
Citation: Ding, T.; Wang, Z.; Liu, Y.;

Wang, X.; Sun, T.; Yang, S. Study on

the Damage Behavior of Engineered

Cementitious Composites:

Experiment, Theory, and Numerical

Implementation. CivilEng 2024, 5,

1135–1160. https://doi.org/10.3390/

civileng5040055

Academic Editors: Akanshu Sharma

and Angelo Luongo

Received: 20 October 2024

Revised: 26 November 2024

Accepted: 29 November 2024

Published: 3 December 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Study on the Damage Behavior of Engineered Cementitious
Composites: Experiment, Theory, and Numerical Implementation
Tingting Ding 1, Zhuo Wang 1, Yang Liu 1, Xinlong Wang 2, Tingxin Sun 2 and Shengyou Yang 2,*

1 Shandong Provincial Communications Planning and Design Institute Group Co., Ltd., Jinan 250101, China;
sjy_yfzx_tding@163.com (T.D.); sjy_yfzx_zwang@163.com (Z.W.); sjy_yfzx_yliu@163.com (Y.L.)

2 School of Civil Engineering, Shandong University, Jinan 250061, China; 202214995@mail.sdu.edu.cn (X.W.);
202235070@mail.sdu.edu.cn (T.S.)

* Correspondence: syang_mechanics@sdu.edu.cn

Abstract: The ever-increasing material performance requirements in modern engineering structures
have thrust engineered cementitious composites (ECCs) into the limelight of civil engineering research.
The exceptional tensile, bending, and crack-control abilities of ECCs have sparked significant interest.
However, the current research on the mechanical behavior of ECCs primarily focuses on uniaxial
tensile and compressive constitutive relationships, leaving a gap in the form of a comprehensive
multidimensional constitutive model that can fully describe its complex behavior at large strains. This
study rigorously addresses this gap by initially investigating the uniaxial tensile and compressive
behavior of ECCs through experiments and establishing a one-dimensional constitutive relationship
of ECCs. It then introduces the concepts of damage energy release rate and energy equivalent
strain, and constructs a three-dimensional constitutive model of ECCs by introducing the damage
variable function. We write the numerical algorithm of our theoretical model in terms of the VUMAT
subroutine and implement it into ABAQUS 2019 finite element software. We validate the accuracy
and practicality of the multidimensional constitutive model by comparing the experimental data of
uniaxial tension/compression and four-point bending. This paper enriches the theoretical system of
ECCs and provides rigorous guidance for the performance optimization and practical application of
such advanced engineering materials.

Keywords: engineered cementitious composites (ECCs); high ductility; material damage; constitutive
model; numerical implementation

1. Introduction

Concrete is a widely used civil engineering material. Its future development in
infrastructure construction lies in green and low-carbon strategies and extreme engineering
environments. To address concrete’s limitations, material additives are commonly used to
enhance its tensile strength, ensuring the durability and safety of concrete structures [1].

Traditional concrete is widely used in various structural engineering applications due
to its relatively low construction and maintenance costs and its excellent durability and
workability. However, conventional concrete, with its low tensile strength, is prone to
cracking, and once damaged, it completely loses its load-bearing capacity, significantly
affecting its performance. Many scholars have incorporated various fibers into concrete
to address these issues to improve its durability and toughness [2–6]. Li and his collab-
orators developed polyvinyl alcohol (PVA) fiber-reinforced cement-based composites in
the exploration process and studied their high performances experimentally and theoreti-
cally [7–10]. Subsequently, with in-depth research and continuous optimization of material
properties, fiber-reinforced concrete [11,12], standard high-performance fiber-reinforced
concrete [13–15], and high-ductility fiber-reinforced cementitious composites [16–21] were
successively born.
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In general, engineered cementitious composites (ECCs) use short PVA fibers for re-
inforcement, with a fiber content volume ratio of about 2%. Its characteristics are high
ductility, high toughness, tensile hardening, and fine crack density [22]. The ultimate tensile
strain can reach more than 3%, effectively overcoming the defect of brittle cracking in ordi-
nary cement-based materials [23]. In addition, ECCs have shown excellent performance
in resistance to impact [24], fatigue [25], freeze–thaw cycles [26], corrosion [27], and wear
resistance, and also have good self-healing properties [28]. These characteristics give ECCs
broad application prospects in civil engineering, offering new solutions to improve the
safety and durability of building structures [29].

The current research on ECCs mainly involves experimental studies of uniaxial tensile
and compressive properties, as well as constitutive modeling [30], the analysis of the effects
of different ratios and additives on the properties [31], as well as the evaluation of the
performance of ECCs and the discussion of the engineering applications [32], which gradu-
ally deepens the understanding of the properties of ECCs. Compared to regular concrete,
ECCs are known for exceptional tensile properties, making these a focal point of research.
Currently, various uniaxial tensile constitutive models for ECCs have been proposed. From
the macroscopic mechanical properties, researchers have successively proposed the trilinear
hardening model [7], the bifold hardening model [33], and the improved bilinear hardening
model [34], etc. Chen et al. [35] presented a biaxial constitutive model of ECCs, considering
the biaxial mechanical behavior of concrete. While these models can accurately describe
the nonlinear characteristics of the stress–strain relationship, they struggle to accurately
reflect the damage of ECCs due to the development of microcracks.

On the other hand, starting from the microscopic point of view, scholars have es-
tablished microscopic models based on fracture mechanics to consider the fiber-bridging
effect to develop the uniaxial tensile intrinsic model [36] and to evaluate the effect of initial
defects on the tensile properties of ECCs [37]. However, these models can only describe
the uniaxial model, which cannot be applied to engineering scenarios that include more
complicated stress conditions.

To fully elucidate the stress behavior of ECCs, particularly the damage evolution
law, researchers have incorporated damage mechanics methods into the investigation of
ECC tensile constitutive models. For example, Krahl et al. [38] defined the damage factor
based on the tensile and compressive damage evolution law of ultra-high performance
fiber-reinforced concrete by using the stiffness method. Cai et al. [39] also defined the
damage factor for ECCs using the stiffness method, while Cheng et al. [40] used the Najar
energy method to determine the tensile and compressive damage factors of ECCs. The
aforementioned models have an excessive number of fitting parameters, which impedes
the widespread application of ECCs in engineering practice. Therefore, it is crucial to
thoroughly investigate the damage mechanism of ECCs to establish a more accurate and
practical ECCs constitutive model.

This article examines the monotonic load test data of ECCs, introduces damage vari-
ables using the stiffness method, and first establishes a simple and physically meaningful
uniaxial tensile constitutive model of ECCs. We then construct a three-dimensional con-
stitutive model of ECCs using energy release rate and energy equivalent strain. We write
the numerical algorithm into the ABAQUS software through the VUMAT subroutine and
compare the numerical results with the uniaxial and four-point bending experimental
data. This theoretical model and its numerical implementation effectively promote the
widespread application of ECCs in engineering practice, furthering their development in
civil engineering.

2. Establishment of a Constitutive Model for ECCs
2.1. Uniaxial Compression
2.1.1. Experiments

ECC raw materials include cement, fly ash, tailings sand, quartz sand, thickener,
water, water-reducing agent, and fiber. The cement grade is P.O. 42.5, and the fly ash is
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grade I. The particle size of quartz sand is 80–120 mesh. The thickener is 150,000 viscosity
hydroxypropyl methylcellulose, and the water-reducing agent is a polycarboxylate series, a
high-efficiency water-reducing agent. The fiber is made of domestically produced PVA fiber
developed by Shandong Provincial Transportation Planning and Design Institute, and the
properties of the fibers are shown in Table 1.The chemical composition of concrete is shown
in Table 2, the chemical composition of fly ash is shown in Table 3, and the mix of ECC
specimens is shown in Table 4. Perform compressive strength tests on ECC specimens with
different proportions and dimensions of 70.7 mm × 70.7 mm × 70.7 mm. The specimen
diagram and test diagram are shown in Figure 1.

Table 1. Selection of uniaxial compression constitutive parameters.

Length (mm) Diameter (µm) Elastic
Modulus (GPa)

Tensile
Strain (%)

Tensile
Strength (MPa)

Density
(g/cm3)

12 40 39.5 7.0 1650 1.3

Table 2. Chemical composition of cement.

Chemical Composition CaO SiO2 Al2O3 Fe2O3 SO3 MgO K2O MnO

Content (%) 63.21 18.48 6.74 3.45 3.16 3.24 0.53 0.27

Table 3. Chemical composition of fly ash.

Chemical Composition SiO2 Al2O3 Fe2O3 CaO SO3

Content (%) 45.05% 21.97 7.76 17.64 1.46

Table 4. The mix proportion and maintenance time of ECC.

Cement Fly Ash Quartz Sand Water Cement Ratio Fiber Content/% Curing Time (Days)

1 1.2 0.8 0.28 2.0 28

The testing machine is the WDW-300 microcomputer-controlled electronic universal
testing machine manufactured by ZHONGSHISTRENCH Company, Jinan, China.

2.1.2. Model Establishment

The difference in compressive strength between ECCs and ordinary concrete is insignif-
icant. Still, due to the absence of coarse aggregates, the elastic modulus of ECCs is much
lower than that of ordinary concrete, about 20 MPa to 25 MPa. Its uniaxial compression
behavior is almost the same as that of ordinary concrete. Figure 2a shows the constitutive
model of concrete under uniaxial compression, given in the “Code for Design of Concrete
Structures” (GB 50010-2010) [41] (from now on referred to as the code), and Figure 2b
shows the ECCs uniaxial compression test curve obtained according to the “Standard Test
Methods for Physical and Mechanical Properties of Concrete” (GB-T 50081-2019) [42].
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The constitutive model of damage mechanics can be divided into isotropic damage
constitutive models based on the different types of damage:

σ = (1 − D)σ̃ (1)

The anisotropic damage constitutive model is as follows [43]:

σ = (I−D) : σ̃ (2)

where D =
{

Dijkl

}
is the damage tensor and σ̃ is the effective stress tensor.
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For concrete materials, the damage caused by tension and compression is different.
Ladevèze [44] and Mazars [45] believe that after decomposing concrete into positive and
negative stresses, it can be assumed that tensile damage is only caused by tensile stress,
and compressive damage is only caused by compressive stress. Based on this, uniaxial
equivalent strain is defined, and an isotropic damage model for concrete materials is
established. That is to say, compressive stress and tensile stress can be considered to cause
isotropic damage to the concrete material. Therefore, for the uniaxial tension–compression
state, a single scalar damage model is used to describe its damage.

Figure 2 shows that the uniaxial compressive behavior of ECCs is similar to the shape
of the constitutive relationship given in the specifications. The stress–strain relationship
can be written as

σ= (1 − dc)Ecε (3)

where dc is the damage variable under uniaxial compression, and Ec is Young’s modulus of
the linear elastic segment. The explicit form of dc is given by [42]:

dc =

{
1 − ρcnc

nc−1+xnc x ≤ 1
1 − ρc

αc(x−1)γc+x x > 1 (4)

where x = ε
εcr

, ρc =
σcr

Ecεcr
, nc =

Ecεcr
Ecεcr−σcr

, and σcr is the peak stress of the compression curve,
εcr is the strain corresponding to the peak stress, αc and γc are undetermined parameters.
Ferretti [46] provided an effective method for determining the damage variable by using an
experimental procedure. In contrast, the method used in this article is to use Matlab 2019a
to fit formulas with experimental data.

During the softening stage, the secant stiffness of ECCs decreases slower than that of
ordinary concrete. Therefore, the constitutive relationship in the specification is selected as
the constitutive relationship for ECCs under uniaxial compression, and it is improved by
introducing parameters γc to control the shape near the peak of the curve and the secant
stiffness during the descent phase.

2.1.3. Model Validation

ECCs with a fly ash ratio of 0.27, PVA fiber ratio of 1.5%, quartz sand of 0.508, water
reducing agent of 0.015, water cement ratio of 0.36, and sand cement ratio of 0.40 were
selected for the experiment. The parameters were obtained based on the stress–strain curve
of the test data, as shown in Table 5. The values of αc and γc were fitted from experimental
data, with a correlation coefficient of r = 0.99.

Table 5. Selection of uniaxial compression constitutive parameters.

σcr (MPa) εcr E (MPa) αc γc

46.45 0.006042 9027.63 1.391 1.443

We substitute the parameters from Table 5 into Equations (1) and (2) to obtain the theo-
retical curve of the uniaxial compression constitutive model and fit it with the experimental
data. The results are depicted in Figure 3.

When we analyze Figure 3, we observe that the constitutive model’s stress peak
and corresponding strain align with the experimental data. Prior to reaching the peak,
the model’s stiffness matches the experimental data. During the softening stage, the
parameter γc leads to a similar rate of stiffness decrease between the constitutive model
and experimental data.
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2.2. Uniaxial Tension
2.2.1. Experiments

Select the same raw materials as the uniaxial compression test and conduct a tensile
test. Prepare uniaxial tensile test data of 330 mm × 60 mm × 13 mm dog bone specimens
of ECCs with different ratios and test the tensile strength. The schematic diagram and
experimental process diagram of the experiment are shown in Figure 4.

2.2.2. Model Establishment

The behavior of ECC materials under tension significantly differs from the constitu-
tive relationship provided by the specifications. Figure 5a illustrates the uniaxial tensile
constitutive model of concrete materials as per the specifications, resembling the uniaxial
compressive model and comprising linear elastic, nonlinear, and post-peak decreasing
stages. Figure 5b displays the stress–strain curve of ECCs under uniaxial compression
obtained from experiments. A comparison of the two figures reveals that the specified
constitutive relationship is not suitable for describing the mechanical behavior of ECCs
under tension. Consequently, it is necessary to analyze the uniaxial tensile test data for
ECCs and reconstruct the constitutive model for tension.

Based on the characteristics of the uniaxial tension curve of the ECCs, a double-line
model is used to establish the stress–strain relationship, such as

σ = (1 − dt)Etε (5)

Here, the uniaxial tensile damage variable dt is expressed as

dt =

{
1 − ρtnt

nt−1+xnt x ≤ 1
1 − ρm + ρm−ρt

x x > 1
(6)

where x = ε
εtr

, ρt =
σtr

Etεtr
, ρm =

σtp−σtr
Et(εtp−εtr)

, nt =
Eεtr

Eεtr−σtr
, and σtr is the stress at the stage

of failure, εtr is the strain at the stage of failure, σtp is the stress at failure, εtp is the strain
at failure.
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2.2.3. Model Validation

ECCs were chosen for the experiment with a 100% quartz sand replacement rate,
0% tailings sand replacement rate, and 2.0% REC-15 PVA fiber content. The necessary
parameters for the constitutive relationship were derived from the stress–strain curve of
the experimental data, as depicted in Table 6.

Table 6. Selection of uniaxial tensile constitutive parameters.

σtr (MPa) εtr σtp (MPa) εtr Et (MPa)

3.11205 0.00045242 4.49894 0.0333467 9027.63

Substitute the parameters into Equation (4) to obtain the constitutive model. Then, it
will be fitted with the experimental data and generated in Figure 6.

In Figure 6, the inflection points of the current model align with the dense crack
stage, and the slopes of the stress–strain curves at this stage are well-matched. However,
a significant drawback of the model is the absence of a distinct failure point. Even after
reaching the predetermined failure strain, the stress–strain relationship exhibits a linear
growth trend, which differs substantially from the actual material behavior after damage.

To accurately depict the mechanical properties of materials, it is imperative to en-
hance the current model and incorporate a failure mechanism to ensure that it accurately
represents the failure state of materials after reaching the failure strain. After making the
necessary corrections, the uniaxial tensile damage variable is obtained as

dt =


1 − ρtnt

nt−1+xnt x ≤ 1
1 − ρm + ρm−ρt

x 1 <x <
εtp
εtr

1 x ≥ εtp
εtr

(7)

and the fitting result is shown in Figure 7.
As shown in Figure 7, when the tensile strain reaches the failure strain, the element’s

stiffness decreases to zero, consistent with the actual situation. The failure criteria have
been revised.
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2.3. Three-Dimensional Model

The constitutive relationship of concrete under biaxial stress includes incremental
and complete forms. It can be used in complex situations such as unloading and repeated
loading. However, it requires a relatively large number of parameters and needs re-fitting
for different stress ratios. Constitutive relationships under triaxial stress are even more
complex, with more factors and parameters to consider.

We aim to use a one-dimensional damage constitutive relationship to simplify es-
tablishing a multidimensional constitutive model and reduce the number of parameters.
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This involves analyzing stress states and their influence on different loading directions to
derive the damage variable in the main direction. This method simplifies the model com-
plexity and accurately describes concrete’s mechanical behavior under multi-dimensional
stress states.

2.3.1. Principal Stresses and Strains

In a three-dimensional Cartesian coordinate system, the stress state at any point in
a continuous medium can be expressed as a second-order tensor σ = σijei ⊗ ej and the
subscripts i and j range from 1 to 3. The basis vectors are denoted as ei. The component
form of the stress tensor is given by

σ =

σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

 (8)

The principal stresses and the corresponding directions are obtained by solving the
following equation:

|σ− λI| = 0 (9)

where λ is the eigenvalue and I is the second-order identity tensor.
By solving Equation (7), the obtained three eigenvalues are actually the three principal

stresses σ1, σ2, and σ3. The principal stress matrix σp is

σp =

σ1
σ2

σ3

 (10)

In addition, the corresponding feature vectors are ξ i (i = 1, 2, 3). Three unit orthogonal
eigenvectors ξ1, ξ2, ξ3 form the principal direction matrix Q, namely,

Q = (ξ1, ξ2, ξ3) (11)

The state of compression or tension is determined based on the sign of σi in Equation (8).
For instance, if σi < 0, it means that the i-th principal direction is under compression, and if
σj > 0, it means that the j-th principal direction is under tension. The principal stresses, σi,
are arranged from smallest to largest, and, as a result, the corresponding principal directions
are also arranged in the same order. Therefore, if σi < 0 and σ(i+1) > 0, it indicates that the
first i principal directions are all under compression, while the (i + 1)-th and subsequent
principal directions are under tension.

Thus, the principal stress tensor can be decomposed into a compressive principal
stress tensor σ−

p and a tensile principal stress tensor σ+
p , such as

σp = σp
− +σp

+ (12)

Their matrix forms are expressed as

σp
− =

σ−
1

σ−
2

σ−
3

 (13)

and

σp
+ =

σ+
1

σ+
2

σ+
3

 (14)
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From the compressive and tensile principal stress tensor, we can decompose the stress
tensor to obtain the compressive tensor σ− and tensile tensor σ+, whose matrix forms are
expressed as

σ− = Qσ−
p QTand σ+ = Qσ+

p QT (15)

In fact, the relationship between stress, tensile stress, and compressive stress can also
be expressed as [47]:

σ = P+ : σ+and σ = P− : σ− (16)

Here, P+,P− are fourth-order projection tensors, and satisfy the relationship:

P+ + P− = I (17)

where I is the fourth-order identity tensor.
The invariant of the compressive stress tensor is the same as that of the compressive

principal stress tensor. Similarly, the invariant of the tensile stress tensor is the same as that
of the tensile principal stress tensor.

The first invariant and the second bias stress invariant of σ±
p are defined as

I± =
3

∑
i=1

σ±
i (18)

J2
± =

1
6

(
(σ1

± − σ2
±)

2
+ (σ2

± − σ3
±)

2
+ (σ3

± − σ1
±)

2
)

(19)

2.3.2. Free Energy

We define the elastic Helmholtz free energy (HFE) in the framework of continuum
damage mechanics as

ψ0
e =

1
2
σ : εe =

1
2
σ− : εe +

1
2
σ+ : εe = ψ0

e− + ψ0
e+ (20)

For linearly elastic materials, the stress–strain relation is

ε = C : σ (21)

where C is the fourth-order flexibility tensor.
Given that both compressive and tensile loading can cause a decrease in the overall

mechanical properties, we introduce two damage scalars, d− and d+, to represent the
damage variables in compression and tension, respectively. This allows the post-damage
elastic material’s HFE to be expressed as

ψe(εe, d+, d−) = ψe−(εe, d−) + ψe+(εe, d+) (22)

In detail, we define the post-damage compressive stress tensor σ−
d and the tensile

stress tensor σ+
d as

σ−
d = (1 − d−)σ− (23)

σ+
d = (1 − d+)σ+ (24)

Then, the compressed and stretched HFE can be expressed as

ψe±(εe, d±) =
1
2
σd

± : εe =
1
2
(1 − d±)σ± : εe = (1 − d±)ψ0

e± (25)

The presence of plastic strains within the ECCs means that in the case of isothermal
adiabatic, the elastic and plastic HFEs are not coupled [48]. This allows the HFE to be
decomposed into elastic and plastic components for elastic–plastic materials. When the
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material deforms, the strain tensor includes both the elastic strain tensor and the plastic
strain tensor, namely

ε = εe + εp (26)

Concrete materials behave in a quasi-brittle manner when under tensile stress. How-
ever, in the case of ECCs, dense cracks form inside the concrete as it reaches the destructive
stage under tension, demonstrating its excellent tensile properties. This is mainly due to the
combined tensile action of the fibers and the matrix. Despite this, the matrix part of ECCs
still behaves in a quasi-brittle manner. When ECCs are subjected to tension, the effect of
plastic deformation is relatively small, so plastic deformation in tension can be disregarded
when analyzing the mechanical behavior of ECCs. Therefore, the total elastic-plastic HFE
can be expressed as

ψ(εe, κ, d+, d−) = ψe(εe, d+, d−) + ψp(κ, d−) (27)

where κ is a suitable set of plasticity variables, and the plasticity HFE can be expressed as

ψp(κ, d−) = (1 − d−)ψ0
p = (1 − d−)

∫ εp

0
σ− : dεp (28)

2.3.3. Damage Dissipation

According to the second law of thermodynamics, every process must adhere to Clau-
sius’ inequality, which can be simplified as

.
γ = −

.
ψ +σ :

.
ε ≥ 0 (29)

By substituting Equation (27) into (29), we have

σ+
d :

.
ε

e
+σ−

d :
.
ε

e − ∂ψe

∂εe :
.
ε

e
+ (− ∂ψe

∂d−
)

.
d
−
+ (− ∂ψe

∂d+
)

.
d
+
+ (σ−

d :
.
ε

p − ∂ψp

∂κ
· .
κ) ≥ 0 (30)

From Equation (25), the algebraic sum of the first three terms in Equation (26) is zero.
Therefore, to satisfy the laws of thermodynamics, the damage evolution process should
satisfy the following two conditions. The first one is the plastic dissipation inequality:

σ−
d :

.
ε

p − ∂ψp

∂κ
· .
κ ≥ 0 (31)

The second one is damage dissipation inequality:

(− ∂ψe

∂d−
)

.
d
−
= Y−·

.
d
−
≥ 0 (32)

and
(− ∂ψe

∂d+
)

.
d
+
= Y+ ·

.
d
+
≥ 0 (33)

where Y− and Y+ are the compressive and tensile damage energy release rates, respectively.
In detail, the rates are

Y− = ψ0
e− + ψ0

p (34)

Y+ = ψ0
e+ =

1
2
σ+ : C : σ (35)

Equation (31) expresses the elastic HFE, further explored below, regarding concrete’s
plasticity. The HFE of the initial elastic material is

ψ0
e± =

1
2
σ± : C : σ =

1
2E0

{2(1+ν)

3
3J2

± +
1 − 2ν

3
(I1

±)
2 − νI1

+ I1
−} (36)

where I±1 and J±2 are defined by Equations (14) and (15), respectively.
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2.3.4. Evolution Process

In the effective stress space, the evolution laws of plastic strain are expressed as

.
σ = E : (

.
ε− .

ε
p
) (37)

.
ε

p
=

.
λ

p ∂Fp(σ)

∂σ
(38)

.
κ =

.
λ

p
H (39)

F(σ,κ) ≤ 0,
.
λ

p
≥ 0,

.
λ

p
F(σ,κ) = 0 (40)

where
.
λ

p
is the plastic flow factor, FP(σ) is the plastic potential function, κ is the variable

that responds to the plastic hardening process, F(σ,κ) is the plastic yield function, and H
is the plastic hardening function. Its form is

H =
∂κ

εp :
∂Fp

∂σ
(41)

The hardening parameter is positively correlated with the plastic strain increment.
According to the study by Li Jie et al. [47], the hardening variable can be defined as

κ =
{

κ+, κ−
}T (42)

.
κ
±
=

√
.
ε

p± · .
ε

p±
=

∣∣∣ .
ε

p
∣∣∣ (43)

When only considering linear hardening, the effective stress under tension and com-
pression σ+(κ+), σ−(κ−) can be expressed as

σ±(κ±) = σy
± + Ep±κ± (44)

where σy
± is the yield stress under uniaxial tension and compression, and Ep± is the

effective plastic hardening modulus under uniaxial tension or compression.
According to the research of Lubliner and Lee et al., the form of the plastic potential

function should be
FP(σ) = αp I1 +

√
2J2 (45)

where I1 is the first invariant of the stress tensor, J2 is the second bias stress invariant of the
stress tensor, and αp is a parameter reflecting the dilatancy effect of concrete.

According to Lee and Fenves’ revised Lubliner, the plastic yield function can be
expressed as

F(σ, κ) = (αI1 +
√

3J2 + β⟨σmax⟩)− (1 − α)c ≤ 0 (46)

where ⟨x⟩ = max(x, 0) and α is a constant, namely

α =
r − 1

2r − 1
(47)

r =
fby

−

fy
− (48)

where f−by is the peak strength under biaxial isobaric pressure, and f−y is the peak strength
under uniaxial compression. According to the research of Pan et al. [49], r can be taken
as 1.2.
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The dimensionless parameter β and effective cohesive force c are functions of the
hardening parameter, expressed as

β(κ) =
σ−(κ−)

σ+(κ+)
(1 − α)− (1 + α) (49)

c(κ) = σ−(κ−) (50)

Substituting Equation (34) into Equation (33) yields

.
σ = E0 : (

.
ε−

.
λ

p ∂Fp

∂σ
) (51)

According to the plastic consistency condition
.
F = 0 and combined with Equation (35),

we have
.
λ

p
=

∂F
∂σ : E0 :

.
ε

∂F
∂σ : E0 : ∂Fp

∂σ − ∂F
∂κ · H

(52)

This can be obtained by bringing Equation (45) into (38)

.
ε

p
=

.
λ

p
(αp1 +

s
∥s∥ ) (53)

where s is the deviatoric stress tensor.
Substituting Equation (48) into Equation (24) yields

ψ0
p− =

b
2E0

(3J2
− + ηp I−1

√
3J2 −

1
2

I+1 I−1 ) (54)

The result can be expressed as [50]

ψ0
p− =

b
2E0

(3J2
− + ηp I−1

√
3J2 −

1
2

I+1 I−1 ) (55)

where ηp =
√

3
2 αp is the equivalent plastic dilatancy parameter, and b = 4

3
λpE0
∥s∥ is the

material parameter. Substituting Equations (55) and (36) into (34) yields

Y− =
1

2b0
[3J2

− + b1 I1
−
√

3J2
− + b2(I1

−)
2
+ b3 I1

− I1
+] (56)

In the formula, the coefficients b0, b1, b2, b3, respectively, are

b0 = 3E0
3c+2(1+ν)

b1 = 3cηp

3c+2(1+ν)

b2 = 1−2ν
3c+2(1+ν)

b3 = − 1.5c+3ν
3c+2(1+ν)

(57)

where the parameter c is

c =
1 − 2(1 − ν)( fb0

−

f0
− )

2

(1 − 2ηp)( fb0
−

f0
− )

2
− (1 − ηp)

(58)

Generally, the shear-up parameter is believed to have less influence on the multidi-
mensional damage. If we take αp = 0.2, it can be expressed as follows:

Y− = b0(αI1 +
√

3J2)
2

(59)
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Y+ = ψ0
e+ =

1
2
σ+ : C : σ+ =

1
2E0

{2(1+ν)

3
3J2

+ +
1 − 2ν

3
(I1

+)
2 − νI1

+ I1
−} (60)

where b0 is the material parameter and ν is Poisson’s ratio.
The expression for plastic HEF is formulated based on the aforementioned theory.

In practical applications, calculating plastic deformation can employ a simple empirical
model. Considering the coupling of plasticity and damage, Li and Ren [47] proposed a
plastic evolution model:

εp = E−1 : F : E : ε (61)

Here, F is a fourth-order tensor, and takes the form:

F = ζp
+d+P+ + ζp

−d−P− (62)

where ξp
± is the plastic parameter, and P+,P− are given by Equation (16).

According to the thermodynamic theory, the damage evolution function can be
defined as

d± = gY
±(Y±) (63)

The explicit form of the gY is more difficult to give. Still, due to the monotonically
increasing nature of the damage, there is indeed a one-to-one mapping relationship between
gY and Y. If the initial damage state and the energy release rate remain consistent during
the damage process for two stress states. The damage to the material will be the same at the
end of the process. This applies regardless of whether the material is in a one-dimensional
or multidimensional stress state. This is known as the damage consistency condition.

Based on the damage consistency condition, for a given set of principal elastic strains
(εe

1, εe
2, εe

3), we can determine a uniaxial strain εe, which can be made so that the damage
variables are equal at both sets of strains. This strain is the energy equivalent strain.

2.3.5. Deduction to the One-Dimensional Case

For uniaxial loading, whether under tension or compression, there is only one scalar
strain ε, and the undamaged material is a linear elastic material. The constitutive model
constructed by uniaxial loading is an elastic damage model, such as

εe = ε (64)

σ = Eε (65)

Making the uniaxial loading energy release rate equal to the three-dimensional stress
energy release rate, we have

εe− =
1

E(1 − α)

√
Y−

b0
(66)

εe+ =

√
Y+

2E
(67)

Substituting the equivalent energy strain into Formulas (4) and (7) yields:

d± = d±(εe±) (68)

After obtaining the principal direction damage variable, the i-th actual principal stress
tensor can be obtained as

σ̃±
p = (1 − d±) : σ±

p (69)

σ̃p = σ̃+
p + σ̃−

p (70)

According to the actual principal stress tensor, the stress tensor can be obtained as

σ̃ = Qσ̃pQT (71)
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At this point, the three-dimensional constitutive model has been established, and
the specific process is shown in Figure 8. After determining the equivalent strain, the
three-dimensional ontological relationship can be established using a standard procedure.
This offers a powerful tool for analyzing and predicting the mechanical behavior of ECCS
under complex stress states.
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3. Subroutines for the ECCs Constitutive Model
3.1. Secondary Development of VUMAT Subroutines

ABAQUS has built-in interfaces to user material subroutines, UMAT and VUMAT,
enabling users to use material models not defined in the ABAQUS material library. Both
have the same functionality and are suitable for different analyses: the UMAT subroutine
for implicit analysis and the VUMAT subroutine for explicit analysis [51].

Due to the softening phase, also known as the negative tangent stiffness phenomenon,
in the constitutive relationship Equation (2), using the UMAT subroutine leads to conver-
gence difficulties. As a result, this paper utilizes the VUMAT subroutine for programming
and numerical simulation during a quasi-static process.

The primary goal of writing the VUMAT subroutine is to calculate the stress matrix
using the strain increment and the initial stress matrix. There are two methods: the
incremental method and the full method [52].

The incremental method is expressed as

σi+1 = σi + f (∆ε) (72)

where σi is the stress matrix at the beginning of the incremental step, ∆ε is the strain incre-
ment of the incremental step, and σi+1 is the stress matrix at the end of the incremental step.

The full-measurement method is simply expressed as

εi+1 = εi + ∆ε (73)

σi+1 = f (εi+1) (74)

where εi is the strain matrix at the beginning of the incremental step, ∆ε is the strain
increment of the incremental step, εi+1 is the strain matrix at the end of the incremental
step, and σi+1 is the strain matrix at the end of the incremental step.

The specific process is as follows:
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(1) Calculate elastic test stress:
σtr = E : ε (75)

(2) Calculate the principal stress and decompose the test stress:

σtr− = Qσtr−
p QTand σtr+ = Qσtr+

p QT (76)

(3) Calculate energy release rate:

Y± = Y±(σtr+,σtr−) (77)

(4) Calculate equivalent energy strain and damage variables:

εe± = εe±(Y±) (78)

d± = d±(εe±) (79)

(5) Perform plastic correction, substitute into Equation (61) to correct the strain, and
return to step (1) to recalculate the stress–strain and damage variables until:

di+1 − di < δ (80)

where δ is the given result accuracy.

(6) Calculate the true stress based on the damage variable and stress:

σ̃±
p = (1 − d±) : σ±

p (81)

σ̃p = σ̃+
p + σ̃−

p (82)

σ̃ = Qσ̃pQT (83)

3.2. Uniaxial Tension/Compression

When performing finite element analysis or other numerical methods for valida-
tion, it is important to consider cell dependence. To address this, a single element is
used for validation to avoid the issues caused by too many units. The same test data as
in Sections 2.1 and 2.2 are used, and the values of the relevant parameters are taken from
Table 7. For simplicity, plastic deformation is assumed to be negligible.

Table 7. Values of parameters required for numerical simulation and their definitions.

Parameter Value Significance

Density (103 kg/mm3) 2.3 × 10−9 Density
Depvar 20 State variable
E (MPa) 9027.63 Young’s modulus

ν 0.18 Poisson’s ratio
σcr (MPa) 46.45 Peak stress in compression

εcr 0.006042 Strain corresponding to peak stress in compression
σtr (MPa) 3.1121 Inflection point stress in tension

εtr 0.00045 strain corresponding to inflection point stress in tension
σtp (MPa) 4.4989 Breaking point stress in tension

εtp 0.03333467 strain corresponding to breaking point stress in tension
αc 1.391 Damage variable parameters, obtained through fitting
γc 1.443 Damage variable parameters, obtained through fitting
r 1.2 Damage variable parameters, Taken from the convention

Analysis step and boundary conditions: the dynamic explicit analysis is selected, the
constraints are selected as three adjacent faces normal to the constraints, the load form is
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displacement control on one side, and the strain is 0.05. The model and meshing are shown
in Figure 9.
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Figure 9. Simulation of the uniaxial loading of a single element: (a) boundary condition; (b) meshing
of the single element.

3.2.1. Uniaxial Compression

Figure 10 illustrates the strains in the material under uniaxial compression with
different stress levels. Red dots represent the test data for uniaxial compression, while
the solid black lines indicate the results of finite element calculations. Specifically, we
chose to display the stress contour at a strain of 0.03. The graphs indicate that the test data
and the finite element calculation results agree well before reaching the peak stress. They
exhibit the same stiffness before reaching the peak stress and strain and largely overlap
in the material softening stage. Overall, the fitting error between the test data and the
finite element calculation data is less than 2%, demonstrating that the written subroutine
is reliable for uniaxial compression. This subroutine can also be applied to more complex
loading conditions and material behavior analysis.

3.2.2. Uniaxial Tension

Figure 11 demonstrates the variation in tensile stress with tensile strain under uniaxial
tension conditions. From the figure, it can be seen that before the material reaches the
inflection point of the dense crack stage, the finite element solution maintains a good
agreement with the stiffness demonstrated by the test data, i.e., both of them have similar
proportionality between stress and strain, which proves the accuracy of the finite element
model in simulating the elastic behavior of the material. Meanwhile, when the material
enters the inflection point of the dense cracking stage, the finite element solution and the
test data overlap in terms of stress values, which further validates the reliability of the
finite element analysis in predicting the material damage point. However, as the strain
increases further and the material enters the dense crack stage, the test data fluctuate due
to the effects of fiber breakage and pullout, etc., and the finite element solution and the test
data may deviate from each other numerically to a certain extent. Nevertheless, the overall
trends of the two remain consistent, further indicating that the finite element model can
still effectively capture the mechanical behavior of the material in the dense crack stage
despite the numerical deviation.
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In summary, Figure 11 fully demonstrates the good agreement between the finite
element solution and the experimental data under uniaxial tensile conditions, especially at
the critical stages before and after the material damage. This provides strong support for
our further analysis and research.

3.3. Four-Point Bending

ECC materials in pavement structures are primarily exposed to bending loads. As a
result, assessing their bending performance is crucial to understanding their mechanical
properties. The classical four-point bending test for thin plates was employed to evaluate
the bending performance of ECCs.

As shown in Figure 12a, the dimensions of the ECC specimens used in the test are
350 mm × 50 mm × 15 mm thin plate specimens. The four-point bending test loaded the
specimen, and the loading rate was set at 0.5 mm/min. To comprehensively record the
deformation process and cracking of the ECC materials under bending load, the XTDIC
system was utilized for the real-time observation and collection of the deflection of the
specimen in the span. At the same time, the force transducer that comes with the testing
machine was used to measure the change of load, and the specific four-point bending test
setup is shown in Figure 12b.
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The test data for the four-point bending test were chosen to match the ECCs used in
the uniaxial tensile test. This allowed for the calculation of tensile stresses on the bottom
surface. In the model depicted in Figure 12a, the bending moment equation for the thin
plate is M = Px

2 for 0 ≤ x ≤ L/3 and M = PL
6 for L/3 ≤ x ≤ L/2, where P is the load, and

L is the distance between supports.
In the context of purely bending beams, the bending tensile stress at the center of the

bottom surface of the four-point bend is determined according to ASTM C1609-19a [53]
(Standard Test Method for Flexural Properties of Fiber-Reinforced Concrete), namely
σt =

PL
bh2 , where b is the section width, and h is the section height.

In the modeling process, a quarter centrosymmetric model was selected for the study,
as shown in Figure 13, with the same parameter settings as the uniaxial tension test. For
the boundary conditions, the two cylinders are set as rigid bodies, the contact mode is
hard contact, and the friction coefficient is set to 0.1. Fixed constraints are applied to the
supporting cylinders, while symmetric constraints are applied to the tangential surfaces.
For the displacement boundary conditions, the loaded cylinders were loaded by applying
displacements in the negative direction of the Y-axis at the critical points on the loaded
cylinders. A six-layer mesh in the thickness direction was chosen to improve the simulation
accuracy, and the C3D8R cell type was used.
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Figure 14 represents the variation in tensile stress with center deflection for a thin
plate in four-point bending. At the initial stage, it can be found that the stiffness of the
test data is slightly larger than that of the finite element solution. When the tensile stress
reaches 6 MPa, the deflection shown by the test data is only 0.3 mm, while the deflection
demonstrated by the finite element solution reaches 1.4 mm. On the contrary, after entering
the hardening stage, the strength of the finite element solution is slightly larger than that of
the test data, but the difference between the two stays within the error range of about 7%.
The trend of the test data and the finite element solution is consistent regarding the overall
trend, indicating that the model is more accurate in its simulation ability at this stage. Such
an error is considered acceptable, considering that there may be some gaps in the material
properties of different ratios.
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under a four-point bending test.

In summary, the four-point bending simulation serves as a validation model to demon-
strate the reliability of the three-dimensional intrinsic model of the subroutine. After
obtaining the test parameters of ECC materials under specific ratios, the model can ef-
fectively simulate their structural stress response in practical engineering applications,
providing solid theoretical support for applying ECC materials in engineering fields.

4. Conclusions

The current lack of an effective constitutive model to accurately describe the me-
chanical behavior of ECCs under multiaxial loading and deformation is a pressing issue.
This paper addresses this problem by introducing a damage variable function based on
experimental uniaxial tension and compression data. A one-dimensional damage theoret-
ical model is established to reflect the mechanical behavior of ECCs in uniaxial loading
accurately. Additionally, the paper introduces the energy release rate and energy equivalent
strain based on the principle of damage mechanics, extending the one-dimensional model
to a three-dimensional ECC constitutive model. This three-dimensional model effectively
reflects the damage behavior of ECC materials and the interactions between various di-
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rections under multiaxial stresses. Finally, the constitutive relationship is embedded into
ABAQUS through the VUMAT subroutine, and the simulation results of uniaxial tension
and compression, as well as four-point bending, are compared with the test. This process
verifies the validity of the constitutive model, solves the finite element simulation problem
of ECC-containing structures, and provides a solid theoretical basis and design guidance
for engineering applications and structural optimization. In the future, it is recommended
that research focus on contact and cyclic loading experiments of reinforced engineered
cementitious composite (ECC) structures to better reflect actual engineering conditions.
These studies can further investigate the performance characteristics and service life of
ECC structures, ultimately enhancing the reliability of numerical simulation results.
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