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Abstract: Using surrogate safety measures is a common method to assess safety on roadways.
Surrogate safety measures allow for proactive safety analysis; the analysis is performed prior to
crashes occurring. This allows for safety improvements to be implemented proactively to prevent
crashes and the associated injuries and property damage. Existing surrogate safety measures primarily
rely on data generated by microsimulations, but the advent of connected vehicles has allowed for the
incorporation of data from actual cars into safety analysis with surrogate safety measures. In this
study, commercially available connected vehicle data are used to develop crash prediction models for
crashes at intersections and segments in Salt Lake City, Utah. Harsh braking events are identified and
counted within the influence areas of sixty study intersections and thirty segments and then used
to develop crash prediction models. Other intersection characteristics are considered as regressor
variables in the models, such as intersection geometric characteristics, connected vehicle volumes, and
the presence of schools and bus stops in the vicinity. Statistically significant models are developed,
and these models may be used as a surrogate safety measure to analyze intersection safety proactively.
The findings are applicable to Salt Lake City, but similar research methods may be employed by
researchers to determine whether these models are applicable in other cities and to determine how
the effectiveness of this method endures through time.
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1. Introduction

Surrogate safety measures (SSMs) offer benefits over traditional safety analysis meth-
ods that use historical crash data. SSMs are a type of safety analysis that make use of data
other than crash data, typically vehicle kinematic data. The first benefit of SSMs is that they
use data which may be collected more rapidly than historical crash data. Crashes are rare
events, and historical data may require years of accumulation to conduct a safety analysis.
The second benefit is that SSM analysis is proactive, allowing for safety analysis prior to
crashes occurring. An unsafe location may therefore be identified and improved before
crashes occur, preventing injuries and property damage and possibly saving lives. The
third benefit of SSMs is that the kinematic data used in a safety analysis with SSMs are
much more voluminous, allowing for statistical methods to be more effective.

The kinematic data employed by SSMs may come from several sources. In the past,
manual measurement at the study site was used. This method of data collection was
problematic because it allowed for subjectivity and was difficult to perform accurately
due to the fleeting nature of traffic interactions. Manual observation was replaced with
video recordings which made it possible for traffic interactions to be replayed and offered
the chance for multiple observers to analyze interactions, thus improving the problem
of subjectivity. This problem has been further ameliorated with automated video data
reduction with technology such as that offered by Transoft, Iteris, and similar companies.
Additionally, microsimulation technology has allowed for simulation to be used as a
source of kinematic data. This method eliminates subjectivity, as the computer running the
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simulation provides the data rather than human observers [1]. Microsimulation produces
highly detailed and precise data and can produce large volumes of data with relatively
little effort in comparison with manual collection. The fault of microsimulation lies in it
being an abstraction rather than reality. While microsimulations are still highly useful,
there has been research into the use of connected vehicle (CV) data with SSMs, meaning
the use of data from the physical world rather than simulation.

CVs are a source of traffic data that allows for the high level of precision offered
by microsimulation along with the realism of being generated by human drivers. CVs
are automobiles sold to the public that include a transceiver which allows data to be
collected regarding the vehicle’s motion. For the sake of privacy, no individually identifiable
information about the vehicle is visible. Vendors offer CV data to clients who wish to use
the data for research and engineering projects. The main drawback of using data from
CVs is that they currently comprise a small percentage of the total number of vehicles in
the United States. A study from October 2021 found the median CV penetration rate to
be approximately 4.5% [2]. Therefore, CVs do not offer a full picture of traffic. They are
gradually becoming more common, though, as older vehicles are retired and replaced with
new vehicles that are connected. Research into effective analysis methods with CV data
will become more valuable as time goes on, speaking to the need for this research to take
place now for a future increase in CVs.

One metric that is available from CVs is harsh braking event counts, which form the
basis for the models developed in this study. Data points from CVs include information
about braking and acceleration. The braking data may be filtered so that harsh braking
events are identified and counted and then used as a regressor variable in a crash prediction
model. This method is investigated in this paper. The significance of other regressor
variables, such as CV volume and intersection geometric characteristics, was also investi-
gated. The proposed crash prediction models may be used to estimate monthly counts of
intersection-related crashes and offer all of the benefits of SSMs mentioned above.

The statistical models developed in this study show promise for use as a surrogate
safety measure. Of the twelve statistical models developed in this study, ten possess a high
level of statistical significance. Although connected vehicle penetration rates are too low at
this time to depend upon models such as these, once these penetration rates increase, these
models will offer an additional method of analysis.

1.1. Literature Review

Researchers have developed many SSMs which tend to fall into three categories. SSMs
can be a time-based measure, a deceleration-based measure, or a safety index. Although
most SSMs consider collisions involving two vehicles, it is possible to model single-vehicle
crashes due to distraction or error [3]. SSMs operate upon the concept that events with
greater risk tend to happen less frequently, with the riskiest and rarest events being the
events that result in collision [4]. By analyzing less risky events that occur significantly
more frequently, a safety analysis with SSMs can offer more insight into safety than an
analysis with crash data alone.

1.1.1. Time-Based Measures

Time-based measures consider the kinematics of vehicles and how much of a time
gap exists between vehicles. Time-to-collision (TTC), post-encroachment time (PET), and
proportion of stopping distance (PSD) are time-based SSMs. TTC is a measure of the
amount of time required for the space between two vehicles to close. TTC on its own is
transient, but Minderhoud and Bovy developed aggregation methods in the form of their
extended TTC measures, namely time-integrated TTC and time-exposed TTC [5]. Post-
encroachment time is the difference in time between when an encroaching vehicle exits the
path of travel and when a following vehicle first occupies the location where a collision
would have occurred. A modified form of PET exists as initially attempted PET (IAPE).
IAPE corrects the measure to account for the acceleration that commonly occurs when a
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driver determines that a conflict has ended [6]. PSD is a ratio between the distance a vehicle
is from a potential collision location and the minimum stopping distance. These distances
depend upon the velocity of the vehicles involved, making PSD a time-based measure.

There are both strengths and weaknesses associated with time-based SSMs. The
strength of time-based SSMs lies in their simplicity and intuitiveness. TTC and PET
may be implemented with kinematic data supplied by either on-site measurements or
microsimulation. PSD also requires such kinematic data, but it also requires information on
the vehicles’ possible deceleration rates. This deceleration rate can be an established value
or distribution of values or may be derived from environmental conditions. Drivers are
aware of the importance of following distance and time headway, making these measures
intuitive for researchers and practitioners alike. A weakness of time-based SSMs is the
possibility of multiple encounters producing identical measures [7]. TTC may evaluate the
same solution for both an encounter with a large speed differential between vehicles and a
long following distance and another encounter with a small speed differential but a short
following distance. This has made it difficult to establish particularly meaningful safety
thresholds for these measures. Another weakness is the inability of time-based SSMs to
evaluate the severity of a potential collision. In the encounters just described, which both
result in an identical TTC, the severity of a resulting collision will be very different due to
the differing speed differentials.

1.1.2. Deceleration-Based Measures

Deceleration-based measures consider braking action and the braking capacity of
vehicles and are better equipped than time-based measures to evaluate potential crash
severity. Additionally, this type of measure considers a driver’s evasive action, an important
component of traffic conflicts. Deceleration-based measures include braking applications
and deceleration rate to avoid collision (DRAC). Brake applications have been found to
be a poor SSM due to the variability in braking habits among drivers. Brake applications
are such a common act, even in benign situations, that they are not highly indicative of a
conflict [6]. Brake applications as an SSM fail to consider the severity of each particular
braking action, something that DRAC and harsh braking are able to capture to their benefit.
DRAC is a measure of the deceleration rate that a following vehicle would need to apply to
avoid colliding with a leading vehicle. This measurement is compared to a safety threshold,
commonly given as 3.35 m/s2, to determine whether a conflict occurred [8].

Harsh braking events have also been suggested as an indicator of a conflict, which
would also fall under the category of deceleration-based measures. A 2015 study found a
high level of correlation between crash counts and harsh braking events, defined as events
with a large absolute value of the first derivative of acceleration, known as jerk. These
events were collected by vehicles with GPS units which collected data on the vehicles’
location over time, allowing the jerk value to be computed. Mousavi found a threshold
of −0.762 m/s3 to be the most effective to define harsh braking but also noted that this
threshold is lower than expected. Further investigation of a proper jerk threshold was
recommended [9].

1.1.3. Safety Indices

Safety indices are the third category of SSM. These indices consider various factors
and produce an indirect safety metric. Two examples are crash potential index (CPI) and
the aggregated crash propensity metric (ACPM). CPI was developed to improve upon the
drawbacks of the DRAC measure. While a constant safety threshold value is typically used
with DRAC, the braking capacity of vehicles is variable for mechanical and environmental
reasons. CPI considers this variability through the use of a maximum available deceleration
rate (MADR) distribution. The probability that DRAC is greater than MADR is a term in
the computation of CPI. ACPM also considers the MADR distribution in conjunction with a
distribution of driver reaction times to compute the probability that each vehicle interaction
will result in collision. These probabilities are aggregated to produce the ACPM [10]. CPI
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and ACPM indicate the safety level of a study location and time period without being a
single measure of some observable quality.

Of the SSMs discussed, the analysis of harsh braking events holds potential due to its
compatibility with CV data. Previous studies, such as Mousavi’s thesis [9] and the work of
Bagdadi and Varhelyi [11], have analyzed harsh braking data from GPS units due to the
lack of availability of large-scale CV data when these studies were conducted. He et al.
investigated the use of CV data for SSMs, using a safety pilot model dataset to compute
TTC, DRAC, and a modified form of TTC [12]. Their study demonstrated the effectiveness
of computing these measures with kinematic data from CVs. The development of a crash
prediction model that uses harsh braking data from CVs would bridge the gap between
these two studies and provide another tool for safety analysis.

2. Materials and Methods

The methods undertaken in this study include the three following phases: selection
of study intersections, data collection, and statistical modeling. CV data collection was
enabled by the automobile companies that manufactured the CVs. This study uses data
within Salt Lake City, Utah for the months of March 2019, January 2021, and August 2021.
These months were selected due to the availability of CV data for these particular months.
A larger sample size in future studies would be preferable, but there were only three months
of CV data due to budgetary restrictions.

2.1. Intersection Selection

The intersection selection process involved the collection of crash counts for all major
intersections in Salt Lake City, amounting to 370 intersections. Crash counts for the three
study months were obtained from the UDOT database and summed to find the total number
of crashes for the intersections. The crashes within the UDOT system were filtered to include
only those deemed to be intersection related by law enforcement. The sixty intersections
with the most crashes were selected. The total monthly crashes ranged from zero to six. The
sixty chosen study intersections included both signalized and unsignalized intersections.

2.1.1. Data Collection

The CV data interface comprises an interactive map and a control pane. The map
displays waypoints that are produced by the CVs. When a CV is in motion, waypoints
are produced once every three seconds. The waypoints are grouped by the overall trip of
which it is a part by a journey ID number, making it possible to collect CV volumes. The
waypoints also include data such as geographical location, a timestamp, speed, acceleration,
jerk, heading, and information about the origin and destination of the trip that includes
the particular waypoint. Harsh braking events were identified using the jerk values of
these waypoints. Jerk is the first derivative of acceleration and is recorded for each of
the waypoints. Jerk is a continuous measure for a vehicle, similar to speed or location.
Each waypoint contains a value for jerk at the particular moment corresponding to the
waypoint. This value is derived from the speed data. A geospatial filter was applied to
limit the waypoints to those within the influence area of the study intersections, the main
intersection square, and the legs of the intersection 250 ft behind the stop bar as displayed
in Figure 1 [13]. Another filter was applied to limit waypoints to only those that possess
a jerk value that is above the threshold that differentiates a regular braking event from
a harsh braking event. This jerk threshold varied in this study to test the effectiveness
of several harsh braking definitions. Thresholds tested varied between −0.15 m/s3 and
−3.2 m/s3 in increments of 0.15 m/s3. The query tool was used to obtain counts of harsh
braking events for each of the jerk thresholds.
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Figure 1. Intersection influence area with waypoints displayed. 
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Figure 1. Intersection influence area with waypoints displayed.

Other metrics collected from the CV data included the CV volumes and the average
jerk value for each of the intersections. The CV volumes were obtained by querying the
unique count of the journey ID numbers. This counts the number of groups of waypoints
that belong to trips that pass through the intersection. Thus, the volume of vehicles passing
through the intersection is obtained. The total monthly CV volume was collected as was
the total monthly volume that used the intersection between the hours of 7 AM and 9 AM
and between the hours of 4 PM and 6 PM. The average jerk value among all waypoints
within the intersection influence area was obtained on a monthly basis for each of the three
study months for each of the intersections.

In addition to the crash data and CV data, information regarding the geometry and
geography of each of the intersections was collected. The number of approaches with left
turn lanes, the number of approaches with right turn lanes, and the maximum number of
lanes that a pedestrian would have to cross were collected using Google Earth. Historical
imagery was employed to ensure that these values were correct for the study months in
question. ArcGIS Pro was used to determine the number of bus stops and the number of
schools within a 305 m radius of the center point of each of the intersections. These metrics
were included in this study because they are used in the safety performance functions
within the Highway Safety Manual [14]. Table 1 is a summary of the dependent, exposure,
and regressor variables collected for analysis in this study as organized per intersection or
segment per month.
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Table 1. Summary of variables.

Variable Definition Mean SD Min Max

Monthly Crashes Number of intersection-related crashes within the study month 0.7389 0.8347 0 6

Jerk1 Harsh braking events with the threshold being −0.15 m/s3 93,813 80,218 1074 310,321

Jerk2 Harsh braking events with the threshold being −0.3 m/s3 85,134 73,590 660 285,385

Jerk3 Harsh braking events with the threshold being −0.45 m/s3 78,212 68,040 450 263,804

Jerk4 Threshold = −0.60 m/s3 71,926 62,794 342 242,067

Jerk5 Threshold = −0.75 m/s3 65,580 57,440 282 221,542

Jerk6 Threshold = −0.90 m/s3 60,261 52,913 234 204,843

Jerk7 Threshold = −1.05 m/s3 55,593 48,948 204 189,637

Jerk8 Threshold = −1.20 m/s3 51,219 45,112 189 174,165

Jerk9 Threshold = −1.35 m/s3 46,951 41,349 177 159,274

Jerk10 Threshold = −1.50 m/s3 42,724 37,538 171 148,008

Jerk11 Threshold = −1.65 m/s3 38,761 34,031 156 136,518

Jerk12 Threshold = −1.80 m/s3 34,769 30,507 144 124,191

Jerk13 Threshold = −1.95 m/s3 31,090 27,190 135 112,042

Jerk14 Threshold = −2.10 m/s3 27,816 24,255 117 100,044

Jerk15 Threshold = −2.25 m/s3 24,782 21,517 105 88,199

Jerk16 Threshold = −2.40 m/s3 21,835 18,918 87 77,143

Jerk17 Threshold = −2.55 m/s3 19,475 16,857 78 67,701

Jerk18 Threshold = −2.70 m/s3 17,350 14,978 69 59,011

Jerk19 Threshold = −2.85 m/s3 15,522 13,436 54 53,277

Jerk20 Threshold = −3.00 m/s3 13,963 12,054 45 49,674

Jerk21 Threshold = −3.15 m/s3 12,623 10,943 42 46,832

Jerk Avg Average jerk value among all CV waypoints within the study month −1.437 1.4076 N/A * N/A

Monthly CVs Number of unique CV trips through the intersection in the study month 9488 8041.9 187 29,481

Monthly AM CVs Number of unique CV trips through the intersection in the study month
between the hours of 7 AM and 9 AM 947.6 872.85 9 3412

Monthly PM CVs Number of unique CV trips through the intersection in the study month
between the hours of 4 PM and 6 PM 1425 1204.7 20 4720

Left-Turn Approaches Number of intersection approaches with a designated left-turn lane 3.267 1.1987 0 4

Right-Turn Approaches Number of intersection approaches with a designated right-turn lane 1.733 1.3684 0 4

Maximum Lanes Crossed
by Ped

Maximum number of lanes a pedestrian must traverse to cross any of the
intersection legs 6.383 1.7378 2 9

Bus Stops Number of bus stops within a 305 m radius of the intersection
center point 5.45 3.5709 0 13

Schools Number of schools within a 305 m radius of the intersection center point 0.2667 0.5135 0 2

* N/A denotes not applicable.

2.1.2. Statistical Analysis

Once these data points were collected for each of the study intersections during each
of the study months, a statistical regression analysis was performed to produce crash
prediction models for Salt Lake City. Poisson regression, negative binomial regression, and
generalized Poisson regression were considered in the analysis. Three statistical methods
were used for the sake of producing a larger number of total models and investigating
which of the regression methods performed best. Poisson regression requires that the mean
and variance are equal for the dependent variable in the regression. The mean and variance
of the monthly crashes at the intersections were approximately equal, making Poisson
regression a viable option.

Poisson Regression

Poisson regression is applicable when the variable of interest is assumed to follow the
Poisson distribution, which is a model of the probability that a particular number of events
will occur. The dependent variable is the event count, which can be any of the nonnegative
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integers. Large counts are assumed to be uncommon, making Poisson regression similar
to logistic regression, with a discrete response variable. Poisson regression, unlike logistic
regression, does not limit the response variable to specific values. The Poisson distribution
model takes the form given in Equation (1), in which Y is the dependent variable, y is a
count from among the nonnegative integers, and µ is the mean incidence rate for an event
per unit of exposure.

Pr(Y = y|µ) = e−µµy

y!
(y = 0, 1, 2, · · ·) (1)

If the Poisson incidence rate, µ, is assumed to be determined by a set of regressor vari-
ables, then Poisson regression is possible through the expression displayed in Equation (2)
and the regression model displayed in Equation (3). In these equations, X is a regressor
variable, β is a regression coefficient, and t is the exposure variable.

µ = exp(β1X1 + β2X2 + · · ·+ βkXk) (2)

Pr(Yi = yi|µi, ti) =
e−µiti (µiti)

yi

yi!
(3)

The regression coefficients in Equation (2) may be estimated by maximizing the
log-likelihood for the regression model. This is achieved by setting the derivative of the log-
likelihood equal to zero to generate a system of nonlinear equations which may be solved
with an iterative algorithm. The reweighted least squares iterative method is typically able
to converge to a solution within six iterations [15].

Negative Binomial Regression

The negative binomial distribution is a generalization of the Poisson distribution
that includes a gamma noise variable. This allows for negative binomial regression to
be performed even if the dependent variable’s mean and variance are not equal [16].
Negative binomial regression is commonly used for traffic safety applications because it has
loosened restrictions in comparison to Poisson regression but is still capable of estimating
an observed count, such as crash counts [17]. The negative binomial distribution takes the
form presented in Equation (4), in which α is the reciprocal of the scale parameter of the
gamma noise variable and other variables are as defined previously.

Pr(Y = yi|µi, α) =
Γ
(
yi + α−1)

Γ(yi + 1)Γ(α−1)

(
α−1

α−1 + µi

)α−1(
µi

α−1 + µi

)yi

(4)

The mean of y in negative binomial regression depends upon the exposure variable and
the regressor variables which are related by the expression displayed in Equation (5). Nega-
tive binomial regression is possible with the regression model displayed in Equation (6). In
these equations, x is a regressor variable, and the other variables are as defined previously.
As with Poisson regression, maximizing the log-likelihood may be used to estimate the
regressor coefficients through an iterative algorithm [16].

µi = exp(ln(ti) + β1x1i + β2x2i + . . . + βkxki) (5)

Pr(Y = yi|µi, α) =
Γ
(
yi + α−1)

Γ(α−1)Γ(yi + 1)

(
1

1 + αµi

)α−1(
αµi

1 + αµi

)yi

(6)

Generalized Poisson Regression

Generalized Poisson regression, like negative binomial regression, is applicable in a
broader set of circumstances than Poisson regression. This is because it does not have the
requirement that the mean and variance of the dependent variable in the regression be
equal. There are two types of generalized Poisson regression models: Consul’s generalized
Poisson model and Famoye’s restricted generalized Poisson regression model. Consul’s
model, also known as the Generalized Poisson-1 (GP-1) model, is the regression model
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that was employed in this study. The GP-1 model operates on the assumption that the
dependent variable, y, is a random variable following the probability distribution presented
in Equation (7), in which λ is the number of events per unit of time and α is the dispersion
parameter which can be estimated using Equation (8) [18]. In Equation (8), N is the number
of samples, k is the number of regression variables, yi is the ith observed value, and ŷi is the
Poisson rate λi predicted for the ith sample [19].

Pr(Y = yi) =
e−(λ+α∗yi) ∗ (λ + α ∗ yi)

yi−1 ∗ λ

yi!
(7)

α =
∑N

i=1

(
|yi−ŷi |√

ŷi
− 1

)
N − k− 1

(8)

Poisson, negative binomial, and GP-1 regression techniques were explored by model
generation in R. Models with many different combinations of regressor variables were
created to find the model that performed best. In all models, the number of monthly crashes
was used as the dependent variable, and the monthly CV volume was used as the exposure
variable. The statistical models were evaluated based on the significance of the regressor
variables used in the models, on the basis of the Akaike Information Criterion, and based
on the residuals generated by the models. The best-performing models were selected and
are summarized and discussed in the Results and Discussion Sections.

2.2. Segment Analysis

The preliminary results from the intersection study prompted interest in how the
results of an intersection-based study would compare to the results of a segment-based
study. To address this, a segment analysis was conducted. CV data were collected for thirty
road segments in the Salt Lake City area. These segments include sections of interstate
highway within the Salt Lake City limits and sections of interrupted state highway outside
of the influence area of any intersections. The segments were all made to be approximately
one-quarter mile in length to ensure that the segments had roughly equal exposure to
crashes occurring. This prevented the need to determine a crash rate per unit length.

The segment CV data were collected in the same manner as the intersection CV data
with a couple of key differences. First, the intersection CV data were all collected from
within intersection influence areas. The segment CV data were all collected from areas
entirely outside of intersection influence areas. Second, the geometric information and
information related to schools and bus stops were not collected for the segments. Rather,
the segment data included only harsh braking events for jerk thresholds ranging between
−0.3 m/s3 and−3.0 m/s3 in increments of 0.3 m/s3, as well as monthly CV counts, monthly
CV counts between the hours of 7 AM and 9 AM, and monthly CV counts between the
hours of 4 PM and 6 PM. As with the intersection analysis, crash data were collected for the
segments from the UDOT database. The increment between successive jerk thresholds for
segments differs from that which was used for intersections. This was done simply for the
purpose of decreasing the amount of work needed for the analysis. More thresholds could
have been tested, but the preliminary results from the intersection study indicated that the
increment did not need to be as fine as 0.15 m/s3. Table 2 is a summary of the variables
collected for segments in this study.

Statistical analysis was conducted in the same manner as the intersection analysis,
with Poisson, negative binomial, and generalized Poisson models generated and evaluated
for the segment dataset. The best-performing models were selected and are summarized
and discussed in the following sections.
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Table 2. Summary of segment variables.

Variable Definition Mean SD Min Max

Monthly Crashes Number of intersection-related crashes within the
study month 0.8222 1.2504 0 7

Jerk2 Harsh braking events with the threshold being −0.3 m/s3 112,308 95,010 3906 401,183

Jerk4 Harsh braking events with the threshold being −0.6 m/s3 42,168 38,254 993 148,024

Jerk6 Threshold = −0.9 m/s3 14,109 16,790 213 94,961

Jerk8 Threshold = −1.2 m/s3 8096 11,551 114 75,684

Jerk10 Threshold = −1.5 m/s3 4687 8182 63 58,124

Jerk12 Threshold = −1.8 m/s3 2939 6011 42 43,842

Jerk14 Threshold = −2.1 m/s3 1894 4397 15 32,348

Jerk16 Threshold = −2.4 m/s3 1288 3185 9 23,311

Jerk18 Threshold = −2.7 m/s3 906 2313 3 16,746

Jerk20 Threshold = −3.0 m/s3 649 1668 3 12,042

Monthly CVs Number of unique CV trips through the segment in the
study month 54,903 47,760 1327 185,293

Monthly AM CVs Number of unique CV trips through the segment in the
study month between the hours of 7 AM and 9 AM 6330 5247 132 20,226

Monthly PM CVs Number of unique CV trips through the segment in the
study month between the hours of 4 PM and 6 PM 8654 7433 177 27,639

3. Results

The collected intersection data were used for a statistical regression analysis, and the
best regression model for each of the model families was found that had a high level of
significance among the regressor variables and the intercept. The best Poisson model uses
Jerk18 and Schools from Table 1 as regressor variables. The best negative binomial model
also uses Jerk18 and Schools as regressor variables. The best generalized Poisson model uses
Jerk18 as a regressor variable. All of these models have a better than 0.1% significance level
for their regressor variables and the intercept. In the case of the generalized Poisson model,
both intercepts are significant at a better than 0.1% level. These models are summarized in
Table 3.

Table 3. Summary of regression models for intersection analysis.

Poisson Regression Model

Parameter Estimate Std. Err. Z-Score Pr(>|z|) Significance Level

Intercept −8.576 0.2483 −34.544 <2 × 10−16 <0.1%

Jerk18 −4.056 × 10−5 9.593 × 10−6 −4.228 2.35 × 10−5 <0.1%

Schools 1.103 0.3193 3.455 5.51 × 10−4 <0.1%

Akaike Information Criterion 242.58

Log Likelihood −118.29

RMSE 0.9468

Negative Binomial Regression Model

Parameter Estimate Std. Err. Z-Score Pr(>|z|) Significance Level

Intercept −8.526 0.2664 −31.999 <2 × 10−16 <0.1%

Jerk18 −4.127 × 10−5 1.037 × 10−5 −3.981 6.87 × 10−5 <0.1%

Schools 1.190 0.3566 3.337 8.46 × 10−4 <0.1%

Akaike Information Criterion 242.67

Log Likelihood −117.337
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Table 3. Cont.

Poisson Regression Model

Theta 3.87

RMSE 0.9627

Generalized Poisson Regression Model

Parameter Estimate Std. Err. Z-Score Pr(>|z|) Significance Level

Intercept 1 −8.264 0.2342 −35.288 <2 × 10−16 <0.1%

Intercept 2 −11.81 1.741 −6.782 1.19 × 10−11 <0.1%

Jerk18 −4.890 × 10−5 1.019 × 10−5 −4.797 1.61 × 10−6 <0.1%

Log Likelihood −122.8911

Degrees of Freedom 197

RMSE 0.9671

The segment analysis also yielded three statistical models: a Poisson regression model,
a negative binomial regression model, and a generalized Poisson regression model. The
best Poisson, negative binomial, and generalized Poisson models identified use Jerk2 as a
regressor variable. All models have a better than 0.1% significance level for their regressor
variable and intercept(s). These models are summarized in Table 4.

Table 4. Summary of regression models for segment analysis.

Poisson Regression Model

Parameter Estimate Std. Err. Z-Score Pr(>|z|) Significance Level

Intercept −8.881 0.2338 −37.991 <2 × 10−16 <0.1%

Jerk2 −1.345 × 10−5 1.661 × 10−6 −8.098 5.57 × 10−16 <0.1%

Akaike Information Criterion 199.32

Log Likelihood 97.658

RMSE 1.5102

Negative Binomial Regression Model

Parameter Estimate Std. Err. Z-Score Pr(>|z|) Significance Level

Intercept −8.911 0.3329 −26.768 <2 × 10−16 <0.1%

Jerk2 −1.212 × 10−5 2.126 × 10−6 −5.702 1.19 × 10−8 <0.1%

Akaike Information Criterion 181.21

Log Likelihood −87.604

Theta 0.880

RMSE 1.5621

Generalized Poisson Regression Model

Parameter Estimate Std. Err. Z-Score Pr(>|z|) Significance Level

Intercept 1 −8.878 0.2416 −36.750 <2 × 10−16 <0.1%

Intercept 2 −12.84 1.057 −12.149 <2 × 10−16 <0.1%

Jerk2 −1.335 × 10−5 1.799 × 10−6 −7.425 1.13 × 10−13 <0.1%

Log Likelihood −96.9352

Degrees of Freedom 117

RMSE 1.5143

The estimates for the coefficients of the harsh braking variable in each of these re-
gression models (Jerk18 and Jerk2) are all negative, indicating that an increase in hard
braking events decreases the estimate for the number of crashes that will occur within the
intersection area or along the segment in question. This suggests that hard braking events
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are an indication of safety. This is true at intersections as well as on segments away from
the influence of intersections.

Tables 3 and 4 include the models with the best level of statistical significance, but
there were numerous other models identified which also were statistically significant. A
number of potential models could theoretically be used with similar results. The models
display a gradual degradation in significance as the jerk variable used gets further away
from the Jerk18 variable for intersections and the Jerk2 variable for segments.

Validation efforts conducted with the models produced the following graphs, dis-
played in Figures 2 and 3. These graphs display the expected monthly crash counts for
each of the three models on the vertical axis. The horizontal axis represents the observed
monthly crash counts that correspond to each of the expected crash counts. The “jitter”
function in R has been used to generate these plots; hence, there is scatter around the
integer counts of observed crashes.
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An additional analysis was conducted in the same manner as that which yielded
the results presented up to this point, except with outlier crash counts removed from the
intersection and segment datasets. The outliers were identified using boxplots generated
for the observed crash counts. These boxplots are presented in Figure 4. The outliers are
denoted as black points in Figure 4. The best identified Poisson, negative binomial, and
generalized Poisson models are summarized in Tables 5 and 6.

Table 5. Summary of regression models for intersection analysis with outliers removed.

Poisson Regression Model

Parameter Estimate Std. Err. Z-Score Pr(>|z|) Significance Level

Intercept −7.722 0.3456 −22.345 <2 × 10−16 <0.1%

Jerk1 −9.144 × 10−6 1.820 × 10−6 −5.024 5.05 × 10−7 <0.1%

Left-Turn Approaches −0.2181 9.278 × 10−2 −2.351 0.0187 <5%

Akaike Information Criterion 203.97

Log Likelihood −98.9848

RMSE 0.6348

Negative Binomial Regression Model

Parameter Estimate Std. Err. Z-Score Pr(>|z|) Significance Level

Intercept −7.722 0.3456 −22.342 <2 × 10−16 <0.1%

Jerk1 −9.145 × 10−6 1.820 × 10−6 −5.024 5.06 × 10−7 <0.1%

Left-Turn Approaches −0.2181 9.279 × 10−2 −2.350 0.0188 <5%

Akaike Information Criterion 205.97

Log Likelihood −98.9875

Theta 4676

RMSE 0.6348

Generalized Poisson Regression Model

Parameter Estimate Std. Err. Z-Score Pr(>|z|) Significance Level

Intercept 1 −7.722 0.3456 −22.345 <2 × 10−16 <0.1%

Intercept 2 −38.95 7.415 × 104 −0.001 0.9996 None

Jerk1 −9.144 × 10−6 1.820 × 10−6 −5.024 5.05 × 10−7 <0.1%

Left-Turn Approaches −0.2181 9.278 × 10−2 −2.351 0.0187 < 5%

Log Likelihood −98.9848

Degrees of Freedom 196

RMSE 0.6348

Table 6. Summary of regression models for segment analysis with outliers removed.

Poisson Regression Model

Parameter Estimate Std. Err. Z-Score Pr(>|z|) Significance Level

Intercept −10.55 0.3682 −28.643 <2 × 10−16 <0.1%

Jerk2 −6.322 × 10−6 2.083 × 10−6 −3.035 2.41 × 10−3 <1%

Akaike Information Criterion 137.01

Log Likelihood −66.5050

RMSE 0.7653
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Table 6. Cont.

Poisson Regression Model

Negative Binomial Regression Model

Parameter Estimate Std. Err. Z-Score Pr(>|z|) Significance Level

Intercept −10.47 0.3765 −27.812 <2 × 10−16 <0.1%

Jerk2 −6.638 × 10−6 2.147 × 10−6 −3.091 1.99 × 10−3 <1%

Akaike Information Criterion 138.93

Log Likelihood −66.4645

Theta 6.7

RMSE 0.7730

Generalized Poisson Regression Model

Parameter Estimate Std. Err. Z-Score Pr(>|z|) Significance Level

Intercept 1 −10.55 0.3682 −28.644 <2 × 10−16 <0.1%

Intercept 2 −38.46 9.572 × 104 0.000 0.99968 None

Jerk2 −6.322 × 10−6 2.083 × 10−6 −3.035 0.00241 <1%

Log Likelihood −66.505

Degrees of Freedom 117

RMSE 0.7653
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Validation efforts were conducted for the models generated with outlier crash counts
removed from the datasets. These validation efforts produced the graphs displayed in
Figures 5 and 6. These graphs display the expected monthly crash counts for each of the
three models on the vertical axis. The horizontal axis represents the observed monthly
crash counts that correspond to each of the expected crash counts.
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4. Discussion

This study demonstrates the effectiveness of using harsh braking data from CVs as
a surrogate safety measure. For both intersections and segments, statistically significant
models may be developed from multiple model families. Models such as these may be used



Eng 2023, 4 273

to predict future crash rates for the purposes of prioritizing improvements and identifying
risks to the public.

The results of this study reveal the jerk threshold for intersections and segments. For
intersections, the jerk threshold is−2.7 m/s3, corresponding to the regressor variable Jerk18.
This threshold was identified to be the most effective for all three statistical model families.
The jerk threshold for segments was found to be −0.3 m/s3, corresponding to the variable
Jerk2. A jerk threshold of −2.7 m/s3 for intersections and −0.3 m/s3 for segments indicates
that intersections and segments operate differently in terms of safety. The jerk threshold
is the value of jerk that differentiates ordinary events from harsh braking events. Events
that do not meet the jerk threshold have little or no bearing on crash prediction. A larger
absolute value of jerk threshold for intersections over segments indicates that braking must
be more severe at an intersection to qualify a braking event as harsh. This could be due
to different expectations of drivers in these differing contexts. At intersections, drivers
expect to brake and are typically able to see the status of the traffic signal well in advance.
Moderately hard braking, such as an event that generates a jerk value of −1.5 m/s3, is
expected and therefore ordinary. Such an event in a segment context, however, would be
relatively unexpected and therefore extraordinary because segments are expected to have
more uniform and smooth flow. This event would therefore qualify as a harsh braking
event in a segment context but not in an intersection context.

The coefficient estimates for the harsh braking event count variables were found to be
negative for all statistical models generated, indicating that an increase in harsh braking
events is correlated with an increase in the frequency of zero crashes and a decrease in
the frequency of one or more crashes. This means that harsh braking is correlated with
increased safety on roads. The coefficient estimates for the jerk variable are small relative to
other covariates, when the covariates are statistically significant. The small value for these
coefficient estimates is due to the number of crashes being a small number relative to the
high jerk event counts, as can be seen in Tables 1 and 2. To obtain a crash count estimate
from a high jerk event count requires that the coefficient estimate be quite small. This
study was predicated upon the notion that a harsh braking event corresponds to a traffic
conflict and that traffic conflicts and collisions are related. That these models have negative
estimates for the coefficients of the harsh braking event counts suggests that harsh braking
events are indicative of the prevention of a traffic conflict which leads to the increase in
the probability of zero crashes and to the increase in the probability of one or more crashes.
Harsh braking events are events which might have been collisions but never were as a
result of the evasive action of the drivers involved.

The statistical models presented in Tables 3 and 4 possess an excellent level of sta-
tistical significance at a level better than 0.1%. Poisson models are simpler than negative
binomial models and generalized Poisson models, making them preferable if applicable.
While the requirement that the mean and variance of the dependent variable be equal
was approximately satisfied for the dataset used in this study, that may not be the case
for other datasets. Therefore, negative binomial and generalized Poisson regression are
recommended for crash prediction models based on harsh braking data.

As mentioned above, the presence of schools was found to increase crash frequency
within intersection influence areas. This confirms the efficacy of the use of school presence
in HSM safety analysis methodology. The estimated coefficients for the Schools variable are
positive, indicating that the presence of a school or multiple schools nearby decreases the
frequency of zero crashes and increases the frequency of one or more crashes. The presence
of schools increases pedestrian activity and the presence of young drivers, which may help
explain this increase.

The graphs presented in Figures 2 and 3 illustrate that these models fail to predict
high crash counts while performing better at locations with lower numbers of observed
crashes. This was not unexpected because the count models used in this study predict
low probabilities for higher counts. The statistical significance of the regressor variables in
the models, on the other hand, speaks to their overall strength. As CV penetration rates
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increase, allowing models based on CV data to be trained by a fuller picture of the activity
on roads, models of this form will likely become more effective. Preliminary studies such
as this, using CV data information in its technological infancy, set the stage for a future in
which CVs become significantly more widespread and CV data capture a large portion if
not a majority of roadway traffic. Figures 5 and 6, as well as the RMSE values presented
in Tables 5 and 6 demonstrate that the models’ predictive ability improves when outliers
are removed. The RMSE values for intersections decreased from approximately 0.95 to
0.63 for intersections and from approximately 1.55 to 0.76 for segments. The decrease in
RMSE indicates that the models produce more accurate crash count estimates when outliers
are removed.

5. Conclusions

This study developed several statistical models which use harsh braking event counts
from CV data in Salt Lake City as regressor variables and crash counts as the dependent
variables. Both intersections and segments were considered separately in this study with
models derived for each. Poisson, Negative Binomial, and Generalized Poisson models
were developed and they revealed the jerk threshold for intersection influence areas to be
−2.7 m/s3 and the jerk threshold for segments to be −0.3 m/s3. Additionally, the presence
of schools within 305 m was found to be a statistically significant variable for intersection
influence areas.

Crash prediction models such as these, based on harsh braking event counts, hold
promise for agencies and industry as another tool for safety analysis. Agencies may
investigate these models and tailor them to their jurisdictions for the purpose of adding such
models to their established methodologies. Such tailored models may then be employed as
a means of conducting comparative safety analysis for the purpose of identifying crash-
prone locations and prioritizing improvements. Once a particular area is identified as
being crash prone, further investigation into the cause of the safety hazard may commence.
Employing harsh braking models such as those developed in this study requires less labor
investment than existing methods, allowing for more frequent and widespread analyses
to identify and characterize road hazards. It should be noted that the intersection models
developed in this research are likely not applicable to sites with low crash activity, as
intersections were selected to maximize the amount of historical crash activity.

Future research into SSMs that are based on harsh braking events could include the
investigation of regional differences in models, the use of additional regressor variables in
segment-based models, and harsh positive acceleration data from CVs. Regional differences
may exist pertaining to the relationship between harsh braking and collisions. Harsh
braking events were found to be positively correlated to crashes in a previous study in
Louisiana which is contrary to the findings of this study [9]. While this may be due to the
significant differences in the methods of data collection between these two studies, regional
variations may also be a factor and ought to be investigated further. Additional regressor
variables were not investigated in the segment-based models developed in this study to
the degree to which they were investigated in the intersection-based models. The inclusion
of such additional regressor variables for segments ought to be investigated more fully
in a future study. These variables may include speed limits, curvature parameters, lane
widths, or total number of lanes, among others. Finally, harsh positive acceleration data
may be obtained in the same manner in which harsh braking data were collected in this
study. Harsh acceleration may be an indicator of safety or the lack thereof because it can
represent erratic driving behavior or situations in which a driver is attempting to clear
a potential crash location rapidly. The consideration of harsh acceleration data may be
performed separately from harsh braking data or in combination with harsh braking data.
If attempts are successful, this would yield yet another tool for agencies and industry to
employ for surrogate safety analysis.
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