Environmental Impacts of Rainwater Harvesting Systems in Urban Areas Applying Life Cycle Assessment—LCA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hydraulic Project
2.2. Conventional Supply System
2.3. Consumption per Residence
2.4. Rainwater Harvesting Volume
2.5. Life Cycle Analysis
2.5.1. Goal and Scope of the LCA Study
2.5.2. Life Cycle Inventory
2.5.3. Life Cycle Impact Assessment
2.5.4. Interpretation of Results
3. Results and Discussion
3.1. Hydraulic Project
3.1.1. One-Story House (CWS1 × RWH1)
3.1.2. Three-Story Building (CWS1 × RWH1)
3.2. Sensitivity Analysis Regarding the Energy Sources
3.3. Comparing the Choices Adopted in Assessing Supply Systems (CWS1 × CWS2) and (RWH1 × RWH2)
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Larsen, M.A.D.; Drews, M. Water use in electricity generation for water-energy nexus challenge: The European case. Sci. Total Environ. 2019, 651, 2044–2058. [Google Scholar] [CrossRef]
- Koech, R.; Langat, P. Improving irrigation water use efficiency: A review of advances, challenges and opportunities in the Australian context. Water 2018, 10, 1771. [Google Scholar] [CrossRef] [Green Version]
- ANA. ATLAS Brazil—Urban Water Supply; Agência Nacional de Águas: Brasília, Brazil, 2010. [Google Scholar]
- UNESCO. The United Nations World Water Development Report. Water for a Sustainable World: Executive Summary; UNESCO: Perugia, Italy, 2015. [Google Scholar]
- Water for a Sustainable World. Available online: https://site.sanepar.com.br/conteudo/agua-para-um-mundo-sustentavel (accessed on 27 February 2023).
- Shahangian, S.A.; Tabesh, M.; Yazdanpanah, M. How can socio-phychological factors be related to water-efficiency intention and behaviors among Iranian residential water consumers? J. Environ. Manag. 2021, 288, 112466. [Google Scholar] [CrossRef] [PubMed]
- Ding, N.; Liu, J.; Yang, J.; Lu, B. Water footprints of energy sources in China: Exploring options to improve water efficiency. J. Clean. Prod. 2018, 174, 1021–1031. [Google Scholar] [CrossRef]
- Couto, C.M.C.M.; Ribeiro, C. Pollution status and risk assessment of trace elements in Portuguese water, soils, sediments, and associated biota: A trend analysis from the 80s to 2021. Environ. Sci. Pollut. Res. 2022, 29, 48057–48087. [Google Scholar] [CrossRef] [PubMed]
- Soriano, E.; Londe, L.R.; Di Gregorio, L.T.; Coutinho, M.P.; Santos, L.B.L. Water crisis in São Paulo evaluated under the disaster’s point of view. Ambient. Soc. 2016, 19, 21–42. [Google Scholar] [CrossRef] [Green Version]
- De Stefano, L.; Petersen-Perlman, J.D.; Sproles, E.A.; Eynard, J.; Wolf, A.T. Assessment of transboundary river basins for potential hydro-political tensions. Glob. Environ. Chang. 2017, 45, 35–46. [Google Scholar] [CrossRef]
- Mhlongo, S.; Mativenga, P.T.; Marnewick, A. Water quality in a mining and water-stressed region. J. Clean. Prod. 2018, 171, 446–456. [Google Scholar] [CrossRef] [Green Version]
- Hanumante, N.; Shstri, Y.; Nisal, A.; Diwekar, U.; Cabezas, H. Integrated model for foo-energy-water (FEW) nexus to study global sustainability: The water compartments and water stress analysis. PLoS ONE 2022, 17, e0266554. [Google Scholar] [CrossRef]
- Garcia, M.; Koebele, E.; Deslatte, A.; Ernst, K.; Manago, K.F.; Treuer, G. Towards urban water sustainability: Analyzing management transitions in Miami, Las Vegas, and Los Angeles. Glob. Environ. Chang. 2019, 58, 101967. [Google Scholar] [CrossRef]
- Bashar, M.Z.I.; Karim, M.R.; Imteaz, M.A. Reliability and economic analysis of urban rainwater harvesting: A comparative study within six major cities of Bangladesh. Resour. Conserv. Recycl. 2018, 133, 146–154. [Google Scholar] [CrossRef]
- Krauze, K.; Wagner, I. From classical water-ecosystem theories to nature-based solutions—Contextualizing nature-based solutions for sustainable city. Sci. Total Environ. 2019, 655, 697–706. [Google Scholar] [CrossRef] [PubMed]
- Alim, M.A.; Rahman, A.; Tao, Z.; Samali, B.; Khan, M.M.; Shrin, S. Feasibility analysis of a small-scale rainwater harvesting system for drinking water production at Werrington, New South Wales, Australia. J. Clean. Prod. 2020, 270, 122437. [Google Scholar] [CrossRef]
- Kolasa-Wiecek, A.; Suszanowicz, D. The green roofs for reduction in the load on rainwater drainage in highly urbanized areas. Environ. Sci. Pollut. Res. 2021, 28, 34269–34277. [Google Scholar] [CrossRef]
- Espíndola, J.A.G.; Flores, C.A.C.; Pacheco-Vega, R.; Montes, M.R.P. International Rainwater Catchment Systems Experiences: Towards Water Security, 1st ed.; IWA Publishing: London, UK, 2020. [Google Scholar]
- Freni, G.; Liuzzo, L. Effectiveness of rainwater harvesting systems for flood reduction in residential urban areas. Water 2019, 11, 1389. [Google Scholar] [CrossRef] [Green Version]
- Amos, C.C.; Rahman, A.; Gathenya, J.M.; Friedler, E.; Karim, F.; Renzaho, A. Roof-harvested rainwater use in household agriculture: Contributions to the sustainable development goals. Water 2020, 12, 332. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Zhang, J.; Yue, T.; Jing, X. Impacts of climate change on urban rainwater harvesting systems. Sci. Total Environ. 2019, 665, 262–274. [Google Scholar] [CrossRef]
- Zdeb, M.; Zamorska, J.; Papciak, D.; Slus, D. The quality of rainwater collected from roofs and the possibility of its economic use. Resources 2020, 9, 12. [Google Scholar] [CrossRef] [Green Version]
- Andrade, E.P.; Nunes, A.B.A.; Alves, K.F.; Ugaya, C.M.L.; Alencar, M.C.; Santos, T.L.; Barros, V.S.; Pastor, A.V.; Figueirêdo, M.C.B. Water scarcity in Brazil: Part 1—Regionalization of the AWARE model characterization factors. Int. J. Life Cycle Assess. 2020, 25, 2342–2358. [Google Scholar] [CrossRef]
- Medeiros, P.; Sivapalan, M. From hard-path to soft-path solutions: Slow-fast dynamics of human adaptation to droughts in a water scarce environment. Hydrol. Sci. J. 2020, 65, 1803–1814. [Google Scholar] [CrossRef]
- Fallahiarezoudar, E.; Ahmadipourroudposht, M.; Yakideh, K.; Ngadiman, N.A. An eco-environmental efficiency analysis of Malaysia sewage treatment plants: An incorporated window-based data envelopment analysis and ordinary least square regression. Environ. Sci. Pollut. Res. 2022, 29, 38285–38302. [Google Scholar] [CrossRef]
- Li, Y.; Xiong, W.; Zhang, W.; Wang, C.; Wang, P. Life cycle assessment of water supply alternatives in water-receiving areas of the South-to-North Water Diversion Project in China. Water Res. 2016, 89, 9–19. [Google Scholar] [CrossRef]
- Muñoz, I.; Milà-i-Canals, L.; Fernández-Alba, A.R. Life cycle assessment of water supply plans in Mediterranean Spain. J. Ind. Ecol. 2016, 14, 902–918. [Google Scholar] [CrossRef]
- Amores, M.J.; Meneses, M.; Pasqualino, J.; Antón, A.; Castells, F. Environmental assessment of urban water cycle on Mediterranean condition by LCA approach. J. Clean. Prod. 2013, 43, 84–92. [Google Scholar] [CrossRef]
- Mahgoub, M.E.M.; Van der Steen, N.P.; Abu-Zeid, K.; Vairavamoorthy, K. Towards sustainability in urban water: A life cycle analysis of the urban water system of Alexandria City, Egypt. J. Clean. Prod. 2010, 18, 1100–1106. [Google Scholar] [CrossRef]
- Meron, N.; Blass, V.; Thoma, G. A national-level LCA of a water supply system in a Mediterranean semi-arid climate—Israel as a case study. Int. J. Life Cycle Assess. 2020, 25, 1133–1144. [Google Scholar] [CrossRef]
- Opher, T.; Friedler, E. Comparative LCA of decentralized wastewater treatment alternatives for non-potable urban reuse. J. Environ. Manag. 2016, 182, 464–476. [Google Scholar] [CrossRef] [PubMed]
- Jocanovic, M.; Agarski, B.; Karanovi, V.; Orosnjak, M.; Micunovic, M.L.; Ostojic, G.; Stankovski, S. LCA/LCC model for evaluation of pump units in water distribution systems. Symmetry 2019, 11, 1181. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, O.O.O.; Villamizar-Gallardo, R.A.; García, R.G. Life cycle assessment of four potable water treatment plants in northeastern Colombia. Rev. Ambient. Água 2016, 11, 268–278. [Google Scholar] [CrossRef] [Green Version]
- Stokes, J.R.; Horvath, A. Energy and air emission effects of water supply. Environ. Sci. Technol. 2009, 43, 2680–2687. [Google Scholar] [CrossRef] [Green Version]
- Godskesen, B.; Hauschild, M.; Rygaard, M.; Zambrano, K.; Albrechtsen, H.J. Life-cycle and freshwater withdrawal impact assessment of water supply technologies. Water Res. 2013, 47, 2363–2374. [Google Scholar] [CrossRef] [Green Version]
- Vialle, C.; Busset, G.; Tanfin, L.; Montrejaud-Vignoles, M.; Huau, M.C.; Sablayrolles, C. Environmental analysis of a domestic rainwater harvesting system: A case study in France. Resour. Conserv. Recycl. 2015, 102, 178–184. [Google Scholar] [CrossRef] [Green Version]
- Ghimire, S.R.; Johnston, J.M.; Ingwersen, W.W.; Sojka, S. Life cycle assessment of a commercial rainwater harvesting system compared with a municipal water supply system. J. Clean. Prod. 2017, 151, 74–86. [Google Scholar] [CrossRef]
- Tarpani, R.R.Z.; Lapolli, F.R.; Recio, M.A.L.; Gallego-Schmid, A. Comparative life cycle assessment of three alternative techniques for increasing potable water supply in cities in the Global South. J. Clean. Prod. 2021, 290, 125871. [Google Scholar] [CrossRef]
- Mo, W.; Nasiri, F.; Eckelman, M.J.; Zhang, Q.; Zimmerman, J. Measuring the embodied energy in drinking water supply systems: A case study in the Great Lakes Region. Environ. Sci. Technol. 2010, 44, 9516–9521. [Google Scholar] [CrossRef] [PubMed]
- Angrill, S.; Segura-Castillo, L.; Petit-Boix, A.; Rieradevall, J.; Gabarrell, X.; Josa, A. Environmental performance of rainwater harvesting strategies in Mediterranean buildings. Int. J. Life Cycle Assess. 2017, 22, 398–409. [Google Scholar] [CrossRef] [Green Version]
- Faragò, M.; Brudler, S.; Godskesen, B.; Rygaard, M. An eco-efficiency evaluation of community-scale rainwater and stormwater harvesting in Aarhus, Denmark. J. Clean. Prod. 2019, 219, 601–612. [Google Scholar] [CrossRef]
- Pillot, J.; Catel, L.; Renaud, E.; Augeard, B.; Roux, P. Up to what point is loss reduction environmentally friendly?: The LCA of loss reduction scenarios in drinking water networks. Water Res. 2016, 104, 231–241. [Google Scholar] [CrossRef]
- Khandelwal, H.; Dhar, H.; Thalla, A.K.; Kumar, S. Application of life cycle assessment in municipal solid waste management: A worldwide critical review. J. Clean. Prod. 2019, 209, 630–654. [Google Scholar] [CrossRef]
- Igos, E.; Benetto, E.; Meyer, R.; Baustert, P.; Othoniel, B. How to treat uncertainties in life cycle assessment studies? Int. J. Life Cycle Assess. 2019, 24, 794–807. [Google Scholar] [CrossRef]
- Filho, M.V.A.P.M.; da Costa, B.B.F.; Najjar, M.; Figueiredo, K.V.; Mendonça, M.B.; Haddad, A.N. Sustainability assessment of a low-income building: A BIM-LCSA-FAHP-based analysis. Buildings 2022, 12, 181. [Google Scholar] [CrossRef]
- Ludin, N.A.; Mustafa, N.I.; Hanafiah, M.M.; Ibrahim, M.A.; Teridi, M.A.M.; Sepeai, S.; Zaharim, A.; Sopian, K. Prospects of life cycle assessment of renewable energy from solar photovoltaic technologies: A review. Renew. Sustain. Energy Rev. 2018, 96, 11–28. [Google Scholar] [CrossRef]
- Li, J.; Xiao, F.; Zhang, L.; Amirkhanian, S.N. Life cycle assessment and life cycle cost analysis of recycled solid waste materials in highway pavement: A review. J. Clean. Prod. 2019, 233, 1182–1206. [Google Scholar] [CrossRef]
- Moreira, F.S.; Lopes, M.P.C.; Freitas, M.A.V.; Antunes, A.M.S. Future scenarios for the development of the desalination industry in contexts of water scarcity: A Brazilian case study. Technol. Forecast. Soc. Chang. 2021, 167, 120727. [Google Scholar] [CrossRef]
- Yannopoulos, S.; Giannopoulou, I.; Kaiafa-Saropoulou, M. Investigation of the current situation and prospects for the development of rainwater harvesting as a tool to confront water scarcity worldwide. Water 2019, 11, 2168. [Google Scholar] [CrossRef] [Green Version]
- Projeto de Lei Complementar Nº 31/2013. Rio de Janeiro Building Code. Rio de Janeiro. 2013. Available online: http://www.rio.rj.gov.br/dlstatic/10112/3832779/4103828/ProjetodeLeiComplementar31_2013COE (accessed on 10 March 2023).
- ABNT NBR 15527:2019; Use of Rainwater from Roofs for Non-Potable Purposes—Requirements. ABNT: São Paulo, Brazil, 2019.
- Brandão, J.L.B.; Marcon, P. Analysis of the rainwater tank sizing methods suggested br NBR 15527/07 through daily simulation. Eng. Sanit. Ambient. 2018, 23, 1031–1041. [Google Scholar] [CrossRef] [Green Version]
- ISO 14040:2006; Environmental Management—Life Cycle Assessment: Principles and Framework. ISO: Geneva, Switzerland, 2006.
- ISO 14044:2006; Environmental Management—Life Cycle Assessment: Requirements and Guidelines. ISO: Geneva, Switzerland, 2006.
- Hauschild, M.Z.; Rosenbaum, R.K.; Olsen, S.I. Life Cycle Assessment: Theory and Practice, 1st ed.; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Byrne, D.M.; Lohman, H.A.C.; Cook, S.M.; Peters, G.M.; Guest, J.S. Life cycle assessment (LCA) of urban water infrastructure: Emerging approaches to balance objectives and inform comprehensive decision-making. Environ. Sci. Water Res. Technol. 2017, 6, 1002–1014. [Google Scholar] [CrossRef]
- Parkinson, S. Guiding urban water management towards 1.5 °C. Clean Water 2021, 4, 34. [Google Scholar] [CrossRef]
What Was Considered in Each Analysis? | |||||||
---|---|---|---|---|---|---|---|
Subsystems | Element | Lifetime | CWS1 | CWS2 | RWH1 | RWH2 | |
Municipal Public Water Supply | Dam | Rock | 50 years | Ok | Ok | Ok | Ok |
Sand | 50 years | Ok | Ok | Ok | Ok | ||
R.W. Adduction | FoFo | 50 years | Ok | Ok | Ok | Ok | |
Treatment | Steel | 50 years | Ok | Ok | Ok | Ok | |
PAC | X | Ok | Ok | Ok | Ok | ||
Polymer | X | Ok | Ok | Ok | Ok | ||
Hypochlorite | X | Ok | Ok | Ok | Ok | ||
Ac. Fluosilicic | X | Ok | Ok | Ok | Ok | ||
Concrete | 50 years | X | Ok | X | Ok | ||
Public Reservoir | Steel | 50 years | Ok | Ok | Ok | Ok | |
T.W. Adduction | Casting Iron | 50 years | Ok | Ok | Ok | Ok | |
Network | PVC | 50 years | Ok | Ok | Ok | Ok | |
Casting Iron | 50 years | Ok | Ok | Ok | Ok | ||
Energy—electricity | Energy (KWh) | 24 h | Ok | Ok | Ok | Ok | |
Energy—diesel | Energy (Kg) | X | Ok | Ok | Ok | Ok | |
Private Hydraulic Structure | Building Hydraulic Structure for Drink Water (D.W.) | PVC | 50 years | X | Ok | X | Ok |
Concrete (reservoir) | 50 years | X | Ok | X | Ok | ||
Steel (reservoir) | 50 years | X | Ok | X | Ok | ||
Steel pump | 15 years | X | Ok | X | Ok | ||
Energy 2 (D.W.) | Energy | X | X | Ok * | X | Ok | |
Building Hydraulic Structure for Rain Water Harvesting (R.W.H.) | PVC | 50 years | X | X | Ok | Ok | |
Concrete | 50 years | X | X | Ok | Ok | ||
Steel | 15 years | X | X | Ok | Ok | ||
Polyethylene | 30 years | X | X | Ok | Ok | ||
Energy 2 (R.W.H) | Energy | X | X | X | Ok | Ok |
Environmental Impacts | House CSW1 | House RWH1 |
---|---|---|
acidification (kg SO2-eq) | 1.00 × 10−3 | 2.23 × 10−3 |
climate change (Kg CO2-eq) | 1.95 × 10−1 | 5.50 × 10−1 |
freshwater ecotoxicity (Kg 1.4-DCB-eq) | 1.50 × 10−1 | 4.13 × 10−1 |
marine ecotoxicity (Kg 1.4-DCB-eq) | 4.59 × 102 | 1.01 × 103 |
terrestrial ecotoxicity (Kg 1.4-DCB-eq) | 1.12 × 10−3 | 5.09 × 10−3 |
energy resources: nonrenewable (MJ) | 2.31 × 100 | 1.09 × 101 |
eutrophication (Kg PO4-eq) | 5.32 × 10−4 | 9.23 × 10−4 |
human toxicity (Kg 1.4-DCB-eq) | 5.00 × 10−1 | 1.73 × 100 |
material resources: metals/minerals (Kg SB-eq) | 7.66 × 10−6 | 8.91 × 10−6 |
ozone depletion (Kg CFC-11-eq) | 1.77 × 10−8 | 2.77 × 10−8 |
photochemical oxidation formation (Kg ethylene-eq) | 5.40 × 10−5 | 1.45 × 10−4 |
Environmental Impacts | Building CSW1 | Building RWH1 |
---|---|---|
acidification (kg SO2-eq) | 1.00 × 10−3 | 1.86 × 10−3 |
climate change (Kg CO2-eq) | 1.95 × 10−1 | 4.41 × 10−1 |
freshwater ecotoxicity (Kg 1.4-DCB-eq) | 1.50 × 10−1 | 2.59 × 10−1 |
marine ecotoxicity (Kg 1.4-DCB-eq) | 4.59 × 102 | 6.95 × 102 |
terrestrial ecotoxicity (Kg 1.4-DCB-eq) | 1.12 × 10−3 | 2.36 × 10−3 |
energy resources: nonrenewable (MJ) | 2.31 × 100 | 9.36 × 100 |
eutrophication (Kg PO4-eq) | 5.32 × 10−4 | 7.66 × 10−4 |
human toxicity (Kg 1.4-DCB-eq) | 5.00 × 10−1 | 8.97 × 10−1 |
material resources: metals/minerals (Kg SB-eq) | 7.66 × 10−6 | 8.87 × 10−6 |
ozone depletion (Kg CFC-11-eq) | 1.77 × 10−8 | 2.40 × 10−8 |
photochemical oxidation formation (Kg ethylene-eq) | 5.40 × 10−5 | 1.23 × 10−4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, M.P.d.; González, J.; da Costa, B.B.F.; Garrido, C.; Soares, C.A.P.; Haddad, A.N. Environmental Impacts of Rainwater Harvesting Systems in Urban Areas Applying Life Cycle Assessment—LCA. Eng 2023, 4, 1127-1143. https://doi.org/10.3390/eng4020065
Silva MPd, González J, da Costa BBF, Garrido C, Soares CAP, Haddad AN. Environmental Impacts of Rainwater Harvesting Systems in Urban Areas Applying Life Cycle Assessment—LCA. Eng. 2023; 4(2):1127-1143. https://doi.org/10.3390/eng4020065
Chicago/Turabian StyleSilva, Mariana P. da, Jorge González, Bruno B. F. da Costa, Claudia Garrido, Carlos A. P. Soares, and Assed N. Haddad. 2023. "Environmental Impacts of Rainwater Harvesting Systems in Urban Areas Applying Life Cycle Assessment—LCA" Eng 4, no. 2: 1127-1143. https://doi.org/10.3390/eng4020065
APA StyleSilva, M. P. d., González, J., da Costa, B. B. F., Garrido, C., Soares, C. A. P., & Haddad, A. N. (2023). Environmental Impacts of Rainwater Harvesting Systems in Urban Areas Applying Life Cycle Assessment—LCA. Eng, 4(2), 1127-1143. https://doi.org/10.3390/eng4020065