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Abstract: In this paper, we derived optical soliton solutions with a highly dispersive nonlinear
complex Ginzburg–Landau (CGL) equation in birefringent fibers that have Kerr law nonlinearity. We
applied two mathematical methods, namely the addendum Kudryashov’s method and the unified
Riccati equation expansion method. Straddled solitary solutions, bright soliton, dark soliton and
singular soliton solutions were obtained.This model represents the propagation of a dispersive optical
soliton through a birefringent fiber. This happens when pulses propagating through an optical fiber
split into two pulses.

Keywords: unified Riccati equation expansion method; addendum to Kudryashov’s (AK) method;
soliton; CGL equation

1. Introduction

It is well recognized that nonlinear partial differential equations play a vital role in
physics and engineering challenges, where they are commonly utilized to represent many
complicated phenomena, such as optical fibers, plasma physics, fluid mechanics, biology,
chemical kinetics, and so on. In fact, explicit analytical solutions of these equations can be
found using several mathematical methods. There are numerous systems, including the
Lakshmanan–Porsezian–Daniel (LPD) model, the Radhakrishnan–Kundu–Lakshmanan
(RKL) equation, the Gabitov–Turisyn (GT) equation, the Schrodinger–Hirota (SH) equation,
the complex Ginzburg–Landau (CGL) equation, the Fokas–Lenell’s (FL) equation [1–36] and
so on. These are well-known examples of fibers that maintain polarization. The Manakov
equation and the Thirring model are two examples of common models for studying split
pulses in birefringent fibers. The underlying dynamics of soliton wave propagation for
each of these models is the existence of a careful balance between self-phase modulation
(SPM) and chromatic dispersion (CD). When the CD is low, an unreasonable result can
happen, pending the transmission of optical fiber pulses. To get around this crisis, a variety
of technology backup plans have been put into action. One suggestion is to use Bragg
gratings with dispersive reflectivity to make up for the low CD count. Pure-quartic solitons
were introduced as a different strategy throughout .

In this case, the CD is mutated by 4th-order dispersion (4OD). The disadvantage
of such a model is that, for pure-quartic NLSE, one can only recover stationary optical
solitons analytically and it can only be analyzed numerically. As a result, pure-quartic
solitons were never widely adopted as a substitute paradigm to deal with the dilemma.
Then, the fundamental idea of cubic-quartic (CQ) solitons emerged, replacing CD with
fourth-order dispersion (4OD) and third-order dispersion (3OD) jointly [21,22]. The ad-
vent of the torrent of analytical results in the flow is proof that these topics have recently
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attracted considerable interest. In this context, sixth-order dispersion (6OD)), fifth-order
dispersion (5OD), fourth-order dispersion (4OD), third-order dispersion (3OD)) and the
inter- modal dispersion (IMD) terms are considered, in addition to the pre-existing CD,
which, together, make up the HD solitons that provide the necessary delicate balance be-
tween self-phase modulation (SPM) and CD for the solitons to sustain the inter-continental
distance propagation.

Governing Model

The highly dispersive perturbed complex Ginzburg–Landau equation with the Kerr
law refractive index in polarization-preserving fiber is well known [28] and reads as:

i qt + i a1qx + a2qxx + i a3qxxx + a4qxxxx + i a5qxxxxx + a6qxxxxxx + c |q|2q

= α
|qx |2

q∗ + β

4|q|2q∗

{
2|q|2

(
|q|2
)

xx
−
[(
|q|2
)

x

]2
}
+ γq

+i [λ(|q|2mq)x + µ (|q|2m)x q + υ |q|2mqx]

(1)

where q(x, t) is the wave profile of the solution, which is a complex-valued function,
q∗ is the complex conjugate and i 2 = −1. Here, aj(j = 1− 6), c, α, β, γ, λ, µ, υ and m are
real constants. The first term in Equation (1) is the linear temporal evolution. The constant
a1 is the inter-model dispersion (IMD), the constant a2 is the chromatic dispersion (CD),
the constant a3 is the 3OD, the constant a4 is the 4OD, the constant a5 is the 5OD and the
constant a6 is the 6OD. The constant c is the coefficient of the Kerr law of nonlinearity.
The constants α, β, µ, υ are the coefficients of nonlinear dispersions. Finally, γ and λ are
the coefficients of self-detuning and self-steepening terms, respectively. The objective of
this article is to study the following two couples of CGLE in birefringent fibers, which are
written for the first time as follows:

i ut + i a1ux + a2uxx + i a3uxxx + a4uxxxx + i a5uxxxxx + a6uxxxxxx + (c1 |u|2 + d1|v|2)u
= 1

u∗ [α1|ux|2 + β1|vx|2 + σ1

(
|u|2

)
xx

+ δ1

(
|v|2
)

xx
]

− 1
(µ1|u|2+ζ1|v|2)u∗

{
θ1

[(
|u|2

)
x

]2
+ γ1

(
|u|2

)
x

(
|v|2
)

x
+ ρ1

[(
|v|2
)

x

]2
}
+ ψ1u

+i [λ1(|u|2mu)x + E1 (|u|2m)x u + υ1 |u|2mux],

(2)

and

i vt + i b1vx + b2vxx + i b3vxxx + b4vxxxx + i b5vxxxxx + b6vxxxxxx + (c2 |v|2 + d2|u|2)v
= 1

v∗ [α2|vx|2 + β2|ux|2 + σ2

(
|v|2
)

xx
+ δ2

(
|u|2

)
xx
]

− 1
(µ2|v|2+ζ2|u|2)v∗

{
θ2

[(
|v|2
)

x

]2
+ γ2

(
|v|2
)

x

(
|u|2

)
x
+ ρ2

[(
|u|2

)
x

]2
}
+ ψ2v

+i [λ2(|v|2mv)x + E2 (|v|2m)x v + υ2 |v|2mvx],

(3)

where u(x, t) and v(x, t) are complex-valued functions that reflect the wave profiles and
aj, bj(j = 1− 6), ck, dk, αk, βk, σk, δk, θk, γk, ρk, µk, ζk, ψk, λk, Ek, υk(k = 1, 2) are real-valued
constants. Its ck, dk (k = 1, 2) are the self-phase modulation (SPM) coefficients and the
cross-phase modulation (XPM) coefficients, respectively. The terms owing to αk, βk, δk, σk,
µk, ζk, θk, γk, ρk, ψk (k = 1, 2) are the perturbation effect; in particular, ψk is obtained by the
detuning effect, λk are the self-steepening (SS) coefficient terms and the nonlinear terms
coefficients used to discuss optical solutions are Ek and υk. The objective of this article is to
solve Equations (2) and (3) utilizing the addendum Kudryashov method and the unified
Riccati equation expansion approach.

The current paper is an analysis of HD-CGLE but in birefringent fibers. It is worth
mentioning that the model is addressed in a single channel but in birefringent fibers with
the Kerr law nonlinear refractive index. These are the familiar erbium-doped fibers with
the presence of a 3OD effect, in addition to CD and STD. This is a differential group delay
(DGD) effect after the occurrence of pulse splitting. The accumulation of such a DGD
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leads to the effect of birefringence. Thus, HD-CGLE in birefringent fibers is the focus of
attention in this work. The above system (2) and (3) is more general than that obtained in
the articles [10–18,21–23,27,28], and our results are different and new.

The structure of this article is ordered as follows: the introduction is in Section 1.
Section 2 discusses the mathematical foundations. In order to determine the optical soliton
solutions for the system (1) and (2), we use the addendum to Kudryashov’s in Section 3
and the unified Riccati equation expansion approach in Section 4. Numerical simulations
are presented in Section 5. Conclusions are demonstrated in Section 6.

2. Mathematical Preliminaries

We will consider the transformations of traveling waves as

u(x, t) = φ1(ξ)ei(− κx+wt+θ0), (4)

v(x, t) = φ2(ξ)ei(− κx+wt+θ0), (5)

where φj(ξ) (j = 1, 2) are real-valued functions representing the traveling waves’ ampli-
tudes, ξ = x− Vt. Here, V is the velocity of the solitons, κ its frequency, w is the wave
number and θ0 is the phase constant. Substituting (4) and (5) into Equations (2) and (3) and
separating the real and imaginary parts, we obtain the real parts as follows:

−k(λ1 + υ1)φ
2m+2
1 (ζ1φ2

2 + µ1φ2
1) + d1ζ1φ2

1φ4
2 − β1k2φ2

1(ζ1φ2
2 + µ1φ2

1) + (c1ζ1 + d1µ1)φ
4
1φ2

2

−2δ1(ζ1φ2
2 + µ1φ2

1)φ2φ
′′
2 + a6(ζ1φ2

2 + µ1φ2
1)φ1φ

(6)
1 + (−15a6k2 + 5a5k + a4)(ζ1φ2

2 + µ1φ2
1)φ1φ

(4)
1

+(15a6k4 − 10a5k3 − 6a4k2 + 3a3k + a2 − 2σ1)(ζ1φ2
2 + µ1φ2

1)φ1φ
′′
1 + (−a6k6 + a5k5 + a4k4

−a3k3 − a2k2 − α1k2 + a1k− ψ1 − w)φ2
1(ζ1φ2

2 + µ1φ2
1)− [(α1ζ1 + 2σ1ζ1)φ

2
2

+(α1µ1 + 2σ1µ1 − 4θ1)φ
2
1 ](φ

′
1)

2 + 4γ1φ1φ2φ′1φ′2 − [(β1ζ1 + 2δ1ζ1 − 4ρ1)φ
2
2

+(β1µ1 + 2δ1µ1)φ
2
1 ](φ

′
2)

2 + c1µ1φ6
1 = 0,

(6)

−k(λ2 + υ2)φ
2m+2
2 (ζ2φ2

1 + µ2φ2
2) + d2ζ2φ2

2φ4
1 − β2k2φ2

2(ζ2φ2
1 + µ2φ2

2) + (c2ζ2 + d2µ2)φ
4
2φ2

1

−2δ1(ζ2φ2
1 + µ2φ2

2)φ1φ
′′
1 + b6(ζ2φ2

1 + µ2φ2
2)φ2φ

(6)
2 + (−15b6k2 + 5b5k + b4)(ζ2φ2

1 + µ2φ2
2)φ2φ

(4)
2

+(15b6k4 − 10b5k3 − 6b4k2 + 3b3k + b2 − 2σ2)(ζ2φ2
1 + µ2φ2

2)φ2φ
′′
2 + (−b6k6 + b5k5 + b4k4

−b3k3 − b2k2 − α2k2 + b1k− ψ2 − w)φ2
2(ζ2φ2

1 + µ2φ2
2)− [(α2ζ2 + 2σ2ζ2)φ

2
1

+(α2µ2 + 2σ2µ2 − 4θ2)φ
2
2 ](φ

′
2)

2 + 4γ2φ2φ1φ′2φ′1 − [(β2ζ2 + 2δ2ζ2 − 4ρ2)φ
2
1

+(β2µ2 + 2δ2µ2)φ
2
2 ](φ

′
1)

2 + c2µ2φ6
2 = 0,

(7)

and the imaginary parts:

−ζ1[2E1m + 2λ1m + λ1 + υ1]φ
2m+1
1 φ2

2φ′1 − µ1(2E1m + 2mλ1 + λ1 + υ1)φ
2m+3
1 φ′1

ζ1(−6a6k5 + 5a5k4 + 4a4k3 − 3a3k2 − 2a2k−V + a1)φ1φ2
2φ′1

+ζ1(−6a6k + a5)φ1φ2
2φ

(5)
1 + ζ1(20a6k3 − 10a5k2 − 4a4k + a3)φ1φ2

2φ
′′′
1

+µ1(−6a6k5 + 5a5k4 + 4a4k3 − 3a3k2 − 2a2k−V + a1)φ
3
1φ′1

+µ1(20a6k3 − 10a5k2 − 4a4k + a3)φ
3
1φ
′′′
1 + µ1(−6a6k + a5)φ

3
1φ

(5)
1 = 0,

. (8)

−ζ2[2E2m + 2λ2m + λ2 + υ2]φ
2m+1
2 φ2

1φ′2 − µ2(2E2m + 2mλ2 + λ2 + υ2)φ
2m+3
2 φ′2

+ζ2(−6b6k5 + 5b5k4 + 4b4k3 − 3b3k2 − 2b2k−V + b1)φ2φ2
1φ′2

+ζ2(−6b6k + b5)φ2φ2
1φ

(5)
2 + ζ2(20b6k3 − 10b5k2 − 4b4k + b3)φ2φ2

1φ
′′′
2

+µ2(−6b6k5 + 5b5k4 + 4b4k3 − 3b3k2 − 2b2k−V + b1)φ
3
2φ′2

+µ2(20b6k3 − 10b5k2 − 4b4k + b3)φ
3
2φ
′′′
2 + µ2(−6b6k + b5)φ

3
2φ

(5)
2 = 0,

(9)

respectively. Set
φ2 = χφ1, (10)

where χ is a nonzero constant and χ 6= 1. Putting (10) into (6)–(9) allows us to express the
real parts as follows:
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−k(λ1 + υ1)φ
2m+4
1 (ζ1χ2 + µ1) + [c1µ1 + (c1ζ1 + d1µ1)χ

2 + d1ζ1χ4]φ6
1

φ4
1 [(−a6k6 + a5k5 + a4k4 − a3k3 − a2k2 − α1k2 + a1k− ψ1 − w− β1k2)(ζ1χ2 + µ1)]

+a6(ζ1χ2 + µ1)φ
3
1φ

(6)
1 + (−15a6k2 + 5a5k + a4)(ζ1χ2 + µ1)φ

3
1φ

(4)
1

[−2δ1χ2 + 15a6k4 − 10a5k3 − 6a4k2 + 3a3k + a2 − 2σ1](ζ1χ2 + µ1)φ
3
1φ
′′
1

−φ2
1(φ
′
1)

2{(β1ζ1 + 2δ1ζ1 − 4ρ1)χ
4 + (α1ζ1 + β1µ1 + 2σ1ζ1 + 2δ1µ1 + 4γ1)χ

2

+(α1µ1 + 2σ1µ1 − 4θ1)} = 0,

(11)

and

−k(λ2 + υ2)χ
2m+2φ2m+4

1 (ζ2 + µ2χ2) + [d2ζ2 + (c2ζ2 + d2µ2)χ
2 + c2µ2χ4]χ2φ6

1
+{−β2k2 − b6k6 + b5k5 + b4k4 − b3k3 − b2k2 − α2k2 + b1k− ψ2 − w}χ2(ζ2 + µ2χ2)φ4

1

+b6(ζ2 + µ2χ2)χ2φ2
1φ

(6)
1 + (−15b6k2 + 5b5k + b4)(ζ2 + µ2χ2)χ2φ3

1φ
(4)
1

[−2δ1 + (15b6k4 − 10b5k3 − 6b4k2 + 3b3k + b2 − 2σ2)χ
2](ζ2 + µ2χ2)φ3

1φ
′′
1

−φ2
1(φ
′
1)

2{(β2ζ2 + 2δ2ζ2 − 4ρ2) + (α2ζ2 + β2µ2 + 2σ2ζ2 + 2δ2µ2 − 4γ2)χ
2

+(α2µ2 + 2σ2µ2 − 4θ2)χ
4} = 0,

(12)

and the imaginary parts as:

−(2E1m + 2mλ1 + λ1 + υ1)φ
2m+3
1 φ′1 + (20a6k3 − 10a5k2 − 4a4k + a3)φ

3
1φ
′′′
1

+(−6a6k + a5)φ
3
1φ

(5)
1 + (−6a6k5 + 5a5k4 + 4a4k3 − 3a3k2 − 2a2k−V + a1)φ

3
1φ′1 = 0,

(13)

−(2E2m + 2λ2m + λ2 + υ2)χ
2mφ2m+3

1 φ′1 + (20b6k3 − 10b5k2 − 4b4k + b3)φ
3
1φ
′′′
1

+(−6b6k + b5)φ
3
1φ

(5)
1 + (−6b6k5 + 5b5k4 + 4b4k3 − 3b3k2 − 2b2k−V + b1)φ

3
1φ′1 = 0,

(14)

respectively. The linear independence assumption on Equations (13) and (14) gives the
soliton’s velocity:

V = −6a6k5 + 5a5k4 + 4a4k3 − 3a3k2 − 2a2k + a1 = −6b6k5 + 5b5k4 + 4b4k3 − 3b3k2 − 2b2k + b1 (15)

and the soliton’s frequency:

κ =
a5

6a6
=

b5

6b6
, (16)

and the constraint conditions

2E1m + (2m + 1)λ1 + υ1 = 0,
2E2m + (2m + 1)λ2 + υ2 = 0,
20a6k3 − 10a5k2 − 4a4k + a3 = 0,
20b6k3 − 10b5k2 − 4b4k + b3 = 0.

(17)

Equations (11) and (12) are equivalent under the constraints:

(λ1+υ1)(ζ1χ2+µ1)
(λ2+υ2)χ2m+2(ζ2+µ2χ2)

= c1µ1+(c1ζ1+d1µ1)χ
2+d1ζ1χ4

[d2ζ2+(c2ζ2+d2µ2)χ2+c2µ2χ4]χ2 = a6(ζ1χ2+µ1)
b6(ζ2+µ2χ2)χ2

= (−15a6k2+5a5k +a4)(ζ1χ2+µ1)
(−15b6k2+5b5k +b4)(ζ2+µ2χ2)χ2 = (−a6k6+a5k5+a4k4−a3k3−a2k2−α1k2+a1k−ψ1−w−β1k2)(ζ1χ2+µ1)

(−b6k6+b5k5+b4k4−b3k3−b2k2−α2k2+b1k−ψ2−w−β2k2)χ2(ζ2+µ2χ2)

= [−2δ1χ2+15a6k4−10a5k3−6a4k2+3a3k+a2−2σ1](ζ1χ2+µ1)
[−2δ1+(15b6k4−10b5k3−6b4k2+3b3k+b2−2σ2)χ2](ζ2+µ2χ2)

= (β1ζ1+2δ1ζ1−4ρ1)χ
4+(α1ζ1+β1µ1+2σ1ζ1+2δ1µ1+4γ1)χ

2+(α1µ1+2σ1µ1−4θ1)
{(β2ζ2+2δ2ζ2−4ρ2)+(α2ζ2+β2µ2+2σ2ζ2+2δ2µ2−4γ2)χ2+(α2µ2+2σ2µ2−4θ2)χ4}

(18)

Now, Equation (11) can be written in the form:

φ3
1φ

(6)
1 + ∆1φ3

1φ
(4)
1 + ∆2φ3

1φ
′′
1 + ∆3φ2

1(φ
′
1)

2 + ∆4φ4
1 + ∆5φ6

1 + ∆6φ2m+4
1 = 0, (19)
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where

∆1 = (−15a6k2+5a5k +a4)
a6

,

∆2 = [−2δ1χ2+(15a6k4−10a5k3−6a4k2+3a3k+a2−2σ1)]
a6

,

∆3 = − {(β1ζ1+2δ1ζ1−4ρ1)χ
4+(α1ζ1+β1µ1+2σ1ζ1+2δ1µ1+4γ1)χ

2+(α1µ1+2σ1µ1−4θ1)}
a6(ζ1χ2+µ1)

,

∆4 = (−a6k6+a5k5+a4k4−a3k3−a2k2−α1k2+a1k−ψ1−w−β1k2)
a6

,

∆5 = [c1µ1+(c1ζ1+d1µ1)χ
2+d1ζ1χ4]

a6(ζ1χ2+µ1)
, ∆6 = −k(λ1+υ1)

a6
.

(20)

provided a6(ζ1χ2 + µ1) 6= 0. Let us now solve Equation (19) using the following two methods.

3. Addendum to Kudryashov’s Method

Recently, Kudryashov [4] proposed a new approach, while Zayed et al. [28] general-
ized this approach and called it the addendum to Kudryashov’s method. In this section,
we apply this addendum method to solve Equation (19). For this purpose, we see that
Equation (19) is integrable when m = 1, which is written as:

φ3
1φ

(6)
1 + ∆1φ3

1φ
(4)
1 + ∆2φ3

1φ
′′
1 + ∆3φ2

1(φ
′
1)

2 + ∆4φ4
1 + (∆5 + ∆6)φ

6
1 = 0, (21)

We postulate that (20) has the solution shape:

φ1(ξ) =
N

∑
s=0

As [T(ξ)]s , (22)

where As(s = 0, 1, 2, . . . , N) are constants that can be computed later, As 6= 0, whereas
T(ξ) achieves the nonlinear ODE:

T
′2(ξ) = T2(ξ)[1− ζT2h(ξ)][ln K]2, 0 < K 6= 1, (23)

whenever ζ is an arbitrary constant. It is well known the Equation (23) has the solution:

T(ξ) =
[

4A
4A2 expK(hξ) + ζ expK(−hξ)

]1/h
, (24)

where A is a nonzero constant, h is a natural number and expK(hξ) = Khξ .
From balancing the nonlinear terms φ6

1 and φ3
1φ

(6)
1 in Equation (21), we obtain:

N = 3h (25)

Now, we will dispute the next cases:
Case-1. When we choose h = 1, N = 3 posteriorly. Therefore, we deduce that

Equation (21) has the following solution:

φ(ξ) = A0 + A1T(ξ) + A2 T2(ξ) + A3 T3(ξ), (26)

where A0, A1, A2 and A3 are to be calculated constants such that A3 6= 0. Inserting (26)
along with (23) into Equation (21), one may combine all of the coefficients of [T(ξ)]l [T

′
(ξ)] f ,

(l = (0, 1, 2, . . . , 10, f = 0, 1) and set them to zero. Then, we arrive at a system of algebraic
equations that Maple can solve to obtain the following results:

A0 = A1 = A2 = 0, A3 = 24ε[ln K]3ζ

√
35ζ

∆5 + ∆6
, (27)
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and

∆1 = −83 ln2 K, ∆2 = 1891 ln4 K− 3
4

∆3, ∆4 = −11025 ln6 K− 9
4

∆3 ln2 K (28)

provided that ζ(∆5 + ∆6) > 0 and ε = ±1.
Substituting (27) with (24) into Equation (26), we acquire the straddled solitary solution

to Equations (2) and (3) as:

u(x, t) =
1536ε[ln K]3ζ A3

√
35ζ

∆5+∆6

[4A2 expK(x−Vt) + ζ expK(−(x−Vt))]3
ei(− κx+wt+θ0), (29)

and

v(x, t) = χ

 1536ε[ln K]3ζ A3
√

35ζ
∆5+∆6

[4A2 expK(x−Vt) + ζ expK(−(x−Vt))]3

 ei(− κx+wt+θ0). (30)

In the special case, if we set ζ = 4A2 in Equations (29) and (30) posteriorly, we
construct the bright soliton solution to Equations (2) and (3) as

u(x, t) = 24ε ln3 K

√
35

∆5 + ∆6
ei(− κx+wt+θ0) sech3[(x−Vt) ln K], (31)

and

v(x, t) = χ

[
24ε ln3 K

√
35

∆5 + ∆6
sech3[(x−Vt) ln K]

]
ei(− κx+wt+θ0), (32)

provided that (∆5 + ∆6) > 0, while, if we set ζ = −4A2 in Equations (29) and (30), we
posteriorly obtain the singular soliton solution of Equations (2) and (3) as:

u(x, t) = 24ε ln3 K

√
−35

∆5 + ∆6
ei(− κx+wt+θ0) csch3[(x−Vt) ln K], (33)

and

v(x, t) = χ

[
24ε ln3 K

√
−35

∆5 + ∆6
csch3[(x−Vt) ln K]

]
ei(− κx+wt+θ0), (34)

provided that (∆5 + ∆6) < 0.

Remark 1. Under the constraint circumstances (28), the solutions (29)–(34) exist.

Case-2. When we choose h = 2, N = 6 posteriorly. Therefore, we deduce that
Equation (21) has the following solution:

φ1(ξ) = A0 + A1T(ξ) + A2 T2(ξ) + A3 T3(ξ) + A4 T4(ξ) + A5 T5(ξ) + A6 T6(ξ), (35)

where Ai(i = 0, 1, . . . , 6), A6 6= 0 . Here, T(ξ) is the solution of the equation:

T
′2(ξ) = T2(ξ)[1− ζT4(ξ)] ln2 K, 0 < K, K 6= 1. (36)

Inserting (35) along with (36) into Equation (21), one may combine all of the coefficients
of [T(ξ)]l [T

′
(ξ)] f , (l = (0, 1, 2, . . . , 24, f = 0, 1) and set them to zero. Then, we arrive at a

system of algebraic equations that can be solved by Maple to obtain the results:

A0 = A1 = A2 = A3 = A4 = A5 = 0, A6 = 192εζ ln3 K

√
35ζ

∆6 + ∆5
, (37)



Eng 2023, 4 671

and

∆1 = −332 ln2 K, ∆2 = 30256 ln4 K− 3
4

∆3, ∆4 = −705600 ln6 K− 9∆3 ln2 K, (38)

provided that ζ(∆5 + ∆6) > 0 and ε = ±1.

Substituting (37) with (24) into Equation (35), we acquire the straddled solitary solution
to Equations (2) and (3) as:

u(x, t) =
12288ε ζA3 ln3 K

√
35ζ

∆5+∆6

[4A2 expK[2(x−Vt)] + ζ expK[−2(x−Vt)]3
ei(− κx+wt+θ0), (39)

and

v(x, t) = χ

 12288ε ζA3 ln3 K
√

35ζ
∆5+∆6

[4A2 expK[2(x−Vt)] + ζ expK[−2(x−Vt)]3

ei(− κx+wt+θ0). (40)

In the special case, if we set ζ = 4A2 in Equations (39) and (40) posteriorly, we
construct the bright soliton solution to Equations (2) and (3) as

u(x, t) = 192ε ln3 K

√
35

∆5 + ∆6
sech3 [2(x−Vt) ln K]ei(− κx+wt+θ0), (41)

and

v(x, t) = χ

[
192ε ln3 K

√
35

∆5 + ∆6
sech3 [2(x−Vt) ln K]

]
ei(− κx+wt+θ0). (42)

provided that ∆5 + ∆6 > 0, while, if we set ζ = −4A2 posteriorly, one obtains the singular
solitonsolution of Equations (2) and (3) as:

u(x, t) = 192ε ln3 K

√
−35

∆5 + ∆6
csch3 [2(x−Vt) ln K] ei(− κx+wt+θ0), (43)

and

v(x, t) = χ

[
192ε ln3 K

√
−35

∆5 + ∆6
csch3 [2(x−Vt) ln K]

]
ei(− κx+wt+θ0), (44)

provided that ∆5 + ∆6 < 0.

Remark 2. Under the constraint circumstances (38), the solutions (39)–(44) exist.

Similarly, by changing the parameters h and N, one can obtain numerous solitary
wave solutions of Equations (2) and (3).

4. Unified Riccati Equation Expansion Method

In this part, we apply the unified Riccati equation expansion approach to investigate
the soliton solution to Equations (2) and (3). We assume that the solution to Equation (21)
takes the following forms in this method:

φ1(ξ) =
N

∑
i=0

Bi [Y(ξ)]i, (45)
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where Bi, i = 0, 1, 2, . . . , N are constants while Y(ξ) is the solution of Riccati equation:

Y′(ξ) = h0 + h1Y + h2Y2, (46)

and hj, j = 0, 1, 2 are arbitrary constants. Equation (21) now has a formal solution based
on the balance number principle:

φ1(ξ) = B0 + B1Y(ξ) + B2Y2(ξ) + B3Y3(ξ). (47)

Equations (46) and (47) are substituted into Equation (21). Collecting the coefficients
of [Y(ξ)]m, m = 0, 1, . . . , 24, we obtain a set of algebraic equations that may be solved using
a computer software program to produce the following results:

B0 =
105εh3

1√
−35(∆5+∆6)

, B1 =
360εh2

1h2√
−35(∆5+∆6)

,

B2 =
1260εh2

2h1√
−35(∆5+∆6)

, B3 =
840εh3

2√
−35(∆5+∆6)

,
(48)

and

∆1 = 83
2 (h2

1 − 4h2h0), ∆2 = 1175
2
(
4h2h0 − h2

1
)2, ∆3 = −279

(
4h2h0 − h2

1
)2,

∆4 = −315
(
4h2h0 − h2

1
)3 , h2

1 − 4h2h0 6= 0.
(49)

provided that ∆5 + ∆6 < 0. Several other cases are removed for the sake of brevity.
The precise solutions to the Riccati Equation (46) are provided by

Y(ξ) =


− h1

2h2
−
√

∆
2h2

[r1 tanh(
√

∆
2 ξ)+r2]

[r1+r2 tanh(
√

∆
2 ξ)]

if ∆ > 0 and r2
1 + r2

2 6= 0,

− h1
2h2

+
√
−∆

2h2

[r3 tan(
√
−∆
2 ξ)−r4]

[r3+r4 tan(
√
−∆
2 ξ)]

if ∆ < 0 and r2
3 + r2

4 6= 0,
(50)

where rj(j = 1, 2, . . . , 5) are arbitrary constants and ∆ = h2
1 − 4h0h2.

4.1. Soliton Solutions

When ∆ = h2
1 − 4h0h2 > 0, Equations (48) and (50) lead to the solutions of Equa-

tion (21), which can be written as

φ1(ξ) =
105ε(∆)3/2√
−35(∆5 + ∆6)

[
r1 tanh(

√
∆

2 ξ) + r2

r1 + r2 tanh(
√

∆
2 ξ)

]3

. (51)

Consequently, the solitary wave solutions of Equations (2) and (3) are given by

u(x, t) =
105ε(∆)3/2ei(− κx+wt+θ0)√

−35(∆5 + ∆6)

[
r1 tanh[

√
∆

2 (x−Vt)] + r2

r1 + r2 tanh[
√

∆
2 (x−Vt)]

]3

, (52)

and

v(x, t) = χ

 105ε (∆)3/2√
−35(∆5 + ∆6)

[
r1 tanh[

√
∆

2 (x−Vt)] + r2

r1 + r2 tanh[
√

∆
2 (x−Vt)]

]3
ei(− κx+wt+θ0). (53)

In particular, when r1 6= 0 and r2 = 0 in Equations (52) and (53), the dark solitons that
emerge are given by

u(x, t) =
105ε (∆)3/2ei(− κx+wt+θ0)√

−35(∆5 + ∆6)
tanh3[

√
∆

2
(x−Vt)] (54)
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and

v(x, t) = χ

[
105ε (∆)3/2√
−35(∆5 + ∆6)

tanh3[

√
∆

2
(x−Vt)]

]
ei(− κx+wt+θ0). (55)

while, when r1 = 0 and r2 6= 0 in Equations (52) and (53), the singular solutions are given by

u(x, t) =
105ε (∆)3/2ei(− κx+wt+θ0)√

−35(∆5 + ∆6)
coth3[

√
∆

2
(x−Vt)] (56)

and

v(x, t) = χ

[
105ε (∆)3/2√
−35(∆5 + ∆6)

coth3[

√
∆

2
(x−Vt)]

]
ei(− κx+wt+θ0). (57)

4.2. Periodic Wave Solutions

When ∆ = h2
1 − 4h0h2 < 0, Equations (48) and (50) lead to the periodic solutions of

Equations (2) and (3), which can be written as follows:

u(x, t) =
105ε(−∆)3/2ei(− κx+wt+θ0)√

−35(∆5 + ∆6)

[
r3 tan[

√
−∆
2 (x−Vt)]− r4

r3 + r4 tan[
√
−∆
2 (x−Vt)]

]3

, (58)

and

v(x, t) = χ

 105ε(−∆)3/2√
−35(∆5 + ∆6)

[
r3 tan[

√
−∆
2 (x−Vt)]− r4

r3 + r4 tan[
√
−∆
2 (x−Vt)]

]3
ei(− κx+wt+θ0). (59)

In particular, when r3 6= 0 and r4 = 0 in Equations (58) and (59), the periodic solutions
are given by

u(x, t) =
105ε(−∆)3/2ei(− κx+wt+θ0)√

−35(∆5 + ∆6)
tan3[

√
−∆
2

(x−Vt)], (60)

and

v(x, t) = χ

[
105ε(−∆)3/2√
−35(∆5 + ∆6)

tan3[

√
−∆
2

(x−Vt)]

]
ei(− κx+wt+θ0), (61)

while, when r3 = 0 and r4 6= 0 in Equations (58) and (59), the periodic solutions are given by

u(x, t) = −105ε(−∆)3/2ei(− κx+wt+θ0)√
−35(∆5 + ∆6)

cot3[

√
−∆
2

(x−Vt)], (62)

and

v(x, t) = χ

[
− 105ε(−∆)3/2√
−35(∆5 + ∆6)

cot3[

√
−∆
2

(x−Vt)]

]
ei(− κx+wt+θ0). (63)

Remark 3. The solutions (52)–(63) exist under the constraint conditions (49).

5. Numerical Simulations

In this section, we show the graphs (Figures 1 and 2) of some solutions to Equations (2)
and (3). To accomplish this, we choose certain particular values for the obtained parameters
of these solutions.
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5 Numerical simulations

In this section, we show the graphs of some solutions to Eqs. (2) and (3). To accomplish this, we choose
certain particular values for the obtained parameters of these solutions:

(a) (b)

(c) (d)

Figure 1. The numerical simulation of the bright soliton solutions (31) and (32) in 3D and its projection
in 2D when a1 = 1; a2 = 2, a3 = 3; a4 = 5; a5 = 2; �1 = 4; �1 = 3; � = 4; �1 = �5; �1 = 2;K = 5; c1 = 5 and
d1 = 7:

(a) (b)

10

Figure 1. The numerical simulation of the bright soliton solutions (31) and (32) in 3D and its projection
in 2D when a1 = 1, a2 = 2, a3 = 3, a4 = 5, a5 = 2, λ1 = 4, µ1 = 3, χ = 4, υ1 = −5, ζ1 = 2, K = 5, c1 = 5
and d1 = 7.

(c) (d)

Figure 2. The numerical simulation of the singular soliton solutions (33) in 3D and its projection in 2D
when a1 = 1; a2 = 2, a3 = 3; a4 = 5; a5 = 2; �1 = 4; �1 = 3; � = 4; �1 = �5; �1 = 2;K = 5; c1 = �5 and
d1 = �7:

(a) (b)

(c) (d)

Figure 3. The numerical simulation of the dark soliton solutions (54) and (55) in 3D and its projection
in 2D when a1 = 1; a2 = 2, a3 = 3; a4 = 5; a5 = 2; �1 = 4; �1 = 3; � = 4; �1 = �5; �1 = 2; c1 = �5,
h1 = 5; h0 = 2; h2 = 3 and d1 = �7:

11

Figure 2. Cont.
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(c) (d)

Figure 2. The numerical simulation of the singular soliton solutions (33) in 3D and its projection in 2D
when a1 = 1; a2 = 2, a3 = 3; a4 = 5; a5 = 2; �1 = 4; �1 = 3; � = 4; �1 = �5; �1 = 2;K = 5; c1 = �5 and
d1 = �7:

(a) (b)

(c) (d)

Figure 3. The numerical simulation of the dark soliton solutions (54) and (55) in 3D and its projection
in 2D when a1 = 1; a2 = 2, a3 = 3; a4 = 5; a5 = 2; �1 = 4; �1 = 3; � = 4; �1 = �5; �1 = 2; c1 = �5,
h1 = 5; h0 = 2; h2 = 3 and d1 = �7:

11

Figure 2. The numerical simulation of the dark soliton solutions (54) and (55) in 3D and its projection
in 2D when a1 = 1, a2 = 2, a3 = 3, a4 = 5, a5 = 2, λ1 = 4, µ1 = 3, χ = 4, υ1 = −5, ζ1 = 2, c1 = −5,
h1 = 5, h0 = 2, h2 = 3 and d1 = −7.

6. Conclusions

The highly dispersive nonlinear complex sixth-order Ginzburg–Landau (CGL) equa-
tion in birefringent fibers with Kerr law nonlinearity was studied in this work. Two
integration methods were used via the addendum to Kudryashov’s method and the unified
Riccati equation expansion method. We found the bright, dark, singular soliton solutions
for this model. In future, this work will be extended to fiber Bragg gratings and magneto-
optic waveguides. In addition, we will study Equation (1) and the systems (2) and (3) with
variable coefficients. Finally, all solutions of this article have been checked using Maple by
putting them back into the original equations.
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