28 0.019 −2.210 −1.908 −4.465
56 0.017 −4.451 −3.843 −8.992

M4L2
7 0.017 −4.158 −4.158 −6.364
28 0.016 −8.672 −8.672 −13.272
56 −0.087 4.782 4.782 7.318

M5L2
7 0.090 −0.542 −0.652 −0.660
28 0.082 −0.995 −1.196 −1.2117
56 0.080 −1.318 −1.585 −1.604

The constants X1 and X2 from Table 6 and the synergic factor and their coefficients
from Table 7 were substituted in the equations corresponding to the ages of curing. The
compressive strength results were obtained by solving those equations. The results obtained
from the experimental compressive strength values and the predicted compressive strength
values and their percentage differences are given in Table 8. There was a significant
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difference in the strength values compared to the value obtained from the experimental
work. At 7 days of testing, the predicted value of M4L2 was lower when compared to
the experimental value, whose percentage difference was 7.04. The highest percentage
difference was attained at M5L1, and the lowest percentage difference was attained at MC2.
While comparing the strength results for 28 days of curing, the predicted value of M4L2
was higher, and the percentage difference was 8.96. The highest percentage difference was
attained at M1L2, and the lowest percentage difference was attained at M3L1. The predicted
strength value obtained at 56 days of curing is significant to that of the experimental value
of compressive strength. The percentage difference for M4L2 was found to be 4.06. The
lowest percentage difference was attained at 1.62, whereas the highest percentage difference
was attained at MC3.

Table 8. Experimental vs predicted values of compression strength test.

MIX ID
Experimental Compressive Strength (N/mm2) Predicted Compressive

Strength (N/mm2)
Difference

(%)

7 Days 28 Days 56 Days 7 Days 28 Days 56 Days 7 Days 28 Days 56 Days

MC1 2.073 3.945 5.416 2.472 4.102 5.163 17.55 3.90 4.78
MC2 2.273 4.280 5.751 2.325 4.956 6.050 2.26 14.63 5.06
MC3 2.407 4.543 5.885 2.524 4.907 5.185 4.74 7.70 12.64
MC4 2.872 4.815 6.152 2.667 4.356 6.652 7.40 10.00 7.81
MC5 2.273 4.146 5.149 2.524 3.908 5.546 10.46 5.91 7.42
M1L1 2.340 4.146 6.353 2.981 4.606 6.950 24.09 10.51 8.97
M2L1 3.143 4.882 6.553 4.121 4.205 6.015 26.92 14.90 8.56
M3L1 4.948 6.754 7.356 3.946 6.903 7.053 22.53 2.18 4.20
M4L1 6.954 9.897 11.661 5.279 9.108 11.473 27.38 8.30 1.62
M5L1 4.480 6.754 7.891 3.350 6.237 7.292 28.86 7.95 7.89
M1L2 2.340 3.878 6.954 2.145 3.102 6.154 8.69 22.23 12.20
M2L2 2.541 4.614 6.152 2.068 4.011 6.869 20.52 13.98 11.01
M3L2 5.483 6.954 8.359 4.954 6.249 8.157 10.13 10.67 2.44
M4L2 8.158 10.967 12.563 7.603 10.026 12.062 7.04 8.96 4.06
M5L2 4.681 6.085 7.088 5.165 7.010 7.485 9.83 14.12 5.44

5. Performance Evaluation of Strength Predictions of QCB from ANN Modelling

It is noted that the ANN models [4:5:1], [4:10:1], and [4:8:1] (indicated as 4 inputs;
1 hidden layer with 5,10, and 8 neurons; and 1 output) were the best possible outcomes for
compressive strength, tensile strength, and impact strength, respectively. The performance
in terms of best-suited validation, training stage, and regression results for the ANN
models [4:5:1], [4:10:1], and [4:8:1] is presented in Figure 15. A comparison of observed and
modelled values for the strength characteristics of QBC of 7, 28, and 56 days are presented
in Figure 16.

The overall performance of the model for various strength parameters of QBC was
evaluated through statistical error parameters, summarised in Table 9. In all cases, R values
more than 0.9 signify a strong correlation between the observed and modelled results. This
demonstrates that the generated ANN structure, trained using experimental results, truly
predicted the target values. It can be inferred that the ANN models [4:5:1], [4:10:1], and
[4:8:1] could be employed for predicting the compressive strength, tensile strength, and
impact energy of quaternary-blended composites.

Table 9. Overall statistical parameters of ANN models for strength parameters of QBC.

Parameters
Compressive Strength Tensile Strength Impact Energy

7 Days 28 Days 56 Days 7 Days 28 Days 56 Days 7 Days 28 Days 56 Days

R 0.990 0.997 0.963 0.951 0.965 0.951 0.994 0.997 0.995
R2 0.981 0.995 0.927 0.903 0.932 0.904 0.989 0.995 0.991

RMSE 0.255 0.150 0.562 0.080 0.092 0.146 54.750 31.280 94.230
MAE 0.152 0.118 0.410 0.069 0.065 0.112 34.215 23.810 46.860

MAPE 4.250 2.236 5.551 11.380 4.600 4.990 2.390 1.201 1.530
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Figure 15. Best-suited validation, training stage, and regression results for the ANN models: (a) 
[4:5:1]; (b) [4:10:1]; (c) [4:8:1] for compressive strength, tensile, strength, and impact energy of QBC. Figure 15. Best-suited validation, training stage, and regression results for the ANN models:
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of QBC.
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6. Conclusions

This work aimed to evaluate the viability of using different agro-industrial waste
pozzolanic materials, including ordinary Portland cement, metakaolin, rice husk ash, and
wood ash, in the production of sustainable concrete. The hardened properties of these
materials were obtained and then validated using scanning electron microscopy (SEM)
and artificial neural networks (ANNs). Fifteen distinct ratios of pozzolanic ingredients,
substituting varying percentages of cement, were included in the concrete. Several me-
chanical and durability tests were conducted, including compressive strength, split tensile
strength, and impact strength. Furthermore, artificial neural networks (ANNs) were used
in machine learning to improve the mix design. Below are a few key findings derived from
the following research:

1. The highest compressive strength value was attained at M4L2, which was incorporated
with fibres of 20 mm in length. The maximum strength attained at 56 days of testing
was found to be 12.563 N/mm2. On comparing the results of 56 days of testing with
28 days, there was an increase in strength of 12.70%. The increase in strength was
about 51.03% for mix M4L2 compared to control mix MC4 at 56 days of testing.

2. Similarly, mix M4L2 produced a higher strength of about 2.942 N/mm2 for the tensile
strength. On comparing the results of 56 days of testing with 28 days, there was an
increase in strength of 31.84%. There was an increase in strength of about 29.19% for
mix M4L2 when compared to control mix MC4 at 56 days of testing.

3. The mix M5L1 produced higher impact energy among all the mixes. An increase in
energy value of 35.37% was observed. Small strands of fibres with a length of 10 mm
withstand a higher number of impact blows than the 20 mm length of fibres. There
was an increase in energy value of about 36.40% for mix M5L1 when compared to
control mix MC5 at 56 days of testing.

4. On observing the microstructural characteristics in MC4, larger cracks were developed,
and larger voids were present. Meanwhile, characteristics of M4L2 were due to the
proper cohesion of particles observed with a denser matrix. Only a few microvoids
were present in M4L2. Due to the presence of hybrid fibres in the mix, most cracks
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were arrested. Hence, adding metakaolin to the mix improves the binding properties
and enhances the microstructure in QBC.

5. The efficiency factor showed a significant difference, and the strength values showed
a synergic effect compared to the value obtained from the experimental work.

6. The ANN model used in this study to predict the compressive strength, tensile
strength, and impact strength characteristics of QBC was found to be precise and
agree well with the test results. ANN models [4:5:1], [4:10:1], and [4:8:1] were the best
possible outcomes for compressive strength, tensile strength, and impact strength,
respectively.

7. Scope for Future Work

The present investigation was limited in analysing the following mechanical parame-
ters: compressive strength, split tensile strength, and impact strength, 56 days. Determining
the elastic modulus and longitudinal behaviour of quaternary-blended specimens is nec-
essary, as well the mechanical characteristics and rate of strength increase over 365 days.
The use of artificial intelligence models can achieve further optimisation of quaternary-
mixed concrete. Implementing such ANN models decreases the number of trials in the
approach and leads to the development of more precise predictive models. This is because
a greater quantity of data available significantly enhances the training phase of predictive
models. This enables researchers to implement more accurate prediction models using di-
verse computational approaches, including response surface methodology, gene expression
programming, and other optimisation techniques.
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Appendix A

Fibre Length
(mm)

Cement
(kg/m3)

Metakaolin
(kg/m3)

Rice Husk
Ash (kg/m3)

Wood Ash
(kg/m3)

Fine
Aggregate

(kg/m3)

Curing
(Days)

Compressive
Strength
(N/mm2)

Tensile
Strength
(N/mm2)

Impact
Strength
(N/mm2)

0 66 101 150 17 666 7 2.07 0.44 977

0 66 101 134 33 666 7 2.27 0.76 1160

0 66 101 117 50 666 7 2.41 0.73 1669

0 66 101 101 66 666 7 2.87 0.68 1506

0 66 101 84 83 666 7 2.27 0.52 2035

10 66 101 150 17 666 7 2.34 0.91 2503

10 66 101 134 33 666 7 3.14 0.68 2280

10 66 101 117 50 666 7 4.95 0.57 2341

10 66 101 101 66 666 7 6.95 0.44 2198

10 66 101 84 83 666 7 4.48 0.42 2463

20 66 101 150 17 666 7 2.34 0.94 2219

20 66 101 134 33 666 7 2.54 0.81 2137

20 66 101 117 50 666 7 5.48 0.86 2259

20 66 101 101 66 666 7 8.16 0.99 1954

20 66 101 84 83 666 7 4.68 0.73 2361
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Fibre Length
(mm)

Cement
(kg/m3)

Metakaolin
(kg/m3)

Rice Husk
Ash (kg/m3)

Wood Ash
(kg/m3)

Fine
Aggregate

(kg/m3)

Curing
(Days)

Compressive
Strength
(N/mm2)

Tensile
Strength
(N/mm2)

Impact
Strength
(N/mm2)

0 66 101 150 17 666 7 2.07 0.44 977

0 66 101 134 33 666 7 2.27 0.76 1160

0 66 101 117 50 666 7 2.41 0.73 1669

0 66 101 101 66 666 7 2.87 0.68 1506

0 66 101 84 83 666 7 2.27 0.52 2035

10 66 101 150 17 666 7 2.34 0.91 2503

10 66 101 134 33 666 7 3.14 0.68 2280

10 66 101 117 50 666 7 4.95 0.57 2341

10 66 101 101 66 666 7 6.95 0.44 2198

10 66 101 84 83 666 7 4.48 0.42 2463

20 66 101 150 17 666 7 2.34 0.94 2219

20 66 101 134 33 666 7 2.54 0.81 2137

20 66 101 117 50 666 7 5.48 0.86 2259

20 66 101 101 66 666 7 8.16 0.99 1954

20 66 101 84 83 666 7 4.68 0.73 2361

0 66 101 150 17 666 28 3.95 1.04 1079

0 66 101 134 33 666 28 4.28 1.04 1282

0 66 101 117 50 666 28 4.54 1.22 1669

0 66 101 101 66 666 28 4.82 1.43 1649

0 66 101 84 83 666 28 4.15 1.2 2178

10 66 101 150 17 666 28 4.15 1.07 2605

10 66 101 134 33 666 28 4.88 1.2 2341

10 66 101 117 50 666 28 6.75 1.28 2503

10 66 101 101 66 666 28 9.90 1.46 2239

10 66 101 84 83 666 28 6.75 1.15 2565

20 66 101 150 17 666 28 3.88 1.35 2300

20 66 101 134 33 666 28 4.61 1.43 2178

20 66 101 117 50 666 28 6.95 1.59 2300

20 66 101 101 66 666 28 10.97 2.01 2035

20 66 101 84 83 666 28 6.09 1.67 2402

0 66 101 150 17 666 56 5.42 1.77 1445

0 66 101 134 33 666 56 5.75 1.9 1486

0 66 101 117 50 666 56 5.89 1.61 1913

0 66 101 101 66 666 56 6.15 2.08 1628

0 66 101 84 83 666 56 5.15 1.9 2524

10 66 101 150 17 666 56 6.35 2.24 3236

10 66 101 134 33 666 56 6.55 2.47 3419

10 66 101 117 50 666 56 7.36 2.32 3786

10 66 101 101 66 666 56 11.66 2.63 3521

10 66 101 84 83 666 56 7.89 2.16 3969

20 66 101 150 17 666 56 6.95 2.47 3134

20 66 101 134 33 666 56 6.15 2.71 3318

20 66 101 117 50 666 56 8.36 2.32 3562

20 66 101 101 66 666 56 12.56 2.94 3643

20 66 101 84 83 666 56 7.09 2.63 3704
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