The Importance of Assessing the Geological Site Effects of Ancient Earthquakes from the Archaeoseismological Point of View
Abstract
:1. Introduction
2. Geological Site Effects
Event | Magnitude | Depth (km) | Reference |
---|---|---|---|
1703 Central Italy earthquake | Mw = 6.7 | ? | [50] |
1749 Northern Colima Graben, Mexico earthquake | Mw = 6.7 | ? | [51] |
1938 Northern Belgium earthquake | Ms = 5.0 | 19 ± 4 | in [18] |
1906 San Francisco, California earthquake | Mw = 7.9 | 10.0 | in [18] |
1970 Ancash, Peru earthquake | Mw = 7.9 | 13.0 | earthquakes.usgs.gov |
1909 NW Peloponnese Greece earthquake | Mw = 5.9 | ? | [52] |
1985 Michoacán, Mexico earthquake | Ms = 8.1 | 17.0 | in [18] |
1989 Loma Prieta, California earthquake | Ms = 7.1 | 12.0 | in [18] |
1994 Northridge, California earthquake | Mw = 6.7 | 17 ± 1 | in [18] |
1995 Kobe, Japan earthquake | Mw = 6.9 | 17.0 | in [18] |
1999 Athens, Greece earthquake | Mw = 5.9 | 15.0 | in [18] |
1999 Kocaeli, Turkey earthquake | Mw = 7.4 | 16.0 | in [18] |
2001 Gujarat, India earthquake | Mw = 7.7 | 16.0 | earthquakes.usgs.gov |
2003 Bam, Iran earthquake | Mw = 6.6 | 15.0 | earthquakes.usgs.gov |
2005 Kashmir, Pakistan earthquake | Mw = 7.6 | 15.0 | earthquakes.usgs.gov |
2008 Wenchuan, China earthquake | Ms = 8.0 | 14.0 | in [18] |
2010 Baja California Norte, Mexico earthquake | Mw = 7.2 | 4.0 | earthquakes.usgs.gov |
2010 Port-au-Prince, Haiti earthquake | Mw = 7.0 | 13.0 | earthquakes.usgs.gov |
2010 Offshore Concepcion, Chile earthquake | Mw = 8.8 | 22.9 | earthquakes.usgs.gov |
2010 Christchurch, New Zealand earthquake | Mw = 7.0 | 12.0 | earthquakes.usgs.gov |
2011 Eastern Turkey earthquake | Mw = 7.1 | 18.0 | earthquakes.usgs.gov |
2011 Offshore Honshu, Japan earthquake | Mw = 9.0 | 29.0 | earthquakes.usgs.gov |
2013 Linqiong, China earthquake | Mw = 6.5 | 14.0 | earthquakes.usgs.gov |
2013 Bandar Bushehr, Iran earthquake | Mw = 6.4 | 12.0 | earthquakes.usgs.gov |
2014 Iquique, Chile earthquake | Mw = 8.2 | 25.0 | earthquakes.usgs.gov |
2015 East of Kudi, Nepal earthquake | Mw = 7.8 | 8.2 | in [18] |
2017 Iran-Iraq earthquake | Mw = 7.3 | 19.0 | earthquakes.usgs.gov |
2016 Central Italy earthquake sequence | Mw = 6.1, 5.9, 6.5 | [33] | |
2019 Albania earthquake | Mw = 6.4 | 20.0 | earthquakes.usgs.gov |
2020 Aegean Sea earthquake | Mw = 6.9 | 21.0 | earthquakes.usgs.gov |
2021 Haiti earthquake | Mw = 7.2 | 10.0 | earthquakes.usgs.gov |
2022 Afghanistan earthquake | Mw = 6.2 | 4.0 | earthquakes.usgs.gov |
3. Archaeoseismology
4. Geological Site Effects in an Archaeoseismological Context
5. Criteria for Forward Modeling Geological Site Effects in Archaeoseismology
5.1. Seismotectonic Model
5.2. Site-Specific 1D Soil Models
5.3. Computational Tasks: Forward Modeling of Synthetic Seismograms and 1D LSR
6. Discussion
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lillie, R.J. Whole earth geophysics. In An Introductory Textbook for Geologists & Geophysicists; Prentice Hall, Inc.: Hoboken, NJ, USA, 1999; pp. 185–222. [Google Scholar]
- Sheriff, R.E. Encyclopedic Dictionary of Applied Geophysics, 2nd ed.; Society of Exploration Geophysics: Houston, TX, USA, 2006; p. 112. [Google Scholar]
- Vessia, G.; Laurenzano, G.; Pagliaroli, A.; Pilz, M. Seismic site response estimation for microzonation studies promoting the resilience of urban centers. Eng. Geol. 2021, 284. [Google Scholar] [CrossRef]
- Sintubin, M.; Stewart, I.S.; Niemi, T.M.; Altunel, E. Preface. In Ancient Earthquakes; Sintubin, M., Stewart, I.S., Niemi, T.M., Altunel, E., Eds.; Special Paper 471; Geological Society of America: Boulder, CO, USA, 2010; pp. v–xi. [Google Scholar]
- Lin, A.; Wang, M. Great earthquakes and the fall of the Sanxingdui and Jinsha civilizations in central China. Geoarchaeology 2017, 32, 479–493. [Google Scholar] [CrossRef] [Green Version]
- Galadini, F.; Hinzen, K.G.; Stiros, S. Archaeoseismology: Methodological issues and procedure. J. Seismol. 2006, 10, 395–414. [Google Scholar] [CrossRef] [Green Version]
- Hinzen, K.G. Archaeoseismology. In Encyclopedia of Solid Earth Geophysics; Gupta, H.K., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 11–15. [Google Scholar] [CrossRef]
- Hinzen, K.G.; Fleischer, C.; Reamer, S.K.; Schreiber, S.; Schütte, S.; Yeril, B. Quantitative methods in archaeoseismology. Quat. Int. 2011, 242, 31–41. [Google Scholar] [CrossRef]
- Reid, H.F. The Mechanics of the earthquake, v. II of Lawson, A.C., chairman. In the California Earthquake of April 18, 1906: Report of the State Earthquake Investigation Commission No. 87; Carnegie Institution of Washington Publication: Washington, DC, USA, 1910; 192p. [Google Scholar]
- Hough, S.E.; Friberg, P.A.; Busby, R.; Field, E.F.; Jacob, K.H.; Borcherdt, R.D. Sediment induced amplification and the collapse of the Mimitz freeway. Nature 1990, 344, 853–855. [Google Scholar] [CrossRef]
- Aki, K. Local site effects on weak and strong ground motion. Tectonophysics 1993, 218, 93–111. [Google Scholar] [CrossRef]
- Lermo, J.; Chávez-García, F.J. Site effect evaluation at Mexico city: Dominant period and relative amplification from strong motion and microtremor records. Soil Dyn. Earthq. Eng. 1994, 13, 413–423. [Google Scholar] [CrossRef]
- Chávez-García, F.J.; Cuenca, J. Site effects in Mexico city urban zone. A complementary study. Soil Dyn. Earthq. Eng. 1996, 15, 141–146. [Google Scholar] [CrossRef]
- Boore, D.M. Can site response be predicted? J. Earthq. Eng. 2004, 8, 1–41. [Google Scholar] [CrossRef]
- Lachet, C.; Hatzfeld, D.; Bard, P.Y.; Theodulidis, N.; Papaioannou, C.; Savvaidis, A. Site effects and microzonation in the city of Thessaloniki (Greece) comparison of different approaches. Bull. Seismol. Soc. Am. 1996, 86, 1692–1703. [Google Scholar] [CrossRef]
- Thompson, E.M.; Baise, L.G.; Tanaka, Y.; Kayen, R.E. A taxonomy of site response complexity. Soil Dyn. Earthq. Eng. 2012, 41, 32–43. [Google Scholar] [CrossRef]
- Boore, D.M.; Thompson, E.M. Path durations for use in the stochastic-method simulation of ground motions. Bull. Seismol. Soc. Am. 2014, 104, 2541–2552. [Google Scholar] [CrossRef]
- Kramer, S.L. Geotechnical earthquake engineering. In Prentice-Hall International Series in Civil Engineering and Engineering Mechanics, 1st ed.; Prentice-Hall: Hoboken, NJ, USA, 1996; 653p. [Google Scholar]
- Boore, D.M. A note on the effect of simple topography on seismic SH waves. Bull. Seismol. Soc. Am. 1972, 62, 275–284. [Google Scholar] [CrossRef]
- Davies, L.T.; West, L.R. Observed effects of topography on ground motion. Bull. Seismol. Soc. Am. 1973, 63, 283–298. [Google Scholar] [CrossRef]
- Geli, L.; Bard, P.Y.; Jullien, B. The effect of topography on earthquake ground motion: A review and new results. Bull. Seismol. Soc. Am. 1988, 78, 42–63. [Google Scholar] [CrossRef]
- Şafak, E. Local site effects and dynamic soil behavior. Soil Dyn. Earthq. Eng. 2001, 21, 453–458. [Google Scholar] [CrossRef]
- Bensalem, R.; Chatelain, J.L.; Mechane, D.; Oubaiche, E.H.; Hellel, M.; Guiller, B.; Djeddi, M.; Djadia, L. Ambient vibration techniques applied to explain heavy damages caused in Corso (Algeria) by the 2003 Boumerdes earthquake: Understanding seismic amplification due to gentle slopes. Seismol. Res. Lett. 2010, 81, 928–940. [Google Scholar] [CrossRef]
- Chen, Q.S.; Gao, G.Y.; Yang, J. Dynamic response of deep soft soil deposits under multi-directional earthquake loading. Eng. Geol. 2011, 121, 55–65. [Google Scholar] [CrossRef]
- Cornou, C.; Bard, P.Y. Site-to-bedrock over 1D transfer function ratio: An indicator of the proportion of edge-generated surface waves? Geophys. Res. Lett. 2003, 30, 1453. [Google Scholar] [CrossRef] [Green Version]
- Panzera, F.; Lombardo, G.; D’Amica, S.; Galea, P. Speedy techniques to evaluate seismic site effects in particular geomorphologic conditions: Faults, cavities, landslides and topographic irregularities. In Engineering Seismology, Geotechnical and Structural Earthquake Engineering; D’Amico, S., Ed.; IntechOpen: London, UK, 2013. [Google Scholar] [CrossRef]
- Atkinson, G.M.; Boore, D.M. Ground-motion relations for eastern North America. Bull. Seismol. Soc. Am. 1995, 85, 17–30. [Google Scholar] [CrossRef]
- Kawase, H. Site effects on strong ground motions. In International Handbook of Earthquake & Engineering Seismology: Part B; William, H.K.L., Kanamori, H., Jennings, P.C., Kisslinger, C., Eds.; International Association of Seismology and Physics of the Earth’s Interior (IASPEI): Tallinn, Estonia, 2003; pp. 1013–1030. [Google Scholar]
- Fritsche, S.; Fäh, D. The 1946 magnitude 6.1 earthquake in the Valais: Site-effects as contributor to the damage. Swiss J. Geosci. 2009, 102, 423–439. [Google Scholar] [CrossRef] [Green Version]
- Mohraz, B. A study of earthquake response spectra for different geological conditions. Bull. Seismol. Soc. Am. 1976, 66, 915–935. [Google Scholar]
- Bard, P.Y.; Bouchon, M. The two-dimensional resonance of sediment-filled valleys. Bull. Seismol. Soc. Am. 1985, 75, 519–541. [Google Scholar] [CrossRef]
- Fletcher, J.B.; Boatwright, J. Site response and basin waves in the Sacramento-San Joaquin Delta, California. Bull. Seismol. Soc. Am. 2013, 103, 196–210. [Google Scholar] [CrossRef]
- Lanzo, G.; Tommasi, P.; Ausilio, E.; Aversa, S.; Bozzoni, F.; Cairo, R.; d’Onofrio, A.; Durante, M.G.; Foti, S.; Giallini, S.; et al. Reconnaissance of geotechnical aspects of the 2016 Central Italy earthquakes. Bull. Earthq. Eng. 2018, 17, 5495–5532. [Google Scholar] [CrossRef]
- Raptakis, D.; Chávez-García, F.J.; Pitilakis, K. Site effects at Euroseistest–I. Determination of the valley structure and confrontation of observations with 1D analysis. Soil Dyn. Earthq. Eng. 2000, 19, 1–22. [Google Scholar] [CrossRef]
- Hashash, Y.M.A.; Park, D. Nonlinear one-dimensional seismic ground motion propagation in the Mississippi embayment. Eng. Geol. 2001, 62, 185–206. [Google Scholar] [CrossRef]
- Sørensen, M.B.; Oprsal, I.; Bonnefoy-Claudet, S.; Atakan, K.; Mai, P.M.; Pulido, N.; Yalciner, K. Local site effects in Ataköy, Istanbul, Turkey, due to a future large earthquake in the Marmara Sea. Geophys. J. Int. 2006, 167, 1413–1424. [Google Scholar] [CrossRef] [Green Version]
- Koçkar, M.K.; Akgün, H. Evaluation of the site effects of the Ankara basin, Turkey. J. Appl. Geophys. 2012, 83, 120–134. [Google Scholar] [CrossRef]
- Maufroy, E.; Chaljub, E.; Hollender, F.; Kristek, J.; Moczo, P.; Klin, P.; Priolo, E.; Iwaki, A.; Iwata, T.; Etienne, V.; et al. Earthquake ground motion in the Mydgonian basin, Greece: The E2VP verification and validation of 3D numerical simulation up to 4 Hz. Bull. Seismol. Soc. Am. 2015, 105, 1398–1418. [Google Scholar] [CrossRef] [Green Version]
- Hinojosa-Prieto, H.R. Local Site Effects in Archaeoseismology: Examples from the Mycenaean Citadels of Tiryns and Midea (Argive Basin, Peloponnese, Greece). Ph.D. Thesis, Universität zu Köln, Cologne, Germany, 2016. Available online: http://kups.ub.uni-koeln.de/id/eprint/6650 (accessed on 20 December 2022).
- Hinzen, K.G. The use of engineering seismological models to interpret archaeoseismological findings in Tolbiacum, Germany: A case study. Bull. Seismol. Soc. Am. 2005, 95, 521–539. [Google Scholar] [CrossRef]
- Fäh, D.; Steimen, S.; Oprsal, I.; Ripperger, J.; Wössner, J.; Schatzmann, R.; Kästil, P.; Spottke, I.; Huggenberger, P. The earthquake of 250 AD in Augusta Raurica, a real event with a 3D effect? J. Seismol. 2006, 10, 459–477. [Google Scholar] [CrossRef]
- Harbi, A.; Maouchea, S.; Vaccari, F.; Aoudia, A.; Oussadou, F.; Panza, G.F.; Benouar, D. Seismicity, seismic input and site effects in the Sahel—Algiers region (North Algeria). Soil Dyn. Earthq. Eng. 2007, 27, 427–447. [Google Scholar] [CrossRef]
- Bottari, C.; Bottari, A.; Carveni, P.; Saccà, C.; Spigo, U.; Teramo, A. Evidence of seismic deformation of the paved floor of the decumanus at Tindari (SE, Sicily). Geophys. J. Int. 2008, 174, 213–222. [Google Scholar] [CrossRef] [Green Version]
- Hinzen, K.G.; Weiner, J. Testing a Seismic Scenario for the Damage of the Neolithic Wooden Well of Erkelenz-Kückhoven, Germany; Special Publications 316; Geological Society: London, UK, 2009; pp. 189–205. [Google Scholar]
- Caputo, R.; Hinzen, K.G.; Liberatore, D.; Schreiber, S.; Helly, B.; Tziafalias, A. Quantitative archaeoseismological investigation of the Great Theatre of Larissa, Greece. Bull. Earthq. Eng. 2010, 9, 347–366. [Google Scholar] [CrossRef]
- Hinzen, K.G.; Kehmeier, H.; Schreiber, S. Quantitative archaeoseismological study of a Roman Mausoleum in Pinara (Turkey)-testing seismogenic and rockfall damage scenarios. Bull. Seismol. Soc. Am. 2013, 103, 1008–1021. [Google Scholar] [CrossRef]
- Hinzen KGHinojosa-Prieto, H.R.; Kalytta, T. Site Effects in Archaeoseismic Studies at Mycenaean Tiryns and Midea. Seismol. Res. Lett. 2016, 87, 1060–1074. [Google Scholar] [CrossRef]
- Hinzen, K.G.; Maran, J.; Hinojosa-Prieto, H.; Damm-Meinhardt, U.; Reamer, S.K.; Tzislakis, J.; Kemna, K.; Schweppe, G.; Fleischer, C.; Demakopoulou, K. Reassessing the Mycenaean Earthquake Hypothesis: Results of the HERACLES Project from Tiryns and Midea, Greece Reassessing the Mycenaean Earthquake Hypothesis. Bull. Seismol. Soc. Am. 2018, 108, 1046–1070. [Google Scholar] [CrossRef] [Green Version]
- Hinojosa-Prieto, H.R. Estimation of the moment magnitude and local site effects of a postulated Late Bronze Age earthquake: Mycenaean citadels of Tiryns and Midea, Greece. Ann. Geophys. 2020, 63, SE331. [Google Scholar] [CrossRef]
- Tertulliani, A.; Graziani, L.; Esposito, A. How Historical Seismology can Benefit from Bureaucracy: The Case of the “Lettere Patenti” in the City of Rome in 1703. Seismol. Res. Lett. 2020, 91, 2511–2519. [Google Scholar] [CrossRef]
- Suter, M. Macroseismic Study of the Devastating 22–23 October 1749 Earthquake Doublet in the Northern Colima Graben (Trans-Mexican Volcanic Belt, Western Mexico). Seismol. Res. Lett. 2019, 90, 2304–2317. [Google Scholar] [CrossRef]
- Triantafyllou, I.; Koukouvelas, I.; Papadopoulos, G.A.; Lekkas, E. A Reappraisal of the Destructive Earthquake (Mw 5.9) of 15 July 1909 in Western Greece. Geosciences 2022, 12, 374. [Google Scholar] [CrossRef]
- Schreiber, S.; Hinzen, K.G.; Fleischer, C.; Schütte, S. Excavation-parallel laser scanning of a medieval cesspit in the archaeological zone Cologne, Germany. ACM J. Comput. Cult. Herit. 2012, 5, 1–22. [Google Scholar] [CrossRef]
- Jusseret, S. Contextualizing the birth of Mediterranean archaeology. Antiquity 2014, 88, 964–974. [Google Scholar] [CrossRef]
- Caputo, R.; Helly, B. The use of distinct disciplines to investigate past earthquakes. Tectonophysics 2008, 453, 7–19. [Google Scholar] [CrossRef]
- Bottari, C.; Stiros, S.C.; Teramo, A. Archaeological evidence for destructive earthquakes in Sicily between 400 BC and AD 600. Geoarchaeology 2009, 24, 147–175. [Google Scholar] [CrossRef]
- Evans, A. The Palace of Minos, Part II; McMillan: London, UK, 1928; 844p. [Google Scholar]
- Karcz, I.; Kafri, U. Evaluation of supposed archaeoseismic damage in Israel. J. Archaeol. Sci. 1978, 5, 237–253. [Google Scholar] [CrossRef]
- Rapp, G., Jr. Assessing archaeological evidence for seismic catastrophes. Geoarchaeology 1986, 1, 365–379. [Google Scholar] [CrossRef]
- French, E.B. Evidence for an earthquake at Mycenae. In Archaeoseismology; Stiros, S., Jones, R.E., Eds.; Fitch Laboratory Occasional Paper No. 7, Athens; Short Run Press: Exeter, UK, 1996; pp. 51–54. [Google Scholar]
- Buck, V. Archaeoseismology in the Atalanti Region, Central Mainland Greece: Theories, Methods and Practice; BAR International Series 1552; Archaeopress: Oxford, UK, 2006; 110p. [Google Scholar]
- Ambraseys, N.N. Value of historic records of earthquakes. Nature 1971, 232, 375–379. [Google Scholar] [CrossRef]
- Stiros, S. The 8.5+ magnitude, AD 365 earthquake in Crete: Coastal uplift, topography changes, archaeological and historical signature. Quat. Int. 2010, 216, 54–63. [Google Scholar] [CrossRef]
- Nikonov, A.A. Reconstruction of the main parameters of old large earthquakes in Soviet central Asia using the palaeoseismological method. Tectonophysics 1988, 147, 297–312. [Google Scholar] [CrossRef]
- Hinzen, K.G.; Schreiber, S.; Fleischer, C.; Reamer, S.K.; Wisona, I. Archaeoseismic study of damage in Roman and Medieval structures in the center of Cologne, Germany. J. Seismol. 2012, 17, 399–424. [Google Scholar] [CrossRef] [Green Version]
- Stiros, S. Identification of earthquakes from archaeological data: Methodology, criteria and limitations. In Archaeoseismology; Stiros, S., Jones, R.E., Eds.; Fitch Laboratory Occasional Paper No. 7 Athens; Short Run Press: Exeter, UK, 1996; pp. 129–152. [Google Scholar]
- Ambraseys, N.N. Archaeoseismology and neocatastrophism. Seismol. Res. Lett. 2005, 76, 560–564. [Google Scholar] [CrossRef]
- Marco, S. Recognition of earthquake-related damage in archaeological sites: Examples from the Dead Sea fault zone. Tectonophysics 2008, 453, 148–156. [Google Scholar] [CrossRef]
- Hinzen, K.G.; Schreiber, S.; Yerli, B. The Lycian sarcophagus of Arttumpara, Turkey: Testing seismogenic and anthropogenic damage scenarios. Bull. Seismol. Soc. Am. 2010, 100, 3148–3164. [Google Scholar] [CrossRef] [Green Version]
- Hinzen, K.G.; Schwellenbach, I.; Schweppe, G.; Marco, S. Quantifying earthquake effects on ancient arches, example: The Kalat Nimrod Fortress, Dead Sea fault zone. Seismol. Res. Lett. 2016, 87, 751–764. [Google Scholar] [CrossRef] [Green Version]
- Hinzen, K.G.; Meghraoui, M.; Bahrouni, N.; Reamer, S.K. Testing the earthquake damage and vulnerability of the Cherichira aqueduct bridge, Kairouan (Tunisia) with discrete element modeling. Mediterr. Geosci. Rev. 2022, 4, 495–516. [Google Scholar] [CrossRef]
- Hinzen, K.G. Sensitivity of earthquake toppled columns to small changes in ground motion and geometry. Isr. J. Earth Sci. 2012, 58, 309–326. [Google Scholar] [CrossRef]
- Hinzen, K.G.; Vetters, M.; Kalytta, T.; Reamer, S.K.; Damm-Meinhardt, U. Testing the response of Mycenaean terracotta figures and vessels to earthquake ground motions. Geoarchaeology 2015, 30, 1–18. [Google Scholar] [CrossRef]
- Schweppe, G.; Hinzen, K.G.; Reamer, S.K.; Fischer, M.; Marco, S. The ruin of the Roman Temple of Kedesh, Israel; example of a precariously balanced archaeological structure used as a seismoscope. Ann. Geophys. 2017, 60, S0444. [Google Scholar] [CrossRef] [Green Version]
- Schweppe, G.; Hinzen, K.G.; Reamer, S.K.; Marco, S. Reconstructing the slip velocities of the 1202 and 1759 CE earthquakes based on faulted archaeological structures at Tell Ateret, Dead Sea Fault. J. Seismol. 2021, 25, 1021–1042. [Google Scholar] [CrossRef]
- Di Vita, A. Archaeologist and earthquakes: The case of 365 AD. Ann. Geofis. 1995, XXXVIII, 971–976. [Google Scholar]
- Guidoboni, E.; Bianchi, S.S. Collapse and seismic collapses in archaeology: Proposal for a thematic atlas. Ann. Geofis. 1995, XXXVIII, 1013–1017. [Google Scholar] [CrossRef]
- Rodríguez-Pascua, M.A.; Pérez-López, R.; Giner-Robles, J.L.; Silva, P.G.; Garduño-Monroy, V.H.; Reicherter, K. A comprehensive classification of earthquake archaeological effects (EAE) in archaeoseismology: Application to ancient remains of Roman and Mesoamerican cultures. Quat. Int. 2011, 242, 20–30. [Google Scholar] [CrossRef]
- Sintubin, M. Archaeoseismology: Past, present and future. Quat. Int. 2011, 242, 4–10. [Google Scholar] [CrossRef]
- Garduño-Monroy, V.H.; Macías, J.L.; Oliveros, A.; Hernández-Madrigal, V.M. Progress in seismic and archaeoseismic studies in the zone of Mitla, Oaxaca. Earthquake Geology and Archaeology: Science, society and seismic hazard. In Proceedings of the 3rd INQUA-IGCP 567 International Workshop on Earthquake Geology, Palaeoseismology and Archaeoseismology, Morelia, Mexico, 19–24 November 2012; Volume 3, pp. 43–46. [Google Scholar]
- Garduño-Monroy, V.H.; Benavente-Escóbar, C.; Oliveros, A.; Rodríguez-Pascua, M.A.; Pérez-López, R.; Giner, J.L. Evidence of past seisms in Cusco (Peru) and Tzintzuntzan (Mexico): Cultural Relations. Earthquake Geology and Archaeology: Science, society and Seismic hazard. In Proceedings of the 3rd INQUA-IGCP 567 International Workshop on Earthquake Geology, Palaeoseismology and Archaeoseismology, Morelia, Mexico, 19–24 November 2012; Volume 3, pp. 47–50. [Google Scholar]
- Jusseret, S.; Langohr, C.; Sintubin, M. Tracking earthquake archaeological evidence in Late Minoan IIIB (~1300–1200 BC.) Crete (Greece): A proof of concept. Bull. Seismol. Soc. Am. 2013, 103, 3026–3043. [Google Scholar] [CrossRef] [Green Version]
- Stiros, S.C.; Pytharouli, S.I. Archaeological evidence for a destructive earthquake in Patras, Greece. J. Seismol. 2014, 18, 687–693. [Google Scholar] [CrossRef] [Green Version]
- Tendürüs, M.; van Wijngaarden, G.J.; Kars, H. Long-Term Effect of Seismic Activities on Archaeological Remains: A Test Study from Zakynthos, Greece, in Ancient Earthquakes; Sintubin, M., Stewart, I.S., Niemi, T.M., Altunel, E., Eds.; Geological Society of America Special Paper 471; The Geological Society of America: Boulder, CO, USA, 2010; pp. 145–156. [Google Scholar]
- Hinzen, K.G. Simulation of toppling columns in archaeoseismology. Bull. Seismol. Soc. Am. 2009, 99, 2855–2875. [Google Scholar] [CrossRef]
- Meng, J. Earthquake ground motion simulation with frequency-dependent soil properties. Soil Dyn. Earthq. Eng. 2007, 27, 234–241. [Google Scholar] [CrossRef]
- Somerville, P.; Moriwaki, Y. Seismic hazard and risk assessment in engineering practice. In International Handbook of Earthquake & Engineering Seismology: Part B; William, H.K.L., Kanamori, H., Jennings, P.C., Kisslinger, C., Eds.; International Association of Seismology and Physics of the Earth’s Interior (IASPEI): Tallinn, Estonia, 2003; pp. 1065–1080. [Google Scholar]
- Chávez-García, F.J.; Rodríguez, M.; Field, E.H.; Hatzfeld, D. Topographic site effects. A comparison of two non-reference methods. Bull. Seismol. Soc. Am. 1997, 87, 1667–1673. [Google Scholar] [CrossRef]
- Berilgen, M.M. Evaluation of local site effects on earthquake damages of Fatih mosque. Eng. Geol. 2007, 91, 240–253. [Google Scholar] [CrossRef]
- Karastathis, V.K.; Karmis, P.; Novikova, T.; Roumelioti, Z.; Gerolymatou, E.; Papanastassiou, D.; Lakopoulos, S.; Tsombos, P.; Papadopoulos, G.A. The contribution to geophysical techniques to site characterization and liquefaction risk assessment: Case study of Nafplion city, Greece. J. Appl. Geophys. 2010, 72, 194–211. [Google Scholar] [CrossRef]
- Karastathis, V.K.; Papadopoulos, G.A.; Novikova, T.; Roumelioti, Z.; Karmis, P.; Tsombos, P. Prediction and evaluation of nonlinear site response with potentially liquefiable layers in the area of Nafplion (Peloponnesus, Greece) for a repeat of historical earthquakes. Nat. Hazards Earth Syst. Sci. 2010, 10, 2281–2304. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Zhao, J.X. Response spectral amplification ratios from 1- and 2-dimensional nonlinear soil site models. Soil Dyn. Earthq. Eng. 2009, 29, 563–573. [Google Scholar] [CrossRef]
- Rodríguez-Marek, A.; Bray, J.D.; Abrahamson, N.A. An empirical geotechnical seismic site response procedure. Earthq. Spectra 2001, 17, 65–87. [Google Scholar] [CrossRef]
- Stewart, J.P.; Liu, A.H.; Choi, Y. Amplification factors for spectral acceleration in tectonically active regions. Bull. Seismol. Soc. Am. 2003, 93, 332–352. [Google Scholar] [CrossRef]
- Borcherdt, R.D. Estimates of site-dependent response spectra for design (methodology and justification). Earthq. Spectra 1994, 10, 617–653. [Google Scholar] [CrossRef]
- Wald, D.J.; Allen, T.I. Topographic slope as a proxy for seismic site conditions and amplification. Bull. Seismol. Soc. Am. 2007, 97, 1379–1395. [Google Scholar] [CrossRef] [Green Version]
- Stewart, J.P.; Klimis, N.; Savvaidis Al Theodoulidis, N.; Zargli, E.; Athanasopoulos, G.; Pelekis, P.; Mylonakis, G.; Margaris, B. Compilation of a local VS profile database and its application for interface of VS30 from geologic- and terrain-based proxies. Bull. Seismol. Soc. Am. 2014, 104, 2827–2841. [Google Scholar] [CrossRef] [Green Version]
- Friederich, W.; Dalkolmo, J. Complete synthetic seismograms for a spherically symmetric earth by a numerical computation of the Green’s function in the frequency domain. Geophys. J. Int. 1995, 122, 537–550. [Google Scholar] [CrossRef] [Green Version]
- Wang, R. A simple orthonormalization method for stable and efficient computation of Green’s functions. Bull. Seismol. Soc. Am. 1999, 89, 733–741. [Google Scholar] [CrossRef]
- Spudich, P.; Frazer, L.N. Use of ray theory to calculate high-frequency radiation from earthquake source having spatially variable rupture velocity and stress drop. Bull. Seismol. Soc. Am. 1984, 74, 2061–2082. [Google Scholar] [CrossRef]
- Beresnev, I.A.; Atkinson, G.M. FINSIM–A FORTRAN program for simulating stochastic acceleration time histories from finite faults. Seismol. Res. Lett. 1998, 69, 27–32. [Google Scholar] [CrossRef] [Green Version]
- Seed, H.B.; Idriss, I.M. Influence of soil conditions on ground motions during earthquakes. ASCE J. Soil Mech. Found. Div. 1969, 95, 99–137. [Google Scholar] [CrossRef]
- Stewart, J.P.; On-Lei Kwok, A.; Hashash, Y.M.A.; Matasovic, N.; Pyke, R.; Wang, Z.; Yang, Z. Benchmarking of Nonlinear Geotechnical Ground Response Analysis Procedures; PEER Report 2008/04; Pacific Earthquake Engineering Research Center, College of Engineering, University of California: Berkeley, CA, USA, 2008; 205p. [Google Scholar]
- Robinson, D.; Dhu, T.; Schneider, J. SUA: A computer program to compute regolith site-response and estimate uncertainty for probabilistic seismic hazard analyses. Comput. Geosci. 2006, 32, 109–123. [Google Scholar] [CrossRef]
- Hashash, Y.A.; Groholski, D.R.; Phillips, C. Recent advances in nonlinear site response analysis. In Proceedings of the Fifth International Conference in Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics and Symposium in Honor of Professor I. M. Idriss, San Diego, CA, USA, 24–29 May 2010; Paper No. OSP 4. pp. 1–22. [Google Scholar]
- Steidl, J.H.; Tumarkin, A.G.; Archuleta, R.J. What is a reference site? Bull. Seismol. Soc. Am. 1996, 86, 1733–1748. [Google Scholar] [CrossRef]
- Ebel, J.E. Using Aftershocks to Help Locate Historical Earthquakes. Seismol. Res. Lett. 2020, 91, 2695–2703. [Google Scholar] [CrossRef]
- Darawcheh, R.; Abdul-Wahed, M.K.; Hasan, A. The Great 1822 Aleppo Earthquake: New Historical Sources and Strong Ground Motion Simulation. Geofísica Int. 2022, 61, 201–228. [Google Scholar] [CrossRef]
- Garduño-Monroy, V.H. Una propuesta de escala de intensidad sísmica obtenida del códice náhuatl Telleriano Remensis. Arqueol. Iberoam. 2016, 31, 9–19. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hinojosa, H.R. The Importance of Assessing the Geological Site Effects of Ancient Earthquakes from the Archaeoseismological Point of View. Eng 2023, 4, 719-737. https://doi.org/10.3390/eng4010043
Hinojosa HR. The Importance of Assessing the Geological Site Effects of Ancient Earthquakes from the Archaeoseismological Point of View. Eng. 2023; 4(1):719-737. https://doi.org/10.3390/eng4010043
Chicago/Turabian StyleHinojosa, Hector R. 2023. "The Importance of Assessing the Geological Site Effects of Ancient Earthquakes from the Archaeoseismological Point of View" Eng 4, no. 1: 719-737. https://doi.org/10.3390/eng4010043
APA StyleHinojosa, H. R. (2023). The Importance of Assessing the Geological Site Effects of Ancient Earthquakes from the Archaeoseismological Point of View. Eng, 4(1), 719-737. https://doi.org/10.3390/eng4010043