
Citation: Nkongolo, M. Using

ARIMA to Predict the Growth in the

Subscriber Data Usage. Eng 2023, 4,

92–120. https://doi.org/10.3390/

eng4010006

Academic Editor: Antonio Gil Bravo

Received: 1 November 2022

Revised: 26 December 2022

Accepted: 27 December 2022

Published: 1 January 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Using ARIMA to Predict the Growth in the Subscriber
Data Usage
Mike Nkongolo 1,2

1 Department of Informatics, Faculty of Engineering, Built Environment and Information Technology,
University of Pretoria, Pretoria 0028, South Africa; u21629545@tuks.co.za

2 Maven Systems Worx (Pty), Ltd. & NEC XON (Pty), Ltd., Centurion 0157, South Africa

Abstract: Telecommunication companies collect a deluge of subscriber data without retrieving
substantial information. Exploratory analysis of this type of data will facilitate the prediction of
varied information that can be geographical, demographic, financial, or any other. Prediction can
therefore be an asset in the decision-making process of telecommunications companies, but only if
the information retrieved follows a plan with strategic actions. The exploratory analysis of subscriber
data was implemented in this research to predict subscriber usage trends based on historical time-
stamped data. The predictive outcome was unknown but approximated using the data at hand. We
have used 730 data points selected from the Insights Data Storage (IDS). These data points were
collected from the hourly statistic traffic table and subjected to exploratory data analysis to predict
the growth in subscriber data usage. The Auto-Regressive Integrated Moving Average (ARIMA)
model was used to forecast. In addition, we used the normal Q-Q, correlogram, and standardized
residual metrics to evaluate the model. This model showed a p-value of 0.007. This result supports
our hypothesis predicting an increase in subscriber data growth. The ARIMA model predicted a
growth of 3 Mbps with a maximum data usage growth of 14 Gbps. In the experimentation, ARIMA
was compared to the Convolutional Neural Network (CNN) and achieved the best results with
the UGRansome data. The ARIMA model performed better with execution speed by a factor of
43 for more than 80,000 rows. On average, it takes 0.0016 s for the ARIMA model to execute one
row, and 0.069 s for the CNN to execute the same row, thus making the ARIMA 43× (0.069

0.0016) faster
than the CNN model. These results provide a road map for predicting subscriber data usage so that
telecommunication companies can be more productive in improving their Quality of Experience
(QoE). This study provides a better understanding of the seasonality and stationarity involved in
subscriber data usage’s growth, exposing new network concerns and facilitating the development of
novel predictive models.

Keywords: time series forecasting; subscriber data; seasonality; ARIMA; telecommunication; UGRansome;
stationarity

1. Introduction

The growth of competition in the telecommunications industry due to technological
variety has facilitated the invention and expansion of new techniques for processing
subscriber data to predict their behavior. Subscriber traffic represents all kinds of electronic
data transmitted in the network [1]. This data is usually in the form of network flows
passing from one node to another [2]. Furthermore, accurately predicting subscriber data
can improve the Quality of Experience (QoE) to foresee and predict various anomalies,
especially when the company faces revenue loss due to malicious activities. In addition,
having the ability to forecast future data usage can be crucial for bandwidth sharing policy
within the telecommunication business. Particularly, forecasting integrates a strong sense
of seasonality towards data growth to enable management better predict potential revenue

Eng 2023, 4, 92–120. https://doi.org/10.3390/eng4010006 https://www.mdpi.com/journal/eng

https://doi.org/10.3390/eng4010006
https://doi.org/10.3390/eng4010006
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/eng
https://www.mdpi.com
https://orcid.org/0000-0003-0938-113X
https://doi.org/10.3390/eng4010006
https://www.mdpi.com/journal/eng
https://www.mdpi.com/article/10.3390/eng4010006?type=check_update&version=2

Eng 2023, 4 93

and anomalies. The above stems from a time series forecasting problem, and there is various
research on different forecasting models [3–5]. Statistical models such as Auto-Regressive
Integrated Moving Average (ARIMA) and Machine Learning (ML) models such as Long
Short Term Memory (LSTM), gradient descent, and regression are popular techniques
implemented within the time series forecasting space. In particular, the LSTM model has
demonstrated great forecasting capabilities due to its ability to recall information and it
is thus a strong contender against the traditional statistical ARIMA model. Execution
speed is another factor to consider when selecting an appropriate model for subscriber
data forecasting. This is because subscriber patterns contain petabytes made of historical
time series data. It will thus be efficient to consider a model with fast execution speeds
to enable faster decision-making. However, this research addresses the performance of
the Convolutional Neural Network (CNN) and ARIMA models to forecast the growth of
subscriber data usage. The research determines which algorithm is the most suitable in
this scenario and aims to establish which of the two models performs better using speed
and accuracy. In this article, we describe the advantages of using seasonality to examine
changes in subscriber data. In a Time Series Analysis (TSA), seasonality is a characteristic
of a time series in which the data experiences predictable and regular changes over a
period [5]. Understanding seasonality in TSA can enhance the prediction performance
of ML models. It can also assist in clearing the features by identifying the seasonality of
time series samples and removing them from the original dataset. As a result, one can
have a normalized dataset correlating input and output variables. The seasonality property
can also provide more information about the seasonal component of the time series data
that can provide insights to enhance predictors’ performance [4]. Modeling seasonality
ameliorates the data preparation and feature engineering steps. In each step, seasonal
patterns can be extracted and modeled as input/output class labels with a supervised
learning scheme. In adaptive computation, ARIMA is a class of time series forecasting
models. Hence it is a special case of a class of regression models, not a class of classification
models [6]. We have selected ARIMA as an adequate time series forecasting model to
predict subscriber data usage and analyze the seasonality, trends, and cycles of features.
The methodology was to use seasonality as the time series data property in the ARIMA
model that implemented a distributed lag algorithm to forecast future subscriber data usage
based on lagged parameters. This article implements a predictive ARIMA model using
subscribers’ data to study seasonality by predicting the growth in subscriber throughput.

1.1. Research Question

The main research question is as follows:

• Which forecasting model between ARIMA and CNN is effective in predicting sub-
scriber data usage?

The research objective is to evaluate the two models using accuracy and computational speed.

1.2. Research Contribution

We propose the ARIMA model for subscriber data prediction using an unsupervised
learning scheme. We have specifically implemented the ARIMA model with unlabelled
features to predict the growth in subscriber data usage. In the model, the predictive layer
forecasts the throughput rate fed into another layer that predicts the maximum usage
growth. The remainder of the paper is structured as follows. Section 2 discusses related
research works and Section 3 the research methodology. Section 4 presents the ARIMA
results and the comparative analysis using the UGRansome dataset. Section 5 presents
future research directions and concluding remarks.

2. Related Works

The section surveys the predictive techniques of TSA with attention to the pro-
posed methodology.

Eng 2023, 4 94

2.1. Stationarity

Before delving deeper into the ARIMA model theory, it is important to understand
the concept of stationarity. This is because, unlike the CNN, the ARIMA model does not
perform well when the dataset is not stationary, and thus it needs to be made stationary
before processing [7]. A dataset is said to be stationary if it conforms to all the following
conditions [7]:

• The mean and standard deviation remain constant over time.
• The dataset exhibits no seasonal patterns. Seasonality refers to any predictable pattern

or variation that repeats for a year [7].

There are various ways to make the data stationary. One commonly used approach
is the differencing method where finite differencing is applied to the data points. A non-
stationary trend is denoted by Yt while the stationary trend is denoted by Zt. We posit that
Zt will thus be equal to the difference between successive values of Yt:

Zt = Yt −Yt−1 (1)

However, should the nonstationary dataset also exhibit seasonal characteristics, it will
therefore be recommended to apply seasonal differencing towards the dataset [8]:

Zt = Yt −Yt−m (2)

where m is the monthly timestamps. For instance, a 12 monthly differencing can be written
as follows:

Zt = Yt −Yt−12 (3)

The differencing method is very effective and thus recommended because in most
cases, non-stationary data can easily be transformed to stationary after the first difference,
and thus no further transformation would be required. This is not the case with other
transformation methods where stationarity can be reached after multiple transformations
along the same data points.

2.2. Background

In Ref. [9] a deep learning model to forecast a product usage of a given consumer
based on historical data was developed. The authors adapted a CNN with auxiliary
input to time-series data to demonstrate an improvement in the model accuracy which
predicted future change. To improve the forecasting skills of aircraft in flight navigation
systems, Ref. [10] undertook a study on weather forecasting comparing the predictive
ability of LSTM and ARIMA models. The study found that the LSTM performs much
better than the ARIMA with Root Mean Square Error (RMSE) values of 0.0007 for the
LSTM and 0.948 for the ARIMA. A solution presented by [11] demonstrates that the LSTM
outperforms the ARIMA model. The purpose of the study was to forecast a multi-step
electricity load for Poland, Italy, and Great Britain. The RMSE values for each model were
summarized, but the LSTM outperformed the ARIMA using the RMSE evaluation metric
for predicting wind speed. In Ref. [12], a study to determine which forecasting time series
techniques between ARIMA and LSTM produced the most accurate predictions with a
minimalistic empirical error was undertaken. The LSTM outperformed the ARIMA for all
stock markets prediction with an average RMSE of 64 dollars. Limestone is an important
raw material in today’s world. Around 10% of the sedimentary rocks on Earth are made
up of limestone [13]. According to [13], over 25% of the world’s population relies on
limestone for drinking water, and about 50% of all known gas and oil reserves are encased
in limestone rocks [13]. It is therefore crucial for various economies to accurately predict
future prices of limestone. In Ref. [14] a study comparing the ARIMA and LSTM with
regards to predicting future prices of limestone was conducted. The ARIMA performed
slightly better than the LSTM with an accuracy of 95.7% compared to the LSTM’s 91.8%.
However, we argue that the probable reason for the LSTM model’s subpar performance

Eng 2023, 4 95

was due to manual tuning towards some of the model’s hyper-parameters. For instance,
the number of LSTM layers was manually tuned. In addition, the author did not disclose
the exact units for their target variable. The authors in [15] used regression to learn the
correlation between a time series and continuous variables. The approach was to detect the
correct coefficients to forecast various attributes. The regression model predicted annual
rainfall using historical temperature values [16] with Random Forest (RF) and Gradient
Descent (GD) algorithms. The final results confirm the in-depth understanding of time
series data to compute the optimal fitting algorithm. However, Ref. [17] attempted to
predict respiratory rates using a sliding window that consists of three modules. The first
module retrieved the signal of respiratory patterns; the second approximated the rates,
and the third made various estimations. A Gaussian-based regression process extracted the
respiratory features from the datasets. It also attempted to fit different Auto-Regressive (AR)
algorithms to the retrieved signals. Unfortunately, the AR model failed to detect seasonality.
In Ref. [18], Dynamic Time Warping (DTW) and K-Nearest Neighbor (KNN) used for
time series forecasting exhibited a complexity time of 1-NN using the DTW that relied on
the engineering of hand-crafted patterns. In Ref. [19], the CNN used on time-series data
outperformed all other tested ML models. The author proposed a feature selection method
to automate the learning from input variables. The learned patterns represent time series
features with discriminatory layers. However, this technique relies on back-propagation
that turns the NN into an adequate feature selector. According to [20], the juxtaposition of
Recurrent Neural Networks (RNN) such as LSTM and CNN yielded enhanced accuracy
for classification tasks with a range of 27% to 43% in comparison to other well-known ML
models. The classification was also considered by [21] and assessed with J48, LSTM, RF,
Support Vector Machine (SVM), and CNN. The LSTM-based CNN outperformed other
models with three hidden layers. In Ref. [22], the authors used regression to allocate
company resources. In addition, the authors undertook a substantial review of well-known
ML models for time series data forecasting, but [23] used CNN to address multivariate
time-series regression problems. The LSTM and Gated Recurrent Unit (GRU) portrayed
transferable CNN units compared to other models. The research in [24] used LSTM with
additional convolutional layers. The results provide a boost in predicting performance.
Lastly, three CNN and four LSTM were implemented by [25] with an improved CNN
execution time. Generally, regression models using CNN and LSTM are the most optimal
ML techniques used in the literature for time series data forecasting (Table 1). The limitation
of the discussed research relies on dataset misunderstanding, lack of feature engineering,
non-seasonal patterns, computational biases, and time complexity. Classifiers such as
SVM and Decision Trees (DT) are also prone to error in terms of time series prediction
since they are not a better choice for forecasting (Table 1). The time series data forecasting
solutions are also implemented in various fields such as weather, electricity, and price
prediction (Table 1).

Table 1. Comparative analysis.

Source Model Limitation

[15] RF & GD Data understanding

[17] Auto Regressive Seasonality
[22] CNN Seasonality

[18] DTW & KNN Feature engineering

[19] CNN Back propagation

[20] RNN & LSTM Classification
[21] LSTM & CNN Classification
[24] LSTM Feature engineering
[25] LSTM & CNN Execution time

[23] CNN Biases

Eng 2023, 4 96

Table 1. Cont.

Applicability

[10] LSTM & ARIMA Weather forecasting
[11] LSTM & ARIMA Electricity load forecasting
[12] LSTM & ARIMA Stock market prediction
[14] LSTM & ARIMA Limestone price prediction
[3] ABC & ARIMA Refineries
[9] CNN Subscriber usage

2.3. Time Series Data Limitation

Some attempts allow efficient computation of large-scale time series data. For instance,
Ref. [26] implemented a Hadoop-based framework for accurate preprocessing of data
which is important for feature selection. Unlike [26,27] concentrated on model selection by
using MapReduce to compute the cross-validation that improved parallel rolling-window
prediction using the training set of heterogeneous time series patterns. The predictive
parameters computed the accuracy, but this technique could not tackle challenges associated
with forecasting. In Refs. [28,29] multi-step forecasting was monitored by the ML models
using the Spark environment. Specifically, Ref. [28] used H iterations to compute the multi-
step prediction, while [29] implemented multivariate regression models using ML libraries.
As a result, the H technique was not scalable for forecasting. With this, one can use a
sample of patterns instead of the original data to predict. For example, Ref. [30] provides an
overview of forecasting big data using time series traffic. The paper provides a premise for
time series data forecasting, but it is still complicated to implement the proposed techniques
to deal with subscriber data and forecast the future. Some researchers investigate the
underlying intuition of parallel computing models using time series data. Unfortunately,
these models resulted in expensive computational time complexity. For instance, Ref. [31]
introduced a distributed approximator before the prediction calculation, requiring several
iterations. Based on their frameworks, Refs. [32,33] proposed recursive techniques with
Bayesian prediction while [34] refined the estimator computation of quantile regression
model through various rounds of classification. Another well-known methodology is the
alternation of eigenvectors for convex optimization of time series data. This technique
blends the seasonality of time series data with the convergence properties of predictors [35],
but the streams complicate the forecasting prediction. We argue that a one-shot averaging
computation is a straightforward technique to compute the prediction. This method
requires only a single computational round [36]. Various studies used distributed learning
that split features in a specific frequency domain where the time series patterns are used in
the splitting process [37]. These algorithms model successive refinements with a limitation
that requires re-implementing each estimator scheme, but slow in terms of convergence
accuracy compared to existing predictors designed for time series data forecasting [38].
For example, Ref. [39] analyzed cyclostationary properties of 0-day exploits with slow
precision convergence. Boruta was the feature-based extraction method combined with
Principal Components Analysis (PCA) to extract the most cyclostationary patterns from
NSL-KDD, UGRansome, and KDD99 datasets. The RF and SVM were used to classify
cyclostationary features. The supervised learning restricted the experiments, but our
research implements an unsupervised learning scheme to study stationary prediction.
Moreover, we have compared the ARIMA performance applied to the UGRansome [40]
and subscriber datasets to assess the forecasting performance of stationary and time series
data. The following section presents our methodology, Exploratory Data Analysis (EDA),
and UGRansome dataset [41]. However, all mentioned articles in this section are crucial
because they provide valuable recommendations regarding ML to forecast subscribers’
usage data growth.

Eng 2023, 4 97

3. Materials and Methods

We have used subscriber data collected from a network database and analyzed the
patterns to predict the growth in subscriber data usage. The Network Subscriber Data
Management (NSDM) approach is thus the relevant aspect of this research as it stands at
the core network layer and stores valuable data used by various subscribers. The NSDM
extracts subscribers’ patterns from the Insights Data Storage (IDS) and monitors all real-
time traffic of subscriber data [42]. We have used the NSDM module that considers
subscriber data in a centralized and secure environment having a scalable repository
named IDS (Figure 1).

Figure 1. The NSDM architecture.

The IDS directory provides distributed and resilient subscriber patterns stored in a
single repository. The ARIMA model was used on this repository to predict the growth in
subscriber data usage (Figure 1).

3.1. Mathematical Formulation of ARIMA

An ARIMA model has a different Moving Average (MA), as well as AR components [43].
We use ARIMA(p, d, q) to denote an ARIMA model where the order of the AR module is
(p, q) and d represents the number of differences needed for stationary series [43]. One
can extend the ARIMA predictor to a Seasonal ARIMA (SARIMA) model by incorporating
additional seasonal patterns to handle time series properties that exhibit a strong seasonal
characteristic [43]. We can use ARIMA(p, d, q)(P, D, Q) to formulate a SARIMA model.
Here, the uppercase Q, P, and D denote the order of the AR model, the number required
for seasonal/stationary series, and the MA order. Similarly, the seasonality period is
denoted by m [43,44]. An ARIMA(P, D, Q)(p, d, q)m model for time series (yt, t ∈ Z) has
the following back-shift operator:

(1−
p

∑
i=1

θiBi)− (1−
P

∑
m=1

αm
i)(1− B)d(1− Bm)Dyt = (1 +

q

∑
i=1

γi)(1 +
Q

∑
i=1

αiBm)ωt (4)

where B denotes the backward shift function, ωt the white noise, m the seasonality length,
θ, and α represent the AR parameters, γ, and ω refer to the seasonal parameters of the MA.
This mathematical formulation represents two major combinations of seasonal parameters
P, D, Q, and p, d, q, where:

• the number of auto-regressive terms is p,
• nonseasonal differences denoted by d,
• and the number of lagged predictive biases denoted by q.

Eng 2023, 4 98

The variation of these ARIMA parameters can identify the most optimal set of features
in obtaining precise predictive values [43–45].

3.2. Experimental Datasets

Figure 2 presents the research methodology where our framework provides subscriber
data stored in the IDS module.

Figure 2. The experimental methodology.

The subscriber data was extracted from the real-time network traffic using a Structured
Query Language (SQL). We pushed the features into a single comma-separated file and
used EDA to visualize salient features of the network traffic. We have then obtained critical
Key Performance Indicators (KPIs) that can support the prediction of data usage growth.
The executed SQL retrieved the subscriber timestamps, incoming throughput, and outgoing
throughout (Figure 3).

Figure 3. The subscriber data.

The query extracts the timestamps (ts) by truncating them into a human-readable
format (Year-Month-Time). The incoming throughput was computed using the following
Equation (5):

Tptin =
sum(bytesin) ∗ (8)

36,000
(5)

The SQL in Figure 3 illustrates this process. Equation (6) denotes the outgoing through-
put computation:

Tptout =
sum(bytesout) ∗ (8)

36,000
(6)

It is hourly-based statistics retrieved from the traffic stats table of the IDS for 60 days
(Figure 3). The 3600 represents an hour in seconds, and eight changed the bytes into bits.
In addition, we grouped results by timestamps. Retrieved patterns were converted into
Comma-Separated Values (CSV) (Figure 4).

The subscriber dataset has 730 entries with four attributes (human-readable times-
tamps, UNIX timestamps, incoming throughput (Tpt in), and outgoing throughput (Tpt
out)). A timestamp represents the time when the subscriber traffic was collected [46].
The throughput is the flow that measures inputs/outputs movements within the net-
work [46]. The following Figure 5 illustrates our research methodology.

Eng 2023, 4 99

Figure 4. The CSV format of the subscriber data.

Figure 5. The research methodology.

The subscriber and UGRansome datasets are collected, and then the EDA is executed
before the computation of the ARIMA model that predicts the growth in data usage based
on the current timestamp. The techniques discussed in the literature train ML classifiers
with human-labeled features, but this supervised learning method uses limited samples.
We have used an unsupervised learning technique whereby we did not label the features.
The ARIMA model attempted to use data points x1 . . . xn and assigned predicted values
Θ1 . . . Θn using predefined parameters.

3.3. Feature Engineering and Data Cleaning

Data cleaning is a method of mapping and transforming features from one-row data
format to another, to make it more suitable and valuable for various downstream uses, such
as time-series forecasting. One of the most important data cleaning processes is handling
missing values [41]. Fortunately, concerning the subscriber data, the dataset contains no
missing values. However, the data still needs to be transformed in other various ways for
training and testing, and in this case, this will include:

1. Data normalization. The process of normalization is frequently used to prepare data
for ML. The objective of normalization is to convert numerical columns to a common
scale without losing information or distorting the ranges of values. This will reduce
bias towards accurate prediction [40]. We have used Python Sklearn’s MinMax Scaler
function to normalize the throughput column down to values between 0 and 1.

2. Feature engineering. Also known as feature extraction, is a process of selecting and
transforming the most important features from the data to utilize for developing
predictive models using statistical or ML models [39]. Concerning the subscriber
dataset, only the throughput and timestamp columns will be used to model the
training and testing sets.

3. Train-test split. It is a method for validating models that enables one to simulate how
a model would behave when presented with fresh untested data [47]. In our analysis,
the training data will be split into k-fold cross-validation to avoid under/over-fitting.
However, cross-validation is not necessary when the data is small.

Eng 2023, 4 100

3.4. Stationarity of Data

Two main methods can be used to determine the stationarity of a time series dataset:

1. Visual and graphical inspection. This is implemented by plotting the functions of the
time-series dataset, and then inspecting visually whether the dataset is stationary or
not, but the method is prone to inaccuracy.

2. Statistical Augmented Dickey-Fuller test. Named after famous statisticians David
Dickey and Wayne Fuller, the Dickey-Fuller test is a more accurate stationarity test
method that determines if a time series dataset is stationary by calculating the p-value
to test the null hypothesis. The Dickey-Fuller null hypothesis is that the data is
not stationary. If the p-value is more than 0.05, then there is strong support for
the null hypothesis, and thus the time series dataset will be deemed to be non-
stationary. Python’s stats model library was used to perform this task by importing
the fuller functionality.

In this research, the differencing method was applied to make the dataset stationary
(Figure 6). The differencing and original data are distinguished in Figure 6.

Figure 6. The original and differencing of subscriber data.

3.5. The UGRansome Characteristics

This dataset was created by extracting important features of two existing datasets
(UGR’16 and ransomware) [41]. UGRansome is an anomaly detection dataset that includes
normal and abnormal network activities [48]. The regular characteristic sequence makes
up 41% of the dataset, whereas irregularity makes up 44%. The remaining 15% represents
the predictive values of network attacks grouped into the signature (S), synthetic signature
(SS), and anomalous (A) attacks (Figure 7).

Figure 7. Distribution of network threats.

Eng 2023, 4 101

Figure 7 depicts the signature attacks having a proportion of 44.02% (synthetic signa-
ture 28.71%, and anomaly 27.27%). A significant proportion of signature traffic means that
the UGRansome threatening concerns are detectable. Regular threats, like User Datagram
Protocol (UDP) and Botnet, provide about 9% for the anomalous category. The Internet
Protocol (IP) and ransomware addresses have a ratio of 1% [39]. In addition, a ratio of
2% exists between communication protocols and ransomware addresses [41]. According
to Refs. [39,41] the significant distribution of the UGRansome could be summed up in the
following Figure 8. However, UGRansome is more redundant compared to subscriber
data and we removed 28.2% of duplicate records during the feature extraction phase
(Figures 8 and 9).

Figure 8. The UGRansome data summary.

Figure 9. The subscriber data summary.

3.6. Exploratory Techniques

The exploratory analysis provides a set of techniques to understand the dataset.
The results produced by the EDA can assist in mastering the data structure [49], as well
as the distribution of the features, detection of outliers, and correlation within the dataset.
Some of the statistical metrics used to evaluate the ARIMA model are standard deviation,
correlation, mean, standardized residual, normal Q-Q, correlogram, theoretical quantile,
p-value, and accuracy:

• Standardized residual (ri). It measures the strength of actual and predicted values and
indicates the significance of features [50] (ri facilitates the recognition of patterns that
contribute the most to the predictive values):

ri =
ei

s(ei)
=

ei

RSE
√

1− hi
(7)

Eng 2023, 4 102

where ei is the iTh residual, RSE is the standard error of the residual model, and hi the
iTh leverage observation.

• Normal Q-Q. The normal Q-Q means normal Quantile-Quantile. It is a plot that com-
pares actual and theoretical quantiles [50]. The metric considers the range of random
variables to plot normal Q-Q using a probabilistic computation. The x-axis represents
the Z-score of the standardized normal distribution, but different formulations have
been proposed in the literature to detect the plotting positions:

(k− a)
(n + 1− 2a)

, (8)

for some value between 0 and 1 [k, a]; which gives the following range (Equation (9)):

K
(n + 1)

⇐= (k− 1)
(n− 1)

. (9)

• Correlogram. It is a correlational and statistical chart used in TSA to plot the auto-
correlations sample rh versus the timestamp lags h to check for randomness [50].
The correlation is zero when randomness is detected. Equation (10) denotes the
auto-correlation parameter at h lag:

rh =
ch
c0

, (10)

where ch is the auto-covariance coefficient and c0 the variance function.
• Augmented Dickey-Fuller (ADF) test. This statistical metric tests the stationarity of

time series data [50] by using a unit root metric β that exists in a series of observations
where α = 1 as per the below Equation (11).

yt =⇒ αt−1 + βxe + ε, (11)

Here yt represents the time series values at time t, but xe is a separate time series variable.
• Theoretical quantile. The theoretical Q-Q explores the variable’s deviation from

theoretical distributions to visually evaluate if the ratio is significantly different for
EDA purposes [50].

• Likelihood. The likelihood parameter maps L : Θ =⇒ R or R : Θ =⇒ L given
by R[Θ]|y] =⇒ fy[x]|[Θ] or L[Θ]|[x] =⇒ fy[y]|[Θ]. This metric computes the most
probable value assigned to a specific feature using Θ as the hypothesis in R and L
spaces. Inputs x compute the predictive values y using a predefined Θ parameter.
With this, the likelihood represents the quantile probability (Prob (Q)) of correlated
features used for forecasting.

• Kurtosis. This metric evaluates the probability of the predicted variables by describing
the probability proportion. There are various techniques to compute the theoretical
distribution of Kurtosis, and there are subjective manners of approximating it with
relevant samples [50]. With Kurtosis results, higher values determine the presence of
outliers. The Kurtosis is as follows:

Kurtosis[x] = [(
x− µ

σ
)n], (12)

where µ is the random selection of inputs x using a standard deviation σ following
the constraints:

∑
i=1

∑
j=1

µi

σj . (13)

• Jarque-Bera (JB) test. This metric uses a Lagrange multiplier to test for data normality.
The JB value tests if the distribution is normal by testing the Kurtosis to determine if

Eng 2023, 4 103

features have a normal distribution. A normal JB distribution will have symmetrical
Kurtosis indicating the peaked in the distribution. We formulate the JB test as follows:

JB = n[

√
b2

1

6
+

(b2 − 3)2

24
], (14)

where the sample size is n,
√

b1 is the skewness sample, and b2 is the Kurtosis coefficient.
• Heteroscedasticity. It checks the alternative hypothesis (HA) versus the null hypothesis

(H0) [50]. With the alternative hypothesis, the empirical error is multiplying the
function of various variables:

HA : σ2
1 = σ2

2 ∗ . . . ∗ σ2
n . (15)

However, a null hypothesis has equal error variances (homoscedasticity) [50]:

H0 : σ2
1 = σ2

2 = . . . = σ2
n . (16)

• Accuracy. The balanced accuracy BA of the ARIMA model is calculated with the
following mathematical formulation [47]:

BA =
((TP/TP + FN) + (TN/(TN + FP)))

2
(17)

where True Positive (TP) and True Negative (TN) denote correct classification, but mis-
classification is the False Positive (FP) and False Negative (FN) [50]. We used cross-
validation rounds to build multiple training/testing subsets to decide which model is
a suitable predictor of the growth in subscriber data (80% of the training set, 10% of
the validation set, and 10% of the testing set).

3.7. Feature Extraction

ML models are used to address a range of prediction problems. The unsatisfactory
prediction of ML classifiers originates from overfitting or underfitting features [7]. In this
research, the removal of irrelevant patterns guaranteed improved performance of the
ARIMA computation. PCA was utilized on the UGRansome data to extract relevant
patterns. PCA is a feature extraction methodology of this research. We denote PCA
as follows:

P =
1

t− 1
+

k

∑
t=1

([x(t)x(t)T]), (18)

with stochastic x(t) and t = 1, 2 . . . l with n-dimensional inputs x having a probability
matrix P of zero mean. The PCA formulation uses the covariance given in Equation (19)
with a linear calculation of x(t) inputs into y(t) outputs:

y(t) = QTx(t), (19)

Q is an orthogonal n*n matrix type where i represents the columns viewed as eigen-
vectors computed as follows:

yi(t) = QTx(t), (20)

The range in Equation (20) starts from 1 . . . n where yi is the new component of the ith
PCA. Table 2 depicts the PCA results using the UGRansome dataset. However, SQL was
used as a feature extractor to extract subscriber data from the IDS (Figure 3).

Eng 2023, 4 104

Table 2. The PCA results using the UGRansome.

Attack Feature Total

Blacklist Timestamp 2761

Spam IP address 7425

Scan Flag 1559

SSH Prediction 7293

Botnet Threats 4765

Total - 23,803

3.8. Model Training and Testing

The parameters shown in Figure 10 will be used to train and test the ARIMA model.

Figure 10. The ARIMA model parameters.

The choice of these parameters is justified because a model with only two AR terms
would be specified as an ARIMA of order (2, 0, 0). A MA(2) model would be specified as an
ARIMA of order (0, 0, 2). A model with one AR term, a first difference, and one MA term
would have order (1, 1, 1). For the proposed model using the subscriber data, an ARIMA
(2, 1, 2) model with two AR terms, the first difference, and two MA terms are being applied
to improve the forecasting accuracy (Figure 10). One AR(1) term with two differences and
one MA(1) term are used for the UGRansome data to account for a linear trend in the data
(Figure 10). The differencing order refers to successive first differences. For instance, for a
difference order = 2 the variable analyzed is zt = [xt − xt−1]− [xt−1 − xt−2]. This type of
difference might account for a quadratic trend in the data. However, due to seasonality
concerning the experimental data, the SARIMA model is used. The SARIMA model is an
extension of the ARIMA with integrated seasonal components. The training set is used to
train the model and thus used to predict the data usage for the 2022 year. The test set is
also utilized to validate the final predictions for the year.

3.9. Model Tuning

In contrast to the ARIMA, the CNN has several parameters that are not estimated
by the model (i.e., the p and q values), and thus the algorithm is trained by manually
specifying a set of hyper-parameters using trial and error. The number of layers, neurons,
batch sizes, and epochs utilized in the CNN, are some examples of hyper-parameters that
need to be tuned manually. It should also be noted, that, unlike the ARIMA which required
the dataset to be transformed to its stationary format, the CNN in this research will be
trained against non-stationary time series patterns of the UGRansome dataset. Considering
a single input of features as depicted in Figure 11, the CNN weights these features to enable
the learning trend of particular observations. We have various observations, so we merge
their outputs into a hidden layer.

Eng 2023, 4 105

Figure 11. The CNN architecture.

Our CNN architecture uses binary convolutions (with 70 and 30 filters) and a densely
connected layer of 50 neurons with the activation function (ReLU). This unit has six
connected layers representing auxiliary outputs (Figure 11). Each layer predicts and
passes the prediction value to the next layer which predicts growth in the subscriber data
usage until the final layer produces long-term forecasting. Ideally, the convolution layer
uses the ReLU computed as follows:

ai,k,j = max[WT
k xj,i + bk, 0] (21)

where ai,k,j denote the activation value of the kth feature at location [j, i], and xi, j is the
input patch centered at location [j, i]. Here wk and bk are weighted vectors and bias terms
of the kth filter. We use each layer to predict in advance some additional days and grid
search to detect the optimal number of filters, convolutions, connected layers, and drop-out
rate. For each layer k ∈ [1, 2, 3, 4, 5, 6] we added an empirical error and loss function. Each
layer k aims to produce future forecasting for more than 14 days ahead:

kloss =⇒
1
n ∑

i
(yi, 14k − tanh(ŷi, 14k))

2 (22)

where [yi, 14k] represents the features of time-series i, and [ŷi, k] the k-th layer’s forecasting
the value. The function restricting the range of [ŷi, k] to [−1, 1] is denoted by tanh. With this,
we can reformulate Equation (22) to the weighted sum and minimize the loss by decreasing
λk values:

Minloss =⇒
1
k

K

∑
k=1

(
kloss
λloss

) (23)

Table 3 shows a summary of the hyper-parameters used for the CNN model.

Table 3. CNN tuning parameters.

Hyper-Parameter Value

Number of neurons 50
Activation function Tanh

Number of dense layers 6
Optimizer Adam
Batch size 2

Loss function Mean Squared Error (MSE)
Number of epochs 50

3.10. ARIMA Predictor Model

Given a long period, yt[t = 1, 2, . . . , T] of a spanning time series traffic, the aim is to
come up with a new scheme that works well for predicting the future outcomes H. We
define S = [1, 2, . . . , T] as the sequence of timestamp with time series yt. The prediction
of the problem can be written as f [Θ, ∑ |yt, t ∈ S], where the parameter is f, the global

Eng 2023, 4 106

parameters Θ, and the covariance matrix ∑. However, the time series data is divided into
different sub-series (k) having contiguous time intervals (Equation (24)):

S =
K

∑
k=1

Sk, (24)

where Sk extracts the kth sub-series timestamps and we posit T = ∑K
k=1 Tk. With this

assumption, the predictor estimator of the sub-problem is shown in Equation (25):

f [Θ, ∑ |yt, t ∈ S] = g[f1, ∑
1
|yt, t ∈ S1] . . . [fk, ∑

k
|yt, t ∈ Sk], (25)

where fk represents the estimator function for the kth sub-series and g the combination.
The estimation was merged before the prediction. The idea is to use g(.) as a single
mean parameter, and our computational framework could be viewed as an averaging ML
algorithm (Figure 12).

Figure 12. The ARIMA model.

Figure 12 outlines the proposed ARIMA model to forecast the growth in subscriber
data. The timestamps of historical data were recorded in the IDS before being processed by
the ARIMA. In simple terms, the proposed model consists of the following phases:

• Phase 1: Preprocessing. Subdivide the time series data into the K sub-series.
• Phase 2: Modeling. Train the algorithm using sub-series data by assuming that the

IDS of the sub-series remains constant.
• Phase 3: Linear transformation. Translate the trained algorithm in phase 2 into linear

representations k.
• Phase 4: Estimator combination. The obtained local estimator from phase 3 minimizes

global losses parameters described in Section 3.1.
• Phase 5: Prediction. Predict the next observations H by utilizing the merged estima-

tor’s parameters presented in Equations (24) and (25).

We used available hourly-based timestamps to create a new set of timestamps (ts)
used in the ARIMA prediction. The following formulation was used to predict new
timestamps (Equation (26)):

Predictedts = LastEpochTimestamps + n ∗ 3600 (26)

where n = range(1, 48). This computation provides new predicted timestamps on an
hourly basis for the next hours. Figure 13 shows the computation of the needed inputs x
using the current value, step size, and stop value. The x represents current hourly values
starting at zero milliseconds (ms) and going up to 731. The computation of the predicted
values used x, a step size of 360,000, and a stop value. The needed value represents the
result of the prediction in which the current value of x was used as an index starting at

Eng 2023, 4 107

zero and multiplied by the step size. This calculation stops at the 731st iteration, where
731 denotes the last index (Figure 13).

x_axis

train.shape[0] + pred.shape[0] -1
(700 + 32) -1
731

1

0

Current

Needed

x_axis

720,000 (hour 2)

263,160,000

360,000 (Hour 1)

0 (hour 0)

Hourly values starting at hour 0 (zero ms)
Going up to the 731 hour in ms

+360,000

step_size

0

0 + 360,000 = 360,000

360,000 + 360,000 = 720,000

720,000 + 360,000 = 106,000

1 x 360,000

2 x 360,000

3 x 360,000

(train.shape[0] + pred.shape[0] -1) *
360,000
((730 + 32) -1) * 360,000

Starting
Value

Stop Value

Figure 13. The predictive computation.

3.11. Computational Environment

The IDS used to build the subscriber data is installed on a DBeaver database. DBeaver
is a database monitoring software that manipulates subscriber data. It can be used to
build analytical dashboards from various data storage. Table 4 presents the computing
environment and Table 5 the feature extraction results.

Table 4. Framework specification.

Node Specification

RAM 39 GB

Service Jupyter & DBeaver

ML algorithm ARIMA & CNN

System 64-bits

Processor 2.60 GHz

Dataset Subscriber data & UGRansome

Operating System (OS) Windows & Linux

CPU Intel i7-10

Language Python & SQL

3.12. Feature Extraction

There are different reasons causing duplication in a dataset, among which are imper-
fections in the data collection process and the properties of patterns, but feature extraction
solved redundancy dimensions. Features projected into a new space have lower dimension-
ality. Examples of such techniques include Linear Discriminant Analysis (LDA), Canonical
Correlation Analysis (CCA), and PCA [40]. We have used PCA to extract relevant features
of the UGRansome dataset. The PCA lowered computational complexity, built generaliz-
able models, and optimized the storage space. To address the redundancy issue, the PCA
selected a subset of relevant patterns from the original dataset based on their relevance.

We present the PCA results in Table 5 where the final dataset with the description
of each attribute is presented. The prediction attribute facilitates the forecasting of any
ML model to predict the category of novel intrusion. Our final dataset has 12 variables
with 180,564 observations (Table 5). Consequently, if the deviation degree of a variable
is high or low enough, it is considered an abnormality. However, we did not apply
feature extraction on the subscriber data because it has no redundant patterns. The feature

Eng 2023, 4 108

extraction using UGRansome leads to improved performance, higher prediction accuracy,
minimized computational time, and efficient model interpretability.

Table 5. Extracted UGRansome features.

Number Attribute Description Type

1 Timestamp Traffic duration Numeric

2 Protocol Communication rule Categorical

3 Flag Network state Categorical

4 IP address Unique address Categorical

5 Network traffic Periodic network
flow Numeric

6 Threat Novel malware Categorical

7 Port Communication port Numeric

8 Expended address Malware address Categorical

9 Seed address Malware address Categorical

10 Cluster Group assigned Numeric

11 Ransomware Novel malware Categorical
12 Prediction Novel malware class Categorical

4. Results

This section is structured into the DFT, comparative results of ARIMA and CNN,
execution speed test, and predictive results comparison using additional standard fore-
casting approaches such as BATS and TBATS. The section compares the ARIMA model
performance using the subscriber and the UGRansome datasets. Figure 14 shows the
format of the subscriber data following a stationarity distribution compared to the UGRan-
some timestamps.

Figure 14. The timestamp and density comparison.

Figure 15 portrays a distribution of incoming and outgoing throughput of the sub-
scriber data compared to the UGRansome port traffic (5066–5068).

Each attack flow is also depicted. The figure depicts NerisBonet threats with less
traffic. This result reveals a time series forecasting property of the subscriber data but not
the UGRansome. However, the UGRansome has more distributed or dependent variables
(Figure 16).

Eng 2023, 4 109

Figure 15. Additional features comparison.

Figure 16. The normal Q-Q results.

The correlation of throughput is in Figure 17.

Figure 17. The throughput correlation.

This plot indicates the linear distribution of predicted values. The summary of the
SARIMA model using the subscriber data is presented in Figure 18.

Eng 2023, 4 110

Figure 18. The SARIMA model summary.

The summary confirms that the prediction of subscriber data will have an increased
mean or standard deviation given the likelihood, Prob(Q), and Kurtosis values. The SARIMA
model reports no outliers for subscriber data given the Kurtosis value, and the JB test
describes a normal distribution. Similarly, the level of heteroscedasticity supports our
hypothesis with a degree of 1.35, a p-value of 0.112 having a likelihood value of −14,399.47.
With these results, we reject the null hypothesis and accept the alternative. The former
denies the growth of subscriber data, while the latter accepts. In the next section, we will
compare the subscriber data with the UGRansome using the DFT results.

4.1. Dickey Fuller Test

The DFT results are in Table 6. A p-value of 0.007 with an accuracy of 90% was
obtained. This result supports our hypothesis predicting an increase in subscriber data
growth. As such, (i) the UGRansome used more iterations due to its size surpassing
the subscriber dataset, (ii) the balanced accuracy of the DFT reached 81% of accuracy,
and (iii) the dataset size has not to effect on the prediction performance. The residual and
correlogram are in Figure 19 with the seasonality of the throughput.

Figure 19. The standardized residual and correlogram.

Eng 2023, 4 111

Table 6. The DFT results.

Dataset Test Statistic p-Value Iteration Accuracy
Subscriber data −3.537879 0.007066 20 90.567%

UGRansome data −9.876982 0.0008044 342 90.456%
Correlogram ADF Q-Q

Subscriber training set 0.9 0.8 0.9 90.398%
UGRansome training

set 0.8 0.9 0.7 89.453%

Subscriber testing set 0.8 0.9 0.9 91.348%
UGRansome testing set 0.8 0.8 0.9 88.298%

Features Total Mean Deviation

Subscriber data 700 54.23 22.45 92.351%

UGRansome data 8932 75.32 46.3 88.527%

Subscriber testing set 400 12.6 6.7 94%

UGRansome testing set 4765 26.87 39.65 88%

Balanced Accuracy - - - 81%
Balanced Features 3699 - - -

Balanced Mean - 41.75 - -

Balanced Deviation - - 28.25 -

However, the data usage growth prediction is illustrated in Figure 20 using the ARIMA
model that predicts a growth of 3 Mbps at a specific timestamp. UNIX timestamps of the
subscriber data predicted the maximum data growth using the ARIMA model.

Figure 20. The ARIMA prediction.

In Figure 21, ARIMA predicts a maximal subscriber data usage growth of 14 Gbps
(where blue denotes actual data, orange is the predicted ARIMA data, and green is the
future predicted values).

The predicted mean and standard deviation are in Figure 22.
The original data represents current values, but ARIMA approximated a mean and

standard deviation from these values. ARIMA predicted a maximum mean value of 5 Mbps
with a standard deviation of 2 Mbps. The results show mean and standard deviation values
lower than the original or current values. The scatter plot of the testing set is shown in
orange with a testing size of 32 data points that have been plotted or predicted (Figure 23).

Eng 2023, 4 112

Figure 21. The maximum data usage prediction.

Timestamps (UNIX)

Pr
ed

ic
te

d
gr

ow
th

 (M
B)

Figure 22. The prediction of the mean and standard deviation.

Figure 23. The throughput prediction.

The mean of the testing set is in red while the training set mean is black. The training
set has more data points than the testing sample due to the cross-validation process.
The prediction set has only 28 data points, and the forecasting is for 24 h ahead. On average,
3 Mbps is predicted for the next 24 h (Figure 23). In this study, the ARIMA code to generate
the results is as follows:

Eng 2023, 4 113

def forecast(ARIMA model, periods = 0):
n periods = periods
fitted, interval = ARIMA model.predict(n periods = n periods, interval = True)
index = pd.date range(df.index[1], periods = n periods, freq = H)
fitted series = pd.Series(fitted, index = index)
lower series = pd.Series(interval[:, 0], index)
upper series = pd.Series(interval[:, 1], index)
plt.plot(fitted series)
plt.fill between(lower series.index,
lower series,
upper series,
alpha = 0.15)
plt.show()
forecast(ARIMA model, 730)
ARIMA model.summary()

4.2. The Comparative Results of ARIMA and CNN

The CNN is compared to ARIMA using the subscriber and UGRansome datasets.
The CNN depends on the predicted timestamps. In what follows, we present the CNN
results compared to the results obtained by the ARIMA. The prediction includes 30 to
60 days. The comparative results of the ARIMA and CNN models are in Table 7.

Table 7. The CNN and ARIMA results.

Dataset Features p-Value CNN ARIMA

Subscriber data 450 0.006, 055 85.8% 92.67%
UGRansome

data 120,000 0.0, 006, 043 88.9% 91.65%

Subscriber
testing set 300 0.008 86.3% 94.8%

UGRansome
testing set 60,500 0.007 88% 95.3%

Balance 45,312 0.005 87.25% 93.605%

The p-value is a number between 0 and 1 and can be interpreted as follows:

• A small p-value (typically <0.05) indicates strong evidence against the null hypothesis.
• A large p-value (>0.05) indicates weak evidence against the null hypothesis.
• The p-values very close to the cutoff (0.05) are considered to be marginal.

The reported p-values reject the null hypothesis stating a decrease in subscriber data
usage. Moreover, the CNN is compared to ARIMA using experimental datasets. We used
four samples: the first sample was the subscriber dataset, where the ARIMA model obtained
92% of accuracy and outperformed the CNN. The second sample was the UGRansome
dataset containing more features, but the ARIMA model surpassed the CNN with 91%
of accuracy. The third sample was the testing sample of the subscriber data where the
ARIMA achieved 94%. In the last sample, the ARIMA accuracy outperformed the CNN
with 95% of accuracy. Overall, the ARIMA model achieved the best results in all undertaken
comparisons. The ARIMA model performed better with the UGRansome data, and this
was due to the nature of seasonal network traffic. We computed our models on fewer
features of the subscriber data without producing poor results. We believe this is due to
time series data properties which improve the balanced accuracy with 93% of accuracy.

Eng 2023, 4 114

4.3. Execution Speed Test

The results showed a CNN not outperforming the ARIMA in terms of accuracy, whilst
the ARIMA performed better than the CNN model in terms of execution speed by a factor
of 43 for more than 80,000 rows. Table 8 summarises the speed test results for both models.

Table 8. Computational speed test results.

ARIMA (s) CNN (s)

0 rows 0 0
10 rows 0.44 4.39
100 rows 0.64 10.43

1000 rows 2.64 75.60
10,000 rows 18.24 685.76

100,000 rows 159.87 6951.91

A time Python package is used before and after each model’s execution to measure
how long it took to complete the entire procedure. The results are presented right after
each execution is complete. The data point for each model is then plotted in batches of
ten multiples (10 rows, 100 rows, 1000 rows, etc.). This gives a general notion of how
each model’s execution time grows as the number of data increases. Furthermore, this
test is conducted using parameters for both the SARIMA and CNN models respectively.
From the experimental results, it is evident that on average the ARIMA model outperforms
the CNN in terms of accuracy. Table 8 showcases the speed test results for both models up
to 100,000 rows. The ARIMA outperforms the CNN in terms of execution speed. In Table 8,
which shows a linear growth for both models, the average rate of change can be determined
by computing the following slope for each graph (Figure 24):

Figure 24. The slope computation.

What can be deduced from the slopes is that on average, it takes 0.0016 s for the
ARIMA model to execute one row, and 0.069 s for the CNN to execute the same row,
thus making the ARIMA 43× 0.069

0.0016 faster than the CNN model. Nevertheless, different
parameters will yield different results. It can thus be argued that further tuning about
the CNN would yield even better results. To put it into perspective, it took under three
minutes for the ARIMA to successfully execute 100,000 rows of data as compared to the
CNN which took nearly two hours to complete a similar task. This margin will only
widen as more rows are introduced for training between the two models. In addition,
both models must be fed a sufficient amount of data to successfully train and produce
the best results. Furthermore, additional yearly data would provide findings that would
boost the study’s credibility in addition to pointing out parameter tuning issues for both
models. Finding the ideal parameters was challenging in light of the above, especially
with the CNN model. One option which was used in this research was to draw ideas from
other models used in related contexts in addition to using the rule to fine-tune the model.
Fortunately, this was not the case with the ARIMA model since the tuning process was
relatively simple and was not based on trial and error as it was with the CNN. However,
this process can further be improved for the ARIMA by a simple automated step-wise
search using an Akaike Information Criterion (AIC). Developed by the Japanese statistician
Hirotugu Akaike [51], AIC is used to evaluate various potential model parameters and
choose the one that best fits the data. Fortunately, an AUTO ARIMA (.) function can be
imported from Python’s PMDARIMA library which can be used to compute the AIC for the
ARIMA model. The main goal would be to develop ARIMA parameters with the lowest

Eng 2023, 4 115

AIC. For example, the ARIMA parameters for patterns in the experimental datasets were
(2, 1, 2). However, if we were to perform an automated step-wise search using the AUTO
ARIMA in Python (Figure 25), then the parameters would be (2, 0, 0) since it has the lowest
AIC value at −103.947.

Figure 25. Step-wise AIC results using subscriber data.

It is thus safe to conclude that future ARIMA models can be tuned using the automated
AIC step-wise search [51]. Due to the limited experience with constructing CNN models
from scratch, the TensorFlow library was used to fully realize the model into practice.
Unfortunately, due to the high level of abstraction of the library, it can be very challenging
to realize full control over models built using TensorFlow. For example, one is unable to
tune the weights of the model, thus resulting in mild changes over the final results every
time the model is run due to TensorFlow’s frequent changes concerning weights in the
background, thus it is unclear precisely what type of network is being constructed in the
background, which can result in uncertainty with regards to the performance of the model.
Unfortunately, other libraries such as PyTorch and Theano exhibit similarly high levels
of abstraction.

4.4. ARIMA, CNN, BATS, and TBATS Comparison

We have compared the obtained results with standard forecasting methods such as
BATS and TBATS. BATS is an exponential smoothing technique that handles non-linear
data. The advantage of using BATS is that it can treat non-linear patterns, resolve the auto-
correlation issue, and account for multiple seasonality. However, BATS is computationally
expensive with a large seasonal period. Hence, it is not suitable for hourly data. Thus,
the TBATS model was developed to address this limitation. It represents each seasonal
period as a trigonometric representation based on the Fourier series. This allows the model
to fit large seasonal periods. It is thus a better choice when dealing with high-frequency
data, and it usually fits faster than BATS. Figure 26 shows the comparative results with the
testing sample and original subscriber data (baseline). The BATS and TBATS prediction are
also illustrated in Figure 27. The TBATS outperformed the BATS with a Mean Absolute
Percentage Error (MAPE) of 32.63 (Figure 27). This metric defines the accuracy of the
forecasting method. The MAPE represents the average of the absolute percentage errors
of each entry in a dataset to calculate how accurate the forecasted quantities were in
comparison with the actual quantities. A maximum value of 6.5 KBS was predicted by
the TBATS in terms of the network traffic volume (Figure 26). As such, the ARIMA model
could still predict more subscriber data usage growth compared to the BATS and TBATS
models. This is because ARIMA models have a fixed structure and are specifically built
for time series or sequential features. It is also due to the non-modifications of predefined
parameters before their implementation on time series data.

Eng 2023, 4 116

Figure 26. Standard forecasting approach comparison.

Figure 27. BATS and TBATS models comparison.

4.5. Recommendation

In general, the ARIMA model achieved the best predictive accuracy results on the
subscriber data. With regards to model execution speed, it was posited that the ARIMA
would perform better than the CNN due to the CNN’s sequential weight computation
for each hidden layer. However, it was not expected to outperform CNN by such a huge
margin, where there was no need to validate future performance using the student t-test.
Nonetheless, there are various ways to improve the execution time of CNN:

1. Python is unfortunately not the fastest language, and it is thus recommended to build
ML models using low-level programming languages such as C, and C++ for faster
processing times.

2. Running ML models locally via a Central Processing Unit (CPU) or Graphics Process-
ing Unit (GPU) can slow down the learning process due to memory limits, and it is
thus recommended to run models using cloud technologies such as Google Colab or
Amazon Web Services (AWS) and SageMaker where memory can be defined before
the model is run.

3. Decreasing the number of neurons that makes up the model can reduce the processing
time. However, this will be at the expense of model accuracy since fewer neurons
result in model underfitting with poor performance when new data is introduced.

Eng 2023, 4 117

4. Similar to decreasing the number of neurons, decreasing the number of epochs will
also reduce the final model run time, however, at the expense of accuracy since
reducing the number of epochs results in underfitting the model.

5. Conclusions and Discussion

Insights retrieval from subscriber data impacts the telecommunication landscape to
facilitate information management and assist decision-makers in predicting the future
using ML techniques. We explore time series forecasting analysis and predict subscriber
usage trends on the network using the ARIMA model. The unknown forecasting value
used by ARIMA relied on historical data. However, we used the data storage to build the
subscriber dataset using hourly traffic statistics. We used various metrics to evaluate the
ARIMA model. For instance, the normal Q-Q, standardized residual, theoretical quantile,
correlogram, and accuracy. UGRansome was used to compare the obtained results that
demonstrate similar accuracy values of 90% using the CNN model. The subscriber data was
stationary but exhibited less seasonality. In the experimentation, ARIMA was compared to
the CNN and achieved the best results with the UGRansome data. We have used an NSDM
environment with subscriber data in a secure environment to retrieve relevant patterns
such as timestamps and incoming/outgoing throughout to build the subscriber dataset.
The variation of the auto-regressive and moving average components identified the most
optimal features for obtaining precise predictive values. In addition, the subscriber data
have normal distributions, but the UGRansome has more dependent variables. The ARIMA
model predicted a growth of 3 Mbps with a maximum data usage growth of 14 Gbps.
Furthermore, the performance concerning accuracy showed that ARIMA was superior to
CNN. Concerning execution speed, the ARIMA outperforms the CNN by a 43:1 ratio for
100,000 rows. However, we recommend utilizing both methods depending on whether
speed or accuracy is a priority. In the future, we will explore additional forecasting
models by combining classical mathematical algorithms and compare the performance with
Neural Networks, specifically Recurrent Neural Networks (RNN) using ensemble learning
approaches. Lastly, it will be also better to explore other factors that affect subscriber’s data
usage such as multivariate forecasting.

Funding: The author wishes to extend his sincere appreciation and gratitude to the Editor-in-Chief
for the invitation to contribute to this article entitled to a fee waiver discount.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The dataset and code used can be obtained upon request or downloaded
at https://www.researchgate.net/publication/342200905_An_Ensemble_Learning_Framework_for_
Anomaly_Detection_in_the_Existing_Network_Intrusion_Detection_Landscape (Public Files/
Ugransome.zip and subscriber data.csv). The code is under (Public Files/ARIMA). Accessed on
12 December 2022.

Acknowledgments: The author would like to thank his Ph.D. supervisor Jacobus Phillipus van
Deventer from the University of Pretoria, Faculty of Informatics, who supervised this research,
and Maven Systems Worx (Pty) Ltd for granting access to the subscriber data.

Conflicts of Interest: The author declares no conflict of interests.

Abbreviations
The following abbreviations are used in this manuscript:

ADFT Augmented Dickey-Fuller Test
AWS Amazon Web Services
ARIMA Auto-Regressive Integrated Moving Average
AR Auto-Regressive
CCA Canonical Correlation Analysis
CPU Central Processing Unit

https://www.researchgate.net/publication/342200905_An_Ensemble_Learning_Framework_for_Anomaly_Detection_in_the_Existing_Network_Intrusion_Detection_Landscape
https://www.researchgate.net/publication/342200905_An_Ensemble_Learning_Framework_for_Anomaly_Detection_in_the_Existing_Network_Intrusion_Detection_Landscape

Eng 2023, 4 118

CSV Comma-Separated Values
CNN Convolutional Neural Network
DL Deep Learning
DPI Deep Packet Inspection
DT Decision Trees
DTW Dynamic Time Warping
EDA Exploratory Data Analysis
GRU Gated Recurrent Unit
GD Gradient Descent
GPU Graphics Processing Unit
Tpt in Incoming Throughput
IP Internet Protocol
IDS Insights Data Storage
KPI Key Performance Indicator
KNN K-Nearest Neighbor
LDA Linear Discriminant Analysis
LSTM Long Short Term Memory
ML Machine Learning
MSE Mean Squared Error
MA Moving Average
MAPE Mean Absolute Percentage Error
Ms Milliseconds
NN Neural Networks
NSDM Network Subscriber Data Management
OS Operating System
Tpt out Outgoing Throughput
PCA Principal Components Analysis
QoE Quality of Experience
Prob (Q) Quantile Probability
RF Random Forest
ReLU Rectified Linear Unit
RNN Recurrent Neural Networks
RMSE Root Mean Square Error
SARIMA Seasonal ARIMA
SQL Structured Query Language
SVM Support Vector Machine
TSA Time Series Analysis
Ts Timestamps
UDP User Datagram Protocol

References
1. Nkongolo, M.; van Deventer, J.P.; Kasongo, S.M.; van der Walt, W. Classifying Social Media Using Deep Packet Inspection Data.

In Inventive Communication and Computational Technologies; Ranganathan, G., Fernando, X., Rocha, Á., Eds.; Springer: Singapore,
2023; pp. 543–557. [CrossRef]

2. Theodoridis, G.; Tsadiras, A. Applying machine learning techniques to predict and explain subscriber churn of an online drug
information platform. Neural Comput. Appl. 2022, 34, 19501–19514. [CrossRef]

3. Kumar, R.; Kumar, P.; Kumar, Y. Multi-step time series analysis and forecasting strategy using ARIMA and evolutionary
algorithms. Int. J. Inf. Technol. 2022, 14, 359–373. [CrossRef]

4. Li, X.; Petropoulos, F.; Kang, Y. Improving forecasting by subsampling seasonal time series. Int. J. Prod. Res. 2022, 1–17.
[CrossRef]

5. Jin, X.B.; Gong, W.T.; Kong, J.L.; Bai, Y.T.; Su, T.L. A variational Bayesian deep network with data self-screening layer for massive
time-series data forecasting. Entropy 2022, 24, 335. [CrossRef] [PubMed]

6. Box, G.E.; Jenkins, G.M.; Reinsel, G.C.; Ljung, G.M. Time Series Analysis: Forecasting and Control; John Wiley & Sons: Hoboken, NJ,
USA, 2015.

7. Adhikari, R.; Agrawal, R.K. An introductory study on time series modeling and forecasting. arXiv 2013, arXiv:1302.6613.
8. Khashei, M.; Bijari, M. A novel hybridization of artificial neural networks and ARIMA models for time series forecasting.

Appl. Soft Comput. 2011, 11, 2664–2675. [CrossRef]

http://doi.org/10.1007/978-981-19-4960-9_43
http://dx.doi.org/10.1007/s00521-022-07603-9
http://dx.doi.org/10.1007/s41870-021-00741-8
http://dx.doi.org/10.1080/00207543.2021.2022800
http://dx.doi.org/10.3390/e24030335
http://www.ncbi.nlm.nih.gov/pubmed/35327846
http://dx.doi.org/10.1016/j.asoc.2010.10.015

Eng 2023, 4 119

9. Azaria, B.; Gottlieb, L.A. Predicting Subscriber Usage: Analyzing Multidimensional Time-Series Using Convolutional Neural
Networks. In Cyber Security, Cryptology, and Machine Learning; Dolev, S., Katz, J., Meisels, A., Eds.; Springer: Cham, Switzerland,
2022; pp. 259–269.

10. Salman, A.G.; Heryadi, Y.; Abdurahman, E.; Suparta, W. Weather forecasting using merged long short-term memory model.
Bull. Electr. Eng. Inform. 2018, 7, 377–385. [CrossRef]

11. Masum, S.; Liu, Y.; Chiverton, J. Multi-step time series forecasting of electric load using machine learning models. In Proceedings
of the International Conference on Artificial Intelligence and Soft Computing, Zakopane, Poland, 3–7 June 2018; pp. 148–159.

12. Siami-Namini, S.; Tavakoli, N.; Namin, A.S. A comparison of ARIMA and LSTM in forecasting time series. In Proceedings of the
2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), Orlando, FL, USA, 17–20 December
2018; pp. 1394–1401.

13. Muhammad, U.L.; Musa, M.Y.; Usman, Y.; Nasir, A.B. Limestone as solid mineral to develop national economy. Am. J. Phys. Chem.
2018, 7, 23–28. [CrossRef]

14. Mbah, T.J.; Ye, H.; Zhang, J.; Long, M. Using LSTM and ARIMA to simulate and predict limestone Price variations. Min. Metall.
Explor. 2021, 38, 913–926. [CrossRef]

15. Tan, C.W.; Bergmeir, C.; Petitjean, F.; Webb, G.I. Time series extrinsic regression. arXiv 2020, arXiv:2006.12672.
16. Goldsmith, J.; Scheipl, F. Estimator selection and combination in scalar-on-function regression. Comput. Stat. Data Anal. 2014,

70, 362–372. [CrossRef]
17. Pimentel, M.A.; Charlton, P.H.; Clifton, D.A. Probabilistic estimation of respiratory rate from wearable sensors. In Wearable

Electronics Sensors; Springer: Cham, Switzerland, 2015; pp. 241–262. [CrossRef]
18. Zheng, Y.; Liu, Q.; Chen, E.; Ge, Y.; Zhao, J.L. Time series classification using multi-channels deep convolutional neural networks.

In Web-Age Information Management; Springer: Cham, Switzerland, 2014; pp. 298–310. [CrossRef]
19. Yang, J.; Nguyen, M.N.; San, P.P.; Li, X.L.; Krishnaswamy, S. Deep convolutional neural networks on multichannel time series for

human activity recognition. In Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, Buenos
Aires, Argentina, 25–31 July 2015.

20. Okita, T.; Inoue, S. Recognition of multiple overlapping activities using compositional CNN-LSTM model. In Proceedings of the
Proceedings of the 2017 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the
2017 ACM International Symposium on Wearable Computers, Maui, HI, USA, 11–15 September 2017; pp. 165–168. [CrossRef]

21. Wang, J.; Long, Q.; Liu, K.; Xie, Y. Human action recognition on cellphone using compositional bidir-lstm-cnn networks.
In Proceedings of the 2019 International Conference on Computer, Network, Communication and Information Systems (CNCI
2019), Qingdao, China, 27–29 March 2019; pp. 687–692.

22. Snow, D. AtsPy: Automated Time Series Forecasting in Python. 2020. Available online: https://papers.ssrn.com/sol3/papers.
cfm?abstract_id=3580631 (accessed on 31 December 2022).

23. Mode, G.R.; Hoque, K.A. Adversarial examples in deep learning for multivariate time series regression. In Proceedings of
the 2020 IEEE Applied Imagery Pattern Recognition Workshop (AIPR), Washington DC, USA, 13–15 October 2020; pp. 1–10.
[CrossRef]

24. Antsfeld, L.; Chidlovskii, B.; Borisov, D. Magnetic sensor based indoor positioning by multi-channel deep regression. In Proceed-
ings of the 18th Conference on Embedded Networked Sensor Systems, Virtual, 16–19 November 2020; pp. 707–708. [CrossRef]

25. Mehtab, S.; Sen, J.; Dasgupta, S. Robust analysis of stock price time series using CNN and LSTM-based deep learning models.
In Proceedings of the 2020 4th International Conference on Electronics, Communication and Aerospace Technology (ICECA),
Coimbatore, India, 5–7 November 2020; pp. 1481–1486. [CrossRef]

26. Mirko, K.; Kantelhardt, J.W. Hadoop. TS: Large-scale time-series processing. Int. J. Comput. Appl. 2013, 74, 1–8.
27. Li, L.; Noorian, F.; Moss, D.J.; Leong, P.H. Rolling window time series prediction using MapReduce. In Proceedings of the 2014

IEEE 15th international Conference on Information Reuse and Integration (IEEE IRI 2014), Redwood City, CA, USA, 13–15 August
2014; pp. 757–764. [CrossRef]

28. Talavera-Llames, R.; Pérez-Chacón, R.; Troncoso, A.; Martínez-Álvarez, F. Big data time series forecasting based on nearest
neighbours distributed computing with Spark. Knowl.-Based Syst. 2018, 161, 12–25. [CrossRef]

29. Galicia, A.; Torres, J.F.; Martínez-Álvarez, F.; Troncoso, A. A novel Spark-based multi-step forecasting algorithm for big data time
series. Inf. Sci. 2018, 467, 800–818. [CrossRef]

30. Petropoulos, F.; Apiletti, D.; Assimakopoulos, V.; Babai, M.Z.; Barrow, D.K.; Taieb, S.B.; Bergmeir, C.; Bessa, R.J.; Bijak, J.;
Boylan, J.E.; et al. Forecasting: Theory and practice. Int. J. Forecast. 2022, 38, 705–871. [CrossRef]

31. Shamir, O.; Srebro, N.; Zhang, T. Communication-efficient distributed optimization using an approximate newton-type method.
In Proceedings of the International Conference on Machine Learning, Beijing, China, 21–26 June 2014; pp. 1000–1008.

32. Wang, J.; Kolar, M.; Srebro, N.; Zhang, T. Efficient distributed learning with sparsity. In Proceedings of the International
Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 3636–3645.

33. Jordan, M.I.; Lee, J.D.; Yang, Y. Communication-efficient distributed statistical inference. J. Am. Stat. Assoc. 2018, 114, 668–681.
[CrossRef]

34. Chen, X.; Liu, W.; Zhang, Y. Quantile regression under memory constraint. Ann. Stat. 2019, 47, 3244–3273. [CrossRef]
35. Ryu, E.K.; Yin, W. Large-Scale Convex Optimization; Cambridge University Press: Cambridge, MA, USA, 2022.

http://dx.doi.org/10.11591/eei.v7i3.1181
http://dx.doi.org/10.11648/j.ajpc.20180702.13
http://dx.doi.org/10.1007/s42461-020-00362-y
http://dx.doi.org/10.1016/j.csda.2013.10.009
http://dx.doi.org/10.1007/978-3-319-18191-2_10
http://dx.doi.org/10.1007/978-3-319-08010-9_33
http://dx.doi.org/10.1145/3123024.3123095
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3580631
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3580631
http://dx.doi.org/10.1109/AIPR50011.2020.9425190
http://dx.doi.org/10.1145/3384419.3430419
http://dx.doi.org/10.1109/ICECA49313.2020.9297652
http://dx.doi.org/10.1109/IRI.2014.7051965
http://dx.doi.org/10.1016/j.knosys.2018.07.026
http://dx.doi.org/10.1016/j.ins.2018.06.010
http://dx.doi.org/10.1016/j.ijforecast.2021.11.001
http://dx.doi.org/10.1080/01621459.2018.1429274
http://dx.doi.org/10.1214/18-AOS1777

Eng 2023, 4 120

36. Challu, C.; Olivares, K.G.; Oreshkin, B.N.; Garza, F.; Mergenthaler, M.; Dubrawski, A. N-hits: Neural hierarchical interpolation
for time series forecasting. arXiv 2022, arXiv:2201.12886.

37. Fernández, J.D.; Menci, S.P.; Lee, C.M.; Rieger, A.; Fridgen, G. Privacy-preserving federated learning for residential short-term
load forecasting. Appl. Energy 2022, 326, 119915. . [CrossRef]

38. Bennett, S.; Clarkson, J. Time series prediction under distribution shift using differentiable forgetting. arXiv 2022, arXiv:2207.11486.
39. Nkongolo, M.; van Deventer, J.P.; Kasongo, S.M. The Application of Cyclostationary Malware Detection Using Boruta and PCA.

In Computer Networks and Inventive Communication Technologies; Smys, S., Lafata, P., Palanisamy, R., Kamel, K.A., Eds.; Springer:
Singapore, 2023; pp. 547–562. [CrossRef]

40. Nkongolo, M.; Van Deventer, J.P.; Kasongo, S.M.; Zahra, S.R.; Kipongo, J. A Cloud Based Optimization Method for Zero-Day
Threats Detection Using Genetic Algorithm and Ensemble Learning. Electronics 2022, 11, 1749. [CrossRef]

41. Nkongolo, M.; van Deventer, J.P.; Kasongo, S.M. UGRansome1819: A Novel Dataset for Anomaly Detection and Zero-Day
Threats. Information 2021, 12, 405. [CrossRef]

42. Ghaderi, A.; Movahedi, Z. Joint Latency and Energy-aware Data Management Layer for Industrial IoT. In Proceedings of the
2022 8th International Conference on Web Research (ICWR), Tehran, Iran, 11–12 May 2022; pp. 70–75. [CrossRef]

43. Mehdi, H.; Pooranian, Z.; Vinueza Naranjo, P.G. Cloud traffic prediction based on fuzzy ARIMA model with low dependence on
historical data. Trans. Emerg. Telecommun. Technol. 2022, 33, e3731. [CrossRef]

44. Xiao, R.; Feng, Y.; Yan, L.; Ma, Y. Predict stock prices with ARIMA and LSTM. arXiv 2022, arXiv:2209.02407.
45. Wang, X.; Kang, Y.; Hyndman, R.J.; Li, F. Distributed ARIMA models for ultra-long time series. Int. J. Forecast. 2022, in press .

[CrossRef]
46. Chao, H.L.; Liao, W. Fair scheduling in mobile ad hoc networks with channel errors. IEEE Trans. Wirel. Commun. 2005,

4, 1254–1263. [CrossRef]
47. Nkongolo, M. Classifying search results using neural networks and anomaly detection. Educor Multidiscip. J. 2018, 2, 102–127.
48. Suthar, F.; Patel, N.; Khanna, S. A Signature-Based Botnet (Emotet) Detection Mechanism. Int. J. Eng. Trends Technol. 2022, 70,

185–193. [CrossRef]
49. Kotu, V.; Deshpande, B. Chapter 3—Data Exploration. In Data Science, 2nd ed.; Kotu, V., Deshpande, B., Eds.; Morgan Kaufmann:

Burlington, MA, USA, 2019; pp. 39–64. . [CrossRef]
50. Ij, H. Statistics versus machine learning. Nat Methods 2018, 15, 233.
51. Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 1974, 19, 716–723. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.apenergy.2022.119915
http://dx.doi.org/10.1007/978-981-19-3035-5_41
http://dx.doi.org/10.3390/electronics11111749
http://dx.doi.org/10.3390/info12100405
http://dx.doi.org/10.1109/ICWR54782.2022.9786229
http://dx.doi.org/10.1002/ett.3731
http://dx.doi.org/10.1016/j.ijforecast.2022.05.001
http://dx.doi.org/10.1109/TWC.2004.842942
http://dx.doi.org/10.14445/22315381/IJETT-V70I5P220
http://dx.doi.org/10.1016/B978-0-12-814761-0.00003-4
http://dx.doi.org/10.1109/TAC.1974.1100705

	Introduction
	Research Question
	Research Contribution

	Related Works
	Stationarity
	Background
	Time Series Data Limitation

	Materials and Methods
	Mathematical Formulation of ARIMA
	Experimental Datasets
	Feature Engineering and Data Cleaning
	Stationarity of Data
	The UGRansome Characteristics
	Exploratory Techniques
	Feature Extraction
	Model Training and Testing
	Model Tuning
	ARIMA Predictor Model
	Computational Environment
	Feature Extraction

	Results
	Dickey Fuller Test
	The Comparative Results of ARIMA and CNN
	Execution Speed Test
	ARIMA, CNN, BATS, and TBATS Comparison
	Recommendation

	Conclusions and Discussion
	References

