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Abstract: A fresh paradigm for classifying current studies on flood management systems is proposed
in this review. The literature has examined methods for managing different flood management
activities from a variety of fields, such as machine learning, image processing, data analysis, and
remote sensing. Prediction, detection, mapping, evacuation, and relief efforts are all part of flood
management. This can be improved by adopting state-of-the-art tools and technology. Preventing
floods and ensuring a prompt response after floods is crucial to ensuring the lowest number of
fatalities as well as minimizing environmental and financial damages. The following noteworthy
research questions are addressed by the framework: (1) What are the main methods used in flood
control? (2) Which stages of flood management are the majority of research currently in existence
focused on? (3) Which systems are being suggested to address issues with flood control? (4) In
the literature, what are the research gaps regarding the use of technology for flood management?
To classify the many technologies that have been studied, a framework for classification has been
provided for flood management. It was found that there were few hybrid models for flood control
that combined machine learning and image processing. Furthermore, it was discovered that there
was little use of machine learning-based techniques in the aftermath of a disaster. To provide efficient
and comprehensive disaster management, future efforts must concentrate on integrating image
processing methods, machine learning technologies, and the understanding of disaster management
across all phases. The study has proposed the use of Generative Artificial Intelligence.

Keywords: climate change; flood management; spatial analysis; disaster

1. Introduction

Modern cutting-edge technologies have fundamentally altered how the world works.
The field of disaster management is, like all other fields, moving more and more toward
the use of contemporary technologies. Flood threats are a persistent concern for both
industrialized and developing nations [1]. According to predictive research of future
flood risks, historical levels of flood-related damage are anticipated to occur due to the
growing effects of the changing climate [2] and inadequate flood readiness in several global
regions [3]. The increasing number of flood incidents worldwide [1] makes it necessary
to find practical approaches to risk management during emergencies. Flooding disasters
are linked to the global loss of life, agriculture, infrastructure, and financial resources [3].
According to Polina Lemenkova estimations [4], floods carry greater risks and losses than
any other climate hazard, running into several millions of dollars. Climate change and
population growth are associated with an increase in flood occurrences [5]. These two
elements are considered essential to comprehending flood events. Communities have
grown up in river basins and coastal areas as a result of the expansion of commercial and
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residential areas, which are among the areas that are naturally vulnerable to flooding [6].
The number of floods and their propagation are also significantly influenced by land use
and vital infrastructure.

It is still unknown how much urbanization and climate change actually affect the
frequency of floods. In many parts of the world, rising urbanization has created flood
plains within residential neighborhoods, raising the danger of flooding [7]. Analyzing the
dangers of flooding in a nation or area has been the subject of numerous research [8]. But
as technology advances, data-driven model advancements, for their contributions to the
field of flood risk management, deserve recognition.

Today, technologies such as remote sensing and satellite imaging are used to map the
risk of floods globally [9]. Due to the very dynamic nature of floods and the incredibly
slow rate at which satellite imagery is captured, such deployment at the local level has
not yet proven successful. Relying solely on remotely sensed images to analyze, capture,
and comprehend the entire scope of flood threats has its limitations [10]. Furthermore, it
is well recognized that floods seriously harm vital infrastructure, like bridges, highways,
and the communications system, making it challenging to get assistance to those stranded
in flooded areas [11]. The world lost USD 40 billion in total as a result of a study titled
“Organization for Economic Cooperation and Development’s Financial Management of
Flood Risk”; there were floods in a number of different parts of the world in 2016.

Floods will significantly affect the creation of flood maps, impeding rescue operations
and risk management [12]. Local data on flood risks must be gathered in order to raise
the degree of preparedness for disasters. Recent technological advancements have made
it feasible to combine computer models and remote sensing, enabling the continuous
simulation of dynamic events like floods in space and time [13–17]. Using machine learning
and image processing is one of the methods that has become increasingly popular over
time. Thus, the purpose of this review is to monitor the latest advancements in methods
for disaster management based on machine learning and image processing. The literature’s
lack of focus on post-disaster management systems in relation to contemporary flood
detection techniques is one important issue that must be addressed [18].

By reviewing and analyzing the most recent technologies, this study hopes to improve
post-disaster management systems. To classify the research based on the technology do-
main and the disaster management phase they are working with, a classification system
has been established. The framework will precisely determine which domain and for
which phase the technology is intended. Following the identification of these variables, a
thorough analysis of each technique’s methodology, applications, results, and shortcomings
is conducted. At the moment, maps that show the locations most vulnerable to disasters
and flood predictions are the primary goals of flood risk management systems [19]. To get
around many of the drawbacks of the conventional approaches, strategies including artifi-
cial intelligence (AI)-based algorithms, machine learning, and computer vision have been
proposed [20,21]. Numerous studies on flood control methods have been carried out, lever-
aging machine learning for flood prediction [20], systematic literature studies on leveraging
big data for disaster management [22], a review of flood forecasting technology [23], flood
mapping, and systems of evaluation [24]. Nevertheless, it appears that these traditional
review papers only focus on flood prediction, risk assessment, and forecasting technologies
to map disaster-prone areas [19]. However, they do not examine the technology being
employed to find impacted people, identify floodwater, or handle the aftermath of the
incident. Furthermore, the majority of these do not use the most recent methods based on
image processing and machine learning [25]. Previous research has concentrated on the
conventional approaches to flood control, such as remote sensing, hyper-ion imaging, and
satellite imaging [26].

The literature now in publication rarely discusses the image processing techniques
currently in use. Additionally, there is a dearth of attention paid to the latter stages of the
disaster management process, such as recovery and reaction, which are crucial because it
is not always possible to predict natural disasters with precision [27]. The following key
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phrases will be covered in this study’s evaluation of the literature: (i) disaster management
in the pre- and post-disaster phases, with an emphasis on the application of cutting-edge
technologies based on artificial intelligence, machine learning, and image processing;
(ii) a comprehensive framework for categorizing the study. The following highlights
the significance of studying image processing and machine learning methods in flood
management: These methods have significantly changed since the invention of technology.
They are partly connected since they employ comparable techniques and algorithms. There
is much data in the field indicating that automating flood prediction, detection, and control
is essential.

Studies that use more modern methods from domains including artificial intelligence
(AI), machine learning, image processing, and computer vision are given special attention.
Specifically, the research classification framework that is suggested addresses the following
key questions:

What are the main methods used in flood control?

1. Which stages of flood management is the majority of research currently in existence
focused on?

2. Which systems are being suggested to address issues with flood control?
3. In the literature, what are the research gaps regarding the use of technology for flood

management?

A thorough procedure of searching for and analyzing literature was carried out to
provide answers to these queries.

This study is organized as follows: The method for gathering research papers for
the review and the plan for retrieving articles are covered in the section that follows.
The classification scheme developed for this investigation is presented in Section 3. In
Section 4, the review’s findings are presented along with a comprehensive examination
of the main research subjects. Section 5 examines the many gaps in the literature that this
study found, taking into account the limitations of the technology and the technique’s
rare implementation in relation to the crisis management cycle. This review presents a
novel approach to the application of Generative Artificial Intelligence (GAI) in Climate
Change-Induced Flooding—Susceptibility and Management Techniques which considers
the pre-disaster, disaster, and post-disaster phases in the following steps:

• Data Acquisition
• Data Preprocessing
• Feature Extraction
• Flood Risk Analysis and Mapping
• Evacuation Route Optimization
• Testing and Validation

Ref. [28] used GAI powered by GPT-4 (Large Language Model) to facilitate real-time
flood forecasting for effective communication between the decision-makers, the general
public, and flood modeling experts. An advanced flood imagery detection model has been
developed to mitigate losses as a result of flooding incidences [29]. There is an urgent need
for the use of GAI because most recent studies on urban flooding are mainly focused on
the study of remote sensing and satellite imagery [1,30].

2. Materials and Methods

The literature review approach addresses the review issues posed above. This pro-
cedure consists of three basic steps: using internet search engines like Springer Nature,
MDPI, Google Scholar, Scopus, Science Direct, and Taylor and Francis, pertinent material is
initially gathered. In order to achieve this, certain keywords were chosen for the literature
review search. The most relevant articles for these keywords were found using semantic
searches. Second, after being evaluated for relevancy, the articles were filtered. To ascertain
the research’s applicability, this required reading and analyzing the abstracts. Third, two
groups, methods based on machine learning (ML) and image processing, were created
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from the chosen research publications. Methods used in both developed and developing
nations were taken into consideration in order to illustrate the methods that are now in use
around the world for flood detection, prediction, and management. Global Positioning
System (GPS) and Global Information System (GIS) flood control techniques, as well as
sophisticated methods based on ML and image processing, were also examined. Third,
as a substitute to enhance the detection and rescue operations, an integrative category
was suggested. This category mixes machine learning algorithms with image processing
techniques. A conceptual framework that combines machine learning and image processing
methods will be the answer to better flood management.

Keywords such as strategies for managing flooding, climate change, flood manage-
ment based on image processing, post-flood control, flood control through spatial analysis,
and artificial intelligence-based flood detection were chosen. First, distinct keywords were
chosen, which were subsequently merged utilizing catchphrases such as “flood manage-
ment methodologies” The purpose of these well-crafted search terms and phrases was
to search the entire database to locate the studies that have been utilized in reviews that
are most relevant to the study [31–33]. The only kind of publications that were taken into
consideration were peer-reviewed research papers.

Figure 1 shows the graphical abstract for proposed flood management developed in
this review.
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Figure 2 shows the flow chart for the screening procedure used to filter the identified
articles. Researchers devised and justified an assessment criterion that guided the imple-
mentation of a four-step screening method for mitigating bias related to the subjectivity
of the retrieved articles, as suggested by Tranfield [34]. To begin with, only articles about



CivilEng 2024, 5 1189

“floods” and “flood management” are included in the search results. Second, the technical
component of flood management is filtered out of the results. Third, while removing
publications, significance to the fields of machine learning and image processing was taken
into account. Fourth, restrictions were placed on the search results according to language,
document category, time, and search result duplication. The “Categorization” block serves
as a collective representation of these boundaries. The resulting articles decreased in quan-
tity following each filtering procedure, as the figure illustrates. Ultimately, 100 articles in
all were obtained. Out of these 100 studies, the distribution among various techniques
is presented in Table 1, and just five studies looked at post-disaster management using
machine learning and image processing. These five studies may increase if the scope of the
search engine is increased.
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Table 1. Distribution of techniques before and after the disaster.

Technique Pre-Disaster Post-Disaster

Image Processing
Edge detection, hyperion imaging, UAV

imaging, remote sensing, and SAR imagery
[3,5,11,15,26,28,33]

Edge Detection, SAR Imagery, UAV Imaging,
and Hyperion

Imaging
[1,4,7,8,10,16,19,21,27,31]

Machine Learning ANN, MLP, ANFIS, and WNN
[5,9,12–14,20,24,25]

3. Classification Guidelines

A grouping structure based on a list of recognized flood management study areas
pertaining to pre- and post-disaster stages is put forward in this survey. The methods are
further divided into categories according to the domains they fall under. Three technology
domains have been identified: hybrid models, machine learning, and image processing. The
several categories and subcategories that were employed to arrange the research papers that
were retrieved are shown in Figure 3, along with the proposed classification system. This
chart shows that the chosen studies are pre- or post-disaster in nature. These are the primary
groups into which the approaches are thus divided. The chosen papers suggest a machine
learning model, an image-processing technique, or a combination of the two. Consequently,
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machine learning, hybrid, and image processing are the subcategories. The primary
image-processing techniques and technologies utilized in flood management are pixel
analysis, edge detection, imaging from unmanned aerial vehicles (UAVs), remote sensing,
and synthetic aperture radar (SAR). Artificial Neural Networks (ANN), Support Vector
Machines (SVM), Wavelet Neural Networks (WNN), Adaptive Neuro-Fuzzy Inference
Systems (ANFIS), and Multilayer Perceptron (MLP) models were the machine learning
models utilized in the pre- and post-disaster phases. Hybrid approaches include combining
ANN and SVM models with pixel-based image categorization and machine learning
methods like SVM with edge detection.
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4. Results

1. Flood management major techniques

A number of tasks involved in flood control have been covered within the publications
that have been reviewed. Four categories can be used to group these duties: Flood Haz-
ard, Flood Mapping, Flood Detection, and Flood Prediction are the four main categories.
The process of estimating the likelihood of flood events using rainfall data, river water
level monitoring, storm-generated moisture information, and details regarding a river’s
drainage basin such as temperature, vegetation levels, and soil moisture is known as flood
prediction. To provide information on the possible severity and dangers of any future
flooding catastrophe, these variables are monitored throughout the region. These projects
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are classified in the pre-disaster phase. Important elements of the detection of flooding
include tracking water levels and issuing alerts when a flood is thought to be occurring.

At the moment, satellite data and remote sensing are used to determine river flood
levels instantly. The process of charting areas that are at risk of flooding or have already
flooded is known as flood mapping. The produced maps can be utilized for flood risk
assessment, mapping inundated areas, locating stranded individuals, and figuring out
how to get to them. Flood risk assessment, also known as hazard assessment, is a process
for mitigating floods that entails determining what actions should be made to mitigate
flooding; one must consider the likelihood of flood instances from all sources of flooding.

Table 1 lists some appropriate analytic classes for each category. The gathered research
articles were first categorized according to the phases of disaster management that they
fall under. These phases are divided into four categories: risk assessment, flood hazard
analysis, flood prediction, and flood mitigation, which occurs prior to a disaster. The
second phase is preparedness for disasters. The post-disaster phase, which includes rescue
and relief operations, is referred to as the third phase, or disaster response. The fourth
and final stage focuses on restoring the damage and helping individuals recover from the
impacts of the tragedy. Each of these phases’ methodologies is categorized according to
AI, and there is the usage of machine learning and image-processing methods. Due to
the numerous overlaps between the various phases of disaster management that were
found in the literature, the selected studies were primarily separated into two categories:
pre-disaster and post-disaster.

Following phase identification, the study’s methodologies were categorized into three
groups: hybrid, image processing, and machine learning. Numerous research works that
use remote sensing techniques such as GPS, GIS, and satellite imaging have combined
image processing with machine learning, or both. These investigations were placed in the
Hybrid category. The works in the image processing category include flood management
strategies based on pixel analysis, object detection, and edge detection. Research utilizing
trained statistical models to map and identify flooded areas, forecast future flood events or
flood hazards, and evaluate flood damage are included in the machine learning category.
The primary goals of this categorization were to classify the articles according to the
domains that the corresponding, implemented, and suggested algorithm belonged to and
to identify and assign each study to the proper phase of flood control. With the help of the
suggested framework, tasks associated with each stage of the disaster management process
might be completed utilizing image processing, machine learning, or both, depending on
the most recent methods. Table 1 shows that while machine learning models were limited
to handling flood risk assessments, prediction, and forecasting, they were primarily focused
on the pre-disaster phase, while image processing techniques addressed both the pre- and
post-disaster phases.

2. Which stages of flood management is the majority of research currently in existence
focused on?

Whether the systems are used in advance of or during a disaster will determine which
categories the literature study on flood control methods falls into. Pre-flood phase systems
frequently focus on flood mitigation, planning, risk assessment, and hazard analysis tasks,
whereas post-disaster flood management systems prioritize flood detection, mapping,
damage assessment, and evacuation planning. Techniques for managing floods both
before and during a crisis are suggested, including machine learning and image processing.
It is also crucial in this situation to distinguish between machine learning and image-
processing methods. It matters how an input image is handled using image-processing
techniques, whether the goal is to extract information from it or just make it better or more
appealing. For the purpose of flood management, these techniques are used to extract
flood information from an input image of a flooded or flood-prone area. For instance, in
order to send out warnings about possible flooding, edge detection techniques have been
employed to estimate the water levels in various bodies of water [36]. Machine learning
techniques automatically learn and make judgments by drawing on prior data and their
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own expertise. These systems use trained prediction models that can rapidly estimate the
danger of flooding based on hydraulic data and meteorological parameters in order to
manage floods [37].

3. Which systems are being suggested to address issues with flood control?

It is important to set up early warning signals along flood-prone areas with the aid of
Internet of Things (IoT) and to follow urban planning strictly along already identified areas
from historical flooding.

4.1. Cyber-Physical System

This comprises elements that combine various engineering disciplines and scientific
theories, such as control theory, artificial intelligence, big data, embedded systems, cyber-
netics, IoT, distributed control, sensor networks, and systems engineering. These kinds of
systems are autonomous and capable of making decisions. Modern technologies have aided
in the anticipation, preparation, and reaction to floods. Examples include smartphones,
blockchain, big data, social media, robots, artificial intelligence, and the internet of things.

A rising body of research is looking for ways to use technology for flood catastrophe
management in the most efficient way possible [23]. The use of AI, IoT, and big data for
flood management has increased dramatically in recent years [38–40]. These systems use
available data from past catastrophes to create a well-informed appraisal of the hazards
associated with flood disasters and public safety.

The IoT employs radio frequency identification, or RFID, technology to communicate
with the outside world. Data gathering and storage become more efficient when sensor
technology and IoT scanning characteristics are used. Sensor data collection creates data
nodes, which are subsequently used to analyze flood patterns and dangers [41]. The
management of information systems is improved by IoT, particularly when it comes to
machine-to-machine communication. Profiting from weather forecasts and climate change
science is made possible by artificial intelligence. In order to facilitate long-term planning
for dealing with prospective flood disasters, remote sensors and drones can be used for
meteorological purposes. This can help improve the data obtained by taking photographs
of the damaged region that are difficult for relief workers to access [13]. When a region is
prepared, for example, by creating efficient flood diversion strategies or planned routes for
population evacuation, the assessment of prospective flood dangers may be helpful.

These resilience metrics directly result from the applications of cyber-physical systems.
The incorporation of AI will result in a significant improvement in meteorological agen-
cies’ prediction power for forecasting and reporting disaster risks and creating mitigation
plans. In a similar vein, big data offers enormous potential for developing strategies for
preparedness, mitigation, and responses to flood disaster risk [42]. The idea of big data
and the instruments used to organize, store, and analyze big data can be used to create
frameworks that aid in determining the degree of catastrophe risk as well as in getting
ready for post-disaster management [31].

4.2. System for Pre-Disaster Management

The methods discussed here are predicated on the forecasting, prediction, and evalua-
tion of flood risk. In order to predict the occurrence of floods and assess the possible severity
of flood occurrences, these techniques are used for mapping the areas that are prone to
flooding, studying areas, tracking different meteorological conditions, and monitoring
water levels in water bodies.

The pre-disaster flood management strategies are outlined in Table 2 and are discussed
in the sections that follow.
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Table 2. Techniques for Pre-Disaster Flood Management.

Technique Method Limitation

Image Processing

Using edge detection in order to ascertain
an urban area’s water surface levels [3].
Assessing flood risks through the use of
UAVs to study morphological changes

and coastal dynamics [31].

Manually selecting edge detection parameters; poor
performance in areas of low contrast in photos

The UAVs’ short battery life

Machine Learning

The river’s water flows are simulated at
several points using an ANN model [35].
The technique for forecasting river water

levels is based on fuzzy logic [43].

ANN algorithm’s increased reliance on technology;
parallel processing is necessary

Extensive hardware testing is required to validate the
fuzzy knowledge-based system.

4.3. Managing Floods When They Occur

During a flood occurrence, flood control is crucial, particularly in the first 72 h fol-
lowing a disaster when lives are at risk and rescue operations need to be finished as soon
as possible [44]. The primary problem during a flood occurrence is the first responders’
team’s decreased effectiveness and breakdown in communication as a result of their lack
of situational awareness of the crisis [45]. The most effective technique in analyzing the
level of damage and tracking the disaster’s evolution is to conduct an aerial assessment
of the impacted area. Figure 4 shows a pictorial approach of monitoring and reporting
flood occurrences in real time. Research on the establishment of a UAV network to support
search and rescue efforts has produced promising results [46]. Unmanned aerial vehicles
(UAVs) are a useful tool for identifying structures damaged by floods and for obtaining
up-to-date information on the degree of damage to structures plus transportation systems.
This will assist first responders in figuring out how many individuals are trapped and the
safest route to get to safety [47]. The damage can be assessed using a variety of techniques,
such as UAV-captured images, instruments for monitoring structure health, and UAV video
inspection [47]. In order to prepare the authorities for any unanticipated eventualities,
disaster preparedness can be implemented before the flood event through the use of cyber-
physical systems, historical data, satellite imaging prior to and following the event, and big
data analytics. One of the biggest challenges is getting relief to the impacted population
when the safest path has been built to the target region. To increase the effectiveness of the
relief effort, it is critical to fix technical problems and optimize the distribution of resources
and vehicle routing. When addressing such a challenge, two main areas of research have
been vehicle routing and resource allocation. Various models for delivering aid to victims
after a disaster have been proposed in the past [48].
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lowing a disaster when lives are at risk and rescue operations need to be finished as soon 
as possible [44]. The primary problem during a flood occurrence is the first responders’ 
team’s decreased effectiveness and breakdown in communication as a result of their lack 
of situational awareness of the crisis [45]. The most effective technique in analyzing the 
level of damage and tracking the disaster’s evolution is to conduct an aerial assessment of 
the impacted area. Figure 4 shows a pictorial approach of monitoring and reporting flood 
occurrences in real time. Research on the establishment of a UAV network to support 
search and rescue efforts has produced promising results [46]. Unmanned aerial vehicles 
(UAVs) are a useful tool for identifying structures damaged by floods and for obtaining 
up-to-date information on the degree of damage to structures plus transportation systems. 
This will assist first responders in figuring out how many individuals are trapped and the 
safest route to get to safety [47]. The damage can be assessed using a variety of techniques, 
such as UAV-captured images, instruments for monitoring structure health, and UAV 
video inspection [47]. In order to prepare the authorities for any unanticipated eventuali-
ties, disaster preparedness can be implemented before the flood event through the use of 
cyber-physical systems, historical data, satellite imaging prior to and following the event, 
and big data analytics. One of the biggest challenges is getting relief to the impacted pop-
ulation when the safest path has been built to the target region. To increase the effective-
ness of the relief effort, it is critical to fix technical problems and optimize the distribution 
of resources and vehicle routing. When addressing such a challenge, two main areas of 
research have been vehicle routing and resource allocation. Various models for delivering 
aid to victims after a disaster have been proposed in the past [48]. 

 
Figure 4. UAVs flood monitoring systems.
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4.4. Flood Management Following a Disaster

The methods from the domains of image processing and machine learning that are
meant to be applied in the aftermath of flood disasters are covered in this part. Events
pertaining to disaster response and recovery are included in the post-disaster phase. As
a result, the strategies covered here are based on the fast mapping of flooded areas, the
estimation of water levels, and the coordination of evacuation activities.

By identifying the flooded areas and initiating rescue efforts by determining the best
routes and transportation options in the area, these techniques help respond to flooding
right away. The post-disaster flood management strategies covered in the following sections
are compiled in Table 3.

Table 3. Techniques for Flood Management following Disasters.

Technique Method Limitation

Image Processing

Utilizing unmanned aerial vehicles (UAVs) to
collect and send high-resolution spatial images

to servers over intricate environments [3,31].
GPS flood risk management allows for guided

rescue and evacuation operations [11].

Limited tracking duration due to
battery-powered UAVs

Lack of clarity when mapping the precise
location and internet accessibility during the

flood catastrophe.

Machine Learning

Using an SVM classifier and landmark
detection on

UAV photos, it is possible to identify photos of
flooded areas [12,13].

Noise-induced enhancement in the landmark
identification algorithm’s sensitivity.

4.5. Flood Analysis Improvement Model

This is an attempt to overcome the limitations stated in Table 3; a Python (version 11)
based software that overlaps pre-disaster and post-disaster phases is proposed. [49] used
Gumbel Extreme Value to analyze data from 1972 to 1997 to study flood scenarios in the
flood prone region of the lower Burhi Dehing River in Assam, while [50] used it for Timis
River. The following steps are suggested:

1. The proposed model involves subjecting precipitation data to probability distribution
functions such as Gumbel Extreme Value Type I, Normal, Log-Normal, Pearson Type
3, and Log-Pearson Type 3 distributions. The distribution with the best combination
of the coefficient of determination (R2) and Root Mean Square Error (RMSE) is then
selected for modelling the data to obtain an extreme event return period.

Gumbel’s Extreme Value Type I (GEVT-1) Distribution

Gumbel distribution is one commonly used probability distribution for obtaining the
rainfall intensity values. The rainfall intensity values were obtained using Equation (1):

XT =
=
X + KTS (1)

where XT = rainfall intensity values (magnitude of hydrologic event)

=
X = mean

KT = Gumbel’s frequency factor; S = standard deviation
The Gumbel’s frequency factor is obtained using Equation (2).

KT = −
√

6
π

{0.5772 + ln
[

ln
(

T
T − 1

)]
} (2)

where T = return period (years)

2. Create a file for the flood record, soil type, and land use record of the affected area.
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3. Use a drone to capture the topography of the flood-prone area and analyze the results
to aid in flood pathway identification.

5. Discussion

The use of ML for the prediction of flood and post-flood management is currently
lacking in studies. The use of ML techniques to develop a flood prediction model has
not been extensively studied [13]. Machine learning techniques are highly beneficial for
forecasting floods because of the resilience of these models and their capacity to learn fast
for the analysis of hydrological data [51]. Some of the variables discovered in these data
sources include the rainfall, precipitation, soil moisture, water levels, river inflow, run-off
water, streamflow, river flood, frequency of floods, flash floods, peak flow, groundwater
level, storm surge, and rainfall stages [20]. It is important to keep in mind that several
causes, like elevated soil moisture or prolonged stream flow, can cause unique flood types,
which makes it difficult to accurately generate long-term flood estimates [52]. There are
technological gaps that need to be addressed when looking at the flood control technologies
and approaches currently in use. The primary cause of these disparities is a lack of
coordination in the post-disaster stage and the use of currently available methods and
technologies. UAVs, machine learning, and image processing have all been used in flood
risk control [35]. However, this is primarily useful for mapping floods and assessing flood
hazards from the perspective of flood prediction.

Machine learning algorithms have undergone extensive testing in the last several
years, leading to the conclusion that the method is quite effective in detecting floods. For
the machine learning algorithms that have been evaluated thus far, an accuracy level of up
to 90% has been recorded. The majority of algorithm testing has been carried out for binary
classifications, in which classifying flooded vs. unflooded areas is the only option [20]. A
dependable system that can support enhanced security, rescue, and public safety activities
as well as enable prompt communication regarding flooded areas must be built in order to
recover from a disaster. The utilization of machine learning methodologies holds promise
for enhancing extant emergency management systems and generating novel ones. The goal
of the suggested model is to guarantee that post-flood management scenarios may make
use of contemporary technologies. Floods cannot be completely prevented or stopped, but
by understanding flood hazards and flood-prone locations, a strategy that could support
relief efforts both before and after a disaster could be developed. UAVs are able to take
pictures of flood-prone locations in advance of a disaster. It is possible to gather information
about important sites, dams, transportation infrastructure, bridges, etc. In the future, these
data may be helpful for scanning and grouping. These regions can be easily located by
UAVs using their internal navigation system (INS), and they can be designated to perform
any relief operations during flood occurrences [48].

Finding the shortest path out of the disaster area may be aided by floor plan modeling
and route optimization. The shortest path algorithm can be used to lead relief personnel
and help create the best evacuation strategy. The established models and methods can
be used to manage the disaster in many scenarios. As a result, these technologies may
function in dynamic contexts and assist the authorities with planning, decision-making,
and catastrophe preparedness. The emergency departments can expedite relief operations
by gaining deeper comprehension and a more efficient use of these technology.

6. Conclusions

The application of modern technology in the field of flood management was examined
in a systematic evaluation of the literature. For the purpose of classifying different research
that was conducted for flood management in the fields of image processing, machine
learning, or both, a classification framework was developed. The following noteworthy
research questions are addressed by the framework: (1) What are the main methods used in
flood control? (2) Which stages of flood management is the majority of research currently in
existence focused on? (3) Which systems are being suggested to address issues with flood
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control? (4) In the literature, what are the research gaps regarding the use of technology for
flood management? Through the examination of these issues, this review has brought to
light the cutting-edge technology that has been applied at various stages of the disaster
management lifecycle, as well as the shortcomings of each method.

The classification primarily focuses on the application of machine learning and image-
processing techniques used for mapping flood hazards or risks, mapping floods, mapping
floods, and mapping flood inundations. Systems that use machine learning models like
ANN, SVM, MLP, and WNN, as well as systems that use image-processing techniques
like edge detection, segmentation, and pixel analysis, are the main tools used to handle
the challenges associated with flood control. The three most often utilized methods for
acquiring images are remote sensing, SAR, and UAV imaging. The methods now in use in
the realms of machine learning and image processing often concentrate on both the pre-
and post-disaster stages. To classify the many flood management technologies that have
been studied, a categorization framework has been presented. One of the research gaps that
has been discovered is the underutilization of hybrid models for flood management, which
integrate machine learning and image processing. Additionally, it has been discovered
lately that using machine learning-based techniques to address post-disaster crises is
uncommon. This necessitates using GAI for automation to improve the post-disaster
management procedure. Future research on the application of AI-enabled big data for flood
management is also quite promising.
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