A Review of the Metallogenic Mechanisms of Sandstone-Type Uranium Deposits in Hydrocarbon-Bearing Basins in China
Abstract
:1. Introduction
2. Characteristics of Sandstone-Type Uranium Deposits in Hydrocarbon-Bearing Basins in China
2.1. Spatial Distribution Characteristics of Sandstone-Type Uranium Deposits in Hydrocarbon-Bearing Basins
2.2. Temporal Distribution Characteristics of Sandstone-Type Uranium Deposits in Hydrocarbon-Bearing Basins
2.3. Geological Characteristics of Sandstone-Type Uranium Deposits in Hydrocarbon-Bearing Basins
3. Metallogenic Mechanisms of Sandstone-Type Uranium Deposits in Hydrocarbon-Bearing Basins in China
3.1. Fluid Action
3.1.1. Action of Surface Water and Groundwater
3.1.2. Action of Oil and Gas
3.1.3. Action of Hydrothermal Fluids
3.2. Geological Structure Effect
3.3. Sedimentary Environment Effect
3.4. Effects of Other Factors
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Charalampides, G.; Vatalis, K.; Karayannis, V.; Baklavaridis, A. Environmental Defects And Economic Impact On Global Market Of Rare Earth Metals. IOP Conf. Ser. Mater. Sci. Eng. 2016, 161, 012069. [Google Scholar] [CrossRef] [Green Version]
- Herring, J.S. Uranium and Thorium Resources. In Nuclear Energy; Springer: New York, NY, USA, 2013; pp. 463–490. [Google Scholar]
- Leach, D.L.; Puchlik, K.P.; Glanzman, R.K. Geochemical Exploration for Uranium in Playas. J. Geochem. Explor. 1980, 13, 251–283. [Google Scholar] [CrossRef]
- Zhang, F.; Jiao, Y.; Wu, L.; Rong, H. Relations between Pyrite Morphologies and Uranium Mineralization in the Shuanglong Region, Northern China. Ore Geol. Rev. 2022, 141, 104637. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, S.; Jiao, Y.; Wu, L.; Rong, H. Trapping of Uranium by Organic Matter within Sandstones during Mineralization Process: A Case Study from the Shuanglong Uranium Deposit, China. Ore Geol. Rev. 2021, 138, 104296. [Google Scholar] [CrossRef]
- Peel, R. Nuclear Fuel Reserves. In Kirk-Othmer Encyclopedia of Chemical Technology; Wiley: New York, NY, USA, 2021; pp. 1–29. [Google Scholar]
- NEA. Uranium 2022: Resources, Production and Demand; OECD Publishing: Pairs, France, 2023. [Google Scholar]
- Hore-Lacy, I. Production of Byproduct Uranium and Uranium from Unconventional Resources. In Uranium for Nuclear Power; Elsevier: Amsterdam, The Netherlands, 2016; pp. 239–251. [Google Scholar]
- Schaffer, M.B. Abundant Thorium as an Alternative Nuclear Fuel. Energy Policy 2013, 60, 4–12. [Google Scholar] [CrossRef]
- Pearce, J.M. Limitations of Nuclear Power as a Sustainable Energy Source. Sustainability 2012, 4, 1173–1187. [Google Scholar] [CrossRef] [Green Version]
- Warner, E.S.; Heath, G.A. Life Cycle Greenhouse Gas Emissions of Nuclear Electricity Generation. J. Ind. Ecol. 2012, 16, S73–S92. [Google Scholar] [CrossRef]
- Sun, X.; Luo, H.; Dai, S. Ionic Liquids-Based Extraction: A Promising Strategy for the Advanced Nuclear Fuel Cycle. Chem. Rev. 2012, 112, 2100–2128. [Google Scholar] [CrossRef]
- Brook, B.W.; Alonso, A.; Meneley, D.A.; Misak, J.; Blees, T.; van Erp, J.B. Why Nuclear Energy Is Sustainable and Has to Be Part of the Energy Mix. Sustain. Mater. Technol. 2014, 1–2, 8–16. [Google Scholar] [CrossRef] [Green Version]
- Ryu, H.; Dorjragchaa, S.; Kim, Y.; Kim, K. Electricity-Generation Mix Considering Energy Security and Carbon Emission Mitigation: Case of Korea and Mongolia. Energy 2014, 64, 1071–1079. [Google Scholar] [CrossRef]
- Nahar, S.N.; Pradhan, A.K.; Lim, S. Kα Transition Probabilities for Platinum and Uranium Ions for Possible X-ray Biomedical Applications. Can. J. Phys. 2011, 89, 483–494. [Google Scholar] [CrossRef]
- Rump, A.; Eder, S.; Lamkowski, A.; Hermann, C.; Abend, M.; Port, M. A Quantitative Comparison of the Chemo- and Radiotoxicity of Uranium at Different Enrichment Grades. Toxicol. Lett. 2019, 313, 159–168. [Google Scholar] [CrossRef]
- Malmon, A.G. High Resolution Isotope Tracing in Electron Microscopy Using Induced Nuclear Reactions. J. Theor. Biol. 1965, 9, 77–92. [Google Scholar] [CrossRef] [PubMed]
- Brüske, A.; Martin, A.N.; Rammensee, P.; Eroglu, S.; Lazarov, M.; Albut, G.; Schuth, S.; Aulbach, S.; Schoenberg, R.; Beukes, N.; et al. The Onset of Oxidative Weathering Traced by Uranium Isotopes. Precambrian Res. 2020, 338, 105583. [Google Scholar] [CrossRef]
- Von Hippel, D.F.; Hayes, P. Regional Cooperation for Nuclear Spent Fuel Management in East Asia: Costs, Benefits and Challenges—Part I. J. Peace Nucl. Disarm. 2018, 1, 305–343. [Google Scholar] [CrossRef] [Green Version]
- Oxford Analytica. Geopolitical Tensions Cloud Uranium Market; Oxford Analytica: Oxford, UK, 2022. [Google Scholar]
- Yao, J.; Han, H.; Yang, Y.; Song, Y.; Li, G. A Review of Recent Progress of Carbon Capture, Utilization, and Storage (CCUS) in China. Appl. Sci. 2023, 13, 1169. [Google Scholar] [CrossRef]
- Liu, E.; Lu, X.; Wang, D. A Systematic Review of Carbon Capture, Utilization and Storage: Status, Progress and Challenges. Energies 2023, 16, 2865. [Google Scholar] [CrossRef]
- Shang, D.; Geissler, B.; Mew, M.; Satalkina, L.; Zenk, L.; Tulsidas, H.; Barker, L.; EI-Yahyaoui, A.; Hussein, A.; Taha, M.; et al. Unconventional Uranium in China’s Phosphate Rock: Review and Outlook. Renew. Sustain. Energy Rev. 2021, 140, 110740. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, X.; Ren, D.; Lin, K. Research on Risk Management and Control Strategy of Uranium Resource Procurement in China. Energy Sources Part A Recovery Util. Environ. Eff. 2023, 45, 4178–4194. [Google Scholar] [CrossRef]
- Jin, R.; Teng, X.; Li, X.; Si, Q.; Wang, W. Genesis of Sandstone-Type Uranium Deposits along the Northern Margin of the Ordos Basin, China. Geosci. Front. 2020, 11, 215–227. [Google Scholar] [CrossRef]
- Peng, W.; Liu, Q.; Zhang, Y.; Jia, H.; Zhu, D.; Meng, Q.; Wu, X.; Deng, S.; Ma, Y. The First Extra-Large Helium-Rich Gas Field Identified in a Tight Sandstone of the Dongsheng Gas Field, Ordos Basin, China. Sci. China Earth Sci. 2022, 65, 874–881. [Google Scholar] [CrossRef]
- Bai, H.; Wang, W.; Lu, Q.; Wang, W.; Feng, S.; Zhang, B. Geological Characteristics and Control Mechanism of Uranium Enrichment in Coal-Bearing Strata in the Yili Basin, Northwest China─Implications for Resource Development and Environmental Protection. ACS Omega 2022, 7, 5453–5470. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Hu, H.; Shi, E.; Tang, C.; Zhang, R.; Hao, Y. Seismic Interpretation of Sandstone-Type Uranium Deposits in the Songliao Basin, Northeast China. Interpretation 2022, 10, T665–T679. [Google Scholar] [CrossRef]
- Zhu, Q.; Li, J.; Li, G.; Wen, S.; Yu, R.; Tang, C.; Feng, X.; Liu, X. Characteristics of Sandstone-Type Uranium Mineralization in the Hangjinqi Region of the Northeastern Ordos Basin: Clues from Clay Mineral Studies. Ore Geol. Rev. 2022, 141, 104642. [Google Scholar] [CrossRef]
- Richards, M.C.; Issen, K.A.; Ingraham, M.D. A Coupled Elastic Constitutive Model for High Porosity Sandstone. Int. J. Rock Mech. Min. Sci. 2022, 150, 104989. [Google Scholar] [CrossRef]
- Zhang, P.; Yu, C.; Zeng, X.; Tan, S.; Lu, C. Ore-Controlling Structures of Sandstone-Hosted Uranium Deposit in the Southwestern Ordos Basin: Revealed from Seismic and Gravity Data. Ore Geol. Rev. 2022, 140, 104590. [Google Scholar] [CrossRef]
- Ren, Y.; Yang, X.; Hu, X.; Wei, J.; Tang, C. Mineralogical and Geochemical Evidence for Biogenic Uranium Mineralization in Northern Songliao Basin, NE China. Ore Geol. Rev. 2022, 141, 104556. [Google Scholar] [CrossRef]
- Mukherjee, S.; Goswami, S.; Zakaulla, S. Geological Relationship between Hydrocarbon and Uranium: Review on Two Different Sources of Energy and the Indian Scenario. Geoenergy Sci. Eng. 2023, 221, 111255. [Google Scholar] [CrossRef]
- Zhang, C.; Cai, Y.-Q.; Dong, Q.; Xu, H. Cretaceous–Neogene Basin Control on the Formation of Uranium Deposits in South China: Evidence from Geology, Mineralization Ages, and H–O Isotopes. Int. Geol. Rev. 2020, 62, 263–310. [Google Scholar] [CrossRef]
- Cai, Y.; Zhang, J.; Li, Z.; Guo, Q.; Song, J.; Fan, H.; Liu, W.; Qi, F. Outline of Uranium Resources Characteristics and Metallogenetic Regularity in China. Acta Geol. Sin. 2015, 89, 1051–1069. [Google Scholar]
- Hou, B.; Keeling, J.; Li, Z. Paleovalley-Related Uranium Deposits in Australia and China: A Review of Geological and Exploration Models and Methods. Ore Geol. Rev. 2017, 88, 201–234. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, S.; Zhang, T.; Teng, X.; Ao, C.; Jin, R.; Li, H. Regional Sandstone-Type Uranium Mineralization Rooted in Oligo–Miocene Tectonic Inversion in the Songliao Basin, NE China. Gondwana Res. 2020, 88, 88–105. [Google Scholar] [CrossRef]
- Han, X.; Wu, Z.; Ji, H.; Jiang, Z.; Guo, Y.; Lin, Z.; Hu, H.; Yin, D. Constraints of Tectonic Uplift and Denudation on Sandstone-Type Uranium Mineralization in Meso-Cenozoic Basins in Northern China: A Review. Ore Geol. Rev. 2021, 139, 104528. [Google Scholar] [CrossRef]
- Ren, Y.; Yang, X.; Miao, P.; Hu, X.; Chen, Y.; Chen, L.; Zhao, H. Mineralogical and Geochemical Research on Pengyang Deposit: A Peculiar Eolian Sandstone-Hosted Uranium Deposit in the Southwest of Ordos Basin. Ore Geol. Rev. 2022, 141, 104571. [Google Scholar] [CrossRef]
- Xu, D.; Chi, G.; Nie, F.; Fayek, M.; Hu, R. Diversity of Uranium Deposits in China—An Introduction to the Special Issue. Ore Geol. Rev. 2021, 129, 103944. [Google Scholar] [CrossRef]
- Luo, J.L.; Morad, S.; Salem, A.; Ketzer, J.M.; Lei, X.L.; Guo, D.Y.; Hlal, O. Impact of Diagenesis on Reservoir-Quality Evolution in Fluvial and Lacustrine-Deltaic Sandstones: Evidence from Jurassic and Triassic Sandstones from the Ordos Basin, China. J. Pet. Geol. 2009, 32, 79–102. [Google Scholar] [CrossRef]
- Jiao, Y.; Wu, L.; Rong, H.; Peng, Y.; Miao, A.; Wang, X. The Relationship between Jurassic Coal Measures and Sandstone-Type Uranium Deposits in the Northeastern Ordos Basin, China. Acta Geol. Sin.-Engl. Ed. 2016, 90, 2117–2132. [Google Scholar] [CrossRef]
- Jin, R.; Yu, R.; Miao, P. Basin Uranium Mineralization Law; Springer: Singapore, 2023; pp. 325–356. [Google Scholar]
- Liu, Z.Y.; Peng, S.P.; Qin, M.K.; Liu, H.X.; Geng, Y.Y.; Zhang, X.; Ding, B.; Xiu, X.Q. Origin and Role of Kaolinization in Roll-Front Uranium Deposits and Its Response to Ore-Forming Fluids in the Yili Basin, China. Geofluids 2018, 2018, 7847419. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Li, J.; Wang, X.; Wang, Z.; Wei, Y.; Ren, J. Occurrence Characteristics and Influencing Factors of Uranium and Radon in Deep-Buried Thermal Storage Aquifers. J. Radioanal. Nucl. Chem. 2022, 331, 755–767. [Google Scholar] [CrossRef]
- Qian, C.; Yang, S.; Wang, Y.; Wu, C.; Zhang, Y. Prediction and Modeling of Petrophysical Parameters of Deep-Buried, Low Permeability Glutenite Reservoirs in Yubei Area, Turpan-Hami Basin, China. J. Pet. Sci. Eng. 2021, 207, 109154. [Google Scholar] [CrossRef]
- Liu, B.; Shi, Z.; Peng, Y.; Zhang, P.; Li, P. Sequence Stratigraphy of the Lower Cretaceous Uraniferous Measures and Mineralization of the Sandstone-hosted Tamusu Large Uranium Deposit, North China. Acta Geol. Sin.-Engl. Ed. 2022, 96, 167–192. [Google Scholar] [CrossRef]
- Zuo, Y.; Wang, C.; Tang, S.; Hao, Q. Mesozoic and Cenozoic Thermal History and Source Rock Thermal Evolution of the Baiyinchagan Sag, Erlian Basin, Northern China. J. Pet. Sci. Eng. 2016, 139, 171–184. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, Y.; Li, Z.; Qiao, B.; Yu, X.; Huang, W.; Cao, C.; Li, Z.; Pan, Z.; Huang, Y. 2D and 3D Seismic Survey for Sandstone-Type Uranium Deposit and Its Prediction Patterns, Erlian Basin, China. Minerals 2022, 12, 559. [Google Scholar] [CrossRef]
- Xi, K.; Cao, Y.; Jahren, J.; Zhu, R.; Bjørlykke, K.; Haile, B.G.; Zheng, L.; Hellevang, H. Diagenesis and Reservoir Quality of the Lower Cretaceous Quantou Formation Tight Sandstones in the Southern Songliao Basin, China. Sediment. Geol. 2015, 330, 90–107. [Google Scholar] [CrossRef]
- Yao, J.; Li, G.; Wu, J. Application of In-Situ Combustion for Heavy Oil Production in China: A Review. J. Oil Gas Petrochem. Sci. 2018, 1, 69–72. [Google Scholar] [CrossRef] [Green Version]
- Yao, J.; Song, Y. Dynamic Analysis Approach to Evaluate In-Situ Combustion Performance for Heavy Oil Production. J. Oil Gas Petrochem. Sci. 2019, 2, 42–47. [Google Scholar] [CrossRef]
- Cao, B.; Luo, X.; Zhang, L.; Sui, F.; Lin, H.; Lei, Y. Diagenetic Evolution of Deep Sandstones and Multiple-Stage Oil Entrapment: A Case Study from the Lower Jurassic Sangonghe Formation in the Fukang Sag, Central Junggar Basin (NW China). J. Pet. Sci. Eng. 2017, 152, 136–155. [Google Scholar] [CrossRef]
- Clayton, J.L.; Yang, J.; King, J.D.; Lillis, P.G.; Warden, A. Geochemistry of Oils from the Junggar Basin, Northwest China. Am. Assoc. Pet. Geol. Bull. 1997, 81, 1926–1944. [Google Scholar] [CrossRef]
- Huang, S.; Qin, M.; Liu, Z.; He, Z.; Geng, Y. Litho-mineralogy, Geochemistry, and Chronology for the Genesis of the Kamust Sandstone-hosted Uranium Deposit, Junggar Basin, NW China. Geol. J. 2022, 57, 1530–1551. [Google Scholar] [CrossRef]
- Liu, S.; Lei, X.; Feng, C.; Hao, C. Estimation of Subsurface Formation Temperature in the Tarim Basin, Northwest China: Implications for Hydrocarbon Generation and Preservation. Int. J. Earth Sci. 2016, 105, 1329–1351. [Google Scholar] [CrossRef]
- Cai, C.; Qiu, N.; Soares, C.J.; Chen, H. Study on the Detrital Zircon Fission-track Ages from Natural Borehole Samples in the Bohai Bay and Tarim Basins with Different Thermal Backgrounds. Geol. J. 2021, 56, 4189–4200. [Google Scholar] [CrossRef]
- Zhu, G.; Li, J.; Zhang, Z.; Wang, M.; Xue, N.; He, T.; Zhao, K. Stability and Cracking Threshold Depth of Crude Oil in 8000 m Ultra-Deep Reservoir in the Tarim Basin. Fuel 2020, 282, 118777. [Google Scholar] [CrossRef]
- Liu, C.; Huang, L.; Zhao, H.; Wang, J.; Zhang, L.; Deng, Y.; Zhao, J.; Zhang, D.; Fan, C. Small-Scale Petroliferous Basins in China: Characteristics and Hydrocarbon Occurrence. Am. Assoc. Pet. Geol. Bull. 2019, 103, 2139–2175. [Google Scholar] [CrossRef]
- Huang, C.; Yuan, X.; Song, C.; Yuan, J.; Ni, X.; Ma, X.; Zhang, S. Characteristics, Origin, and Role of Salt Minerals in the Process of Hydrocarbon Accumulation in the Saline Lacustrine Basin of the Yingxi Area, Qaidam, China. Carbonates Evaporites 2018, 33, 431–446. [Google Scholar] [CrossRef]
- Ma, X.; Huang, C.; Shi, Y. Oil and Gas Enrichment Patterns and Major Controlling Factors for Stable and High Production of Tight Lacustrine Carbonate Rocks, a Case Study of Yingxi Area in Qaidam Basin, West China. Carbonates Evaporites 2019, 34, 1815–1831. [Google Scholar] [CrossRef]
- He, Z.; Feng, J.; Luo, J.; Zeng, Y. Distribution, Exploitation, and Utilization of Intermediate-to-Deep Geothermal Resources in Eastern China. Energy Geosci. 2023, 4, 100187. [Google Scholar] [CrossRef]
- Zhou, Q.; Xiao, X.; Tian, H.; Pan, L. Modeling Free Gas Content of the Lower Paleozoic Shales in the Weiyuan Area of the Sichuan Basin, China. Mar. Pet. Geol. 2014, 56, 87–96. [Google Scholar] [CrossRef]
- Chen, S.; Zhu, Y.; Qin, Y.; Wang, H.; Liu, H.; Fang, J. Reservoir Evaluation of the Lower Silurian Longmaxi Formation Shale Gas in the Southern Sichuan Basin of China. Mar. Pet. Geol. 2014, 57, 619–630. [Google Scholar] [CrossRef]
- Liu, C.; Qiu, X.; Wu, B.; Zhao, H. Subdivisions of the Central-East Asia Multi-Energy Minerals Metallogenetic Domain and Types of Those Basins. Energy Explor. Exploit. 2009, 27, 153–166. [Google Scholar] [CrossRef] [Green Version]
- Tang, X.; Zhang, J.; Shan, Y.; Xiong, J. Upper Paleozoic Coal Measures and Unconventional Natural Gas Systems of the Ordos Basin, China. Geosci. Front. 2012, 3, 863–873. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Zhang, C.; Li, X.; Zhang, K.; Yuan, Y.; Zang, X.; Cui, W.; Liu, S.; Jiang, Z. Organic Matter Pores Structure and Evolution in Shales Based on the He Ion Microscopy (HIM): A Case Study from the Triassic Yanchang, Lower Silurian Longmaxi and Lower Cambrian Niutitang Shales in China. J. Nat. Gas Sci. Eng. 2020, 84, 103682. [Google Scholar] [CrossRef]
- Jolivet, M.; Heilbronn, G.; Robin, C.; Barrier, L.; Bourquin, S.; Guo, Z.; Jia, Y.; Guerit, L.; Yang, W.; Fu, B. Reconstructing the Late Palaeozoic—Mesozoic Topographic Evolution of the Chinese Tian Shan: Available Data and Remaining Uncertainties. Adv. Geosci. 2013, 37, 7–18. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Jolivet, M.; Yang, W.; Zhang, Z.; Cheng, F.; Zhu, B.; Guo, Z. Latest Paleozoic–Early Mesozoic Basin–Range Interactions in South Tian Shan (Northwest China) and Their Tectonic Significance: Constraints from Detrital Zircon U–Pb Ages. Tectonophysics 2013, 599, 197–213. [Google Scholar] [CrossRef]
- Chen, C.; Lu, H.; Jia, D.; Cai, D.; Wu, S. Closing History of the Southern Tianshan Oceanic Basin, Western China: An Oblique Collisional Orogeny. Tectonophysics 1999, 302, 23–40. [Google Scholar] [CrossRef]
- Han, B.-F.; He, G.-Q.; Wang, X.-C.; Guo, Z.-J. Late Carboniferous Collision between the Tarim and Kazakhstan–Yili Terranes in the Western Segment of the South Tian Shan Orogen, Central Asia, and Implications for the Northern Xinjiang, Western China. Earth Sci. Rev. 2011, 109, 74–93. [Google Scholar] [CrossRef]
- Novikov, I.S. Reconstructing the Stages of Orogeny around the Junggar Basin from the Lithostratigraphy of Late Paleozoic, Mesozoic, and Cenozoic Sediments. Russ. Geol. Geophys. 2013, 54, 138–152. [Google Scholar] [CrossRef]
- Allen, M.B.; ªengör, A.M.C.; Natal’In, B.A. Junggar, Turfan and Alakol Basins as Late Permian to? Early Triassic Extensional Structures in a Sinistral Shear Zone in the Altaid Orogenic Collage, Central Asia. J. Geol. Soc. Lond. 1995, 152, 327–338. [Google Scholar] [CrossRef]
- Xin, Z.; Fengjun, N.; Xuebin, S.; Fei, X.; Mangen, L.; Zhaobin, Y.; Chengyong, Z.; Zhibing, F. Relationships between Meso-Cenozoic Denudation in the Eastern Tian Shan and Uranium Mineralization in the Turpan-Hami Basin, NW China: Constraints from Apatite Fission Track Study. Ore Geol. Rev. 2020, 127, 103820. [Google Scholar] [CrossRef]
- Zhao, X.; Jin, F.; Wang, Q.; Han, C.; Kang, R. Theory of Hydrocarbon Accumulation in Troughs within Continental Faulted Basins and Its Application: A Case Study in Jizhong Depression and Erlian Basin. Acta Pet. Sin. 2011, 32, 18–24. [Google Scholar]
- Wang, Y.; Zhang, F.; Zhang, D.; Miao, L.; Li, T.; Xie, H.; Meng, Q.; Liu, D. Zircon SHRIMP U-Pb Dating of Meta-Diorite from the Basement of the Songliao Basin and Its Geological Significance. Chin. Sci. Bull. 2006, 51, 1877–1883. [Google Scholar] [CrossRef]
- Lu, J.; Luo, Z.; Zou, H.; Li, Y.; Hu, Z.; Zhou, Z.; Zhu, J.; Han, M.; Zhao, L.; Lin, Z. Geochemical Characteristics, Origin, and Mechanism of Differential Accumulation of Natural Gas in the Carboniferous Kelameili Gas Field in Junggar Basin, China. J. Pet. Sci. Eng. 2021, 203, 108658. [Google Scholar] [CrossRef]
- Chen, Y.; Miao, P.; Li, J.; Jin, R.; Zhao, H.; Chen, L.; Wang, C.; Yu, H.; Zhang, X. Association of Sandstone-Type Uranium Mineralization in the Northern China with Tectonic Movements and Hydrocarbons. J. Earth Sci. 2022, 33, 289–307. [Google Scholar] [CrossRef]
- Allen, M.B.; Vincent, S.J.; Wheeler, P.J. Late Cenozoic Tectonics of the Kepingtage Thrust Zone: Interactions of the Tien Shan and Tarim Basin, Northwest China. Tectonics 1999, 18, 639–654. [Google Scholar] [CrossRef]
- Sobel, E.R. Basin Analysis of the Jurassic–Lower Cretaceous Southwest Tarim Basin, Northwest China. Geol. Soc. Am. Bull. 1999, 111, 709–724. [Google Scholar] [CrossRef]
- Shi, P.; Fu, B.; Ma, Y.; Guo, Q.; Xu, H. Remote Sensing Detection for Surface Anomalies Related to Hydracarbon in Bashibulake Uranium Ore, Sourthern Tianshan. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; IEEE: New York, NY, USA, 2016; pp. 6374–6377. [Google Scholar]
- Ren, G.; Li, C.; Wu, C.; Zhang, H.; Wang, S.; Ren, Z.; Lei, Q.; Li, X. Late Quaternary Slip Rate and Kinematics of the Baoertu Fault, Constrained by 10Be Exposure Ages of Displaced Surfaces within Eastern Tian Shan. Lithosphere 2021, 2021, 7866920. [Google Scholar] [CrossRef]
- Cheng, F.; Guo, Z.; Jenkins, H.S.; Fu, S.; Cheng, X. Initial Rupture and Displacement on the Altyn Tagh Fault, Northern Tibetan Plateau: Constraints Based on Residual Mesozoic to Cenozoic Strata in the Western Qaidam Basin. Geosphere 2015, 11, 921–942. [Google Scholar] [CrossRef] [Green Version]
- Sun, P.; Guo, Z.; He, W.; Liu, W. Restoration of Eroded Thickness of the Neogene Strata in the Western Qaidam Basin and Its Significance for Oil and Gas Occurrence. Acta Geol. Sin.-Engl. Ed. 2017, 91, 1352–1362. [Google Scholar] [CrossRef]
- Abudukeyumu, A.; Song, H.; Chi, G.; Li, Q.; Zhang, C. Quaternary Uranium Mineralization in the Qaidam Basin, Northern Tibetan Plateau: Insights from Petrographic and C-O Isotopic Evidences. Ore Geol. Rev. 2022, 140, 104628. [Google Scholar] [CrossRef]
- Yan, Y.; Hu, X.; Lin, G.; Santosh, M.; Chan, L.-S. Sedimentary Provenance of the Hengyang and Mayang Basins, SE China, and Implications for the Mesozoic Topographic Change in South China Craton: Evidence from Detrital Zircon Geochronology. J. Asian Earth Sci. 2011, 41, 494–503. [Google Scholar] [CrossRef]
- Liu, S.; Deng, B.; Zhong, Y. Unique Geologic Features of Burial and Superimposition of the Lower Paleozoic Shale Gas across the Sichuan Basin and Its Periphery. Earth Sci. Front. 2016, 1, 11–28. [Google Scholar]
- Yang, M.; Li, L.; Zhou, J.; Qu, X.; Zhou, D. Segmentation and Inversion of the Hangjinqi Fault Zone, the Northern Ordos Basin (North China). J. Asian Earth Sci. 2013, 70–71, 64–78. [Google Scholar] [CrossRef]
- Jin, R.; Yu, R.-A.; Yang, J.; Zhou, X.; Teng, X.; Wang, S.; Si, Q.; Zhu, Q.; Zhang, T. Paleo-Environmental Constraints on Uranium Mineralization in the Ordos Basin: Evidence from the Color Zoning of U-Bearing Rock Series. Ore Geol. Rev. 2019, 104, 175–189. [Google Scholar] [CrossRef]
- Mei, Y.; Ren, S.; Zhang, P.; Ma, Y.; Ma, Y.; Fu, Y. Research on High-precision Gravity Scratch Analysis and Structure Features of Yili Basin, North-west China. Geol. J. 2019, 54, 1081–1089. [Google Scholar] [CrossRef]
- Alexeiev, D.V.; Ryazantsev, A.V.; Kröner, A.; Tretyakov, A.A.; Xia, X.; Liu, D.Y. Geochemical Data and Zircon Ages for Rocks in a High-Pressure Belt of Chu-Yili Mountains, Southern Kazakhstan: Implications for the Earliest Stages of Accretion in Kazakhstan and the Tianshan. J. Asian Earth Sci. 2011, 42, 805–820. [Google Scholar] [CrossRef]
- Jiang, S.; Li, S.; Somerville, I.D.; Lei, J.; Yang, H. Carboniferous–Permian Tectonic Evolution and Sedimentation of the Turpan-Hami Basin, NW China: Implications for the Closure of the Paleo-Asian Ocean. J. Asian Earth Sci. 2015, 113, 644–655. [Google Scholar] [CrossRef]
- Zhu, W.; Ma, R.; Guo, J.; Sun, Y.; Guo, L.; Xu, M.; Hu, D. The Coupling of Sedimentary Characteristics and Tectonic Development of Turpan-Hami Basin and Adjacent Areas in Early Permian. Geol. J. China Univ. 2002, 8, 160–168. [Google Scholar]
- Sun, T.; Wang, L.; Zhang, L.; Yang, H.; Zhang, Y. The Controlling Effect of Chair-Shaped Slope Break Landforms on Sedimentation in Continental Faulted Basins: A Case Study in the Xilinhaolai Area, Baiyinchagan Depression, Erlian Basin, China. Interpretation 2022, 10, T567–T580. [Google Scholar] [CrossRef]
- Zou, C.; Zhao, W.; Jia, C.; Zhu, R.; Zhang, G.; Zhao, X.; Yuan, X. Formation and Distribution of Volcanic Hydrocarbon Reservoirs in Sedimentary Basins of China. Pet. Explor. Dev. 2008, 35, 257–271. [Google Scholar] [CrossRef]
- Wang, P.-J.; Mattern, F.; Didenko, N.A.; Zhu, D.-F.; Singer, B.; Sun, X.-M. Tectonics and Cycle System of the Cretaceous Songliao Basin: An Inverted Active Continental Margin Basin. Earth Sci. Rev. 2016, 159, 82–102. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Lu, J.; Liu, X.; Wang, J.; Ma, W.; He, X.; Mou, F.; Li, X. Geochemistry and Origins of Natural Gas in the Hong-Che Fault Zone of the Junggar Basin, NW China. J. Pet. Sci. Eng. 2022, 214, 110501. [Google Scholar] [CrossRef]
- Bian, W.; Hornung, J.; Liu, Z.; Wang, P.; Hinderer, M. Sedimentary and Palaeoenvironmental Evolution of the Junggar Basin, Xinjiang, Northwest China. Paleobiodivers Paleoenviron 2010, 90, 175–186. [Google Scholar] [CrossRef]
- Teng, C.; Cai, Z.; Hao, F.; Cao, Z. Structural Geometry and Evolution of an Intracratonic Strike-Slip Fault Zone: A Case Study from the North SB5 Fault Zone in the Tarim Basin, China. J. Struct. Geol. 2020, 140, 104159. [Google Scholar] [CrossRef]
- Shuichang, Z.; Baomin, Z.; Benliang, L.; Guangyou, Z.; Jin, S.; Xiaomei, W. History of Hydrocarbon Accumulations Spanning Important Tectonic Phases in Marine Sedimentary Basins of China: Taking the Tarim Basin as an Example. Pet. Explor. Dev. 2011, 38, 1–15. [Google Scholar] [CrossRef]
- Fu, B.; Lin, A.; Kano, K.; Maruyama, T.; Guo, J. Quaternary Folding of the Eastern Tian Shan, Northwest China. Tectonophysics 2003, 369, 79–101. [Google Scholar] [CrossRef]
- Yin, T.; Li, S. Application of Sulfur Isotopes for Analysing the Sedimentary Environment of Evaporite in Low-Altitude Intermountain Basins: A Case Study on the Kumishi Basin, Northwest China. Carbonates Evaporites 2022, 37, 11. [Google Scholar] [CrossRef]
- He, W.; Barzgar, E.; Feng, W.; Huang, L. Reservoirs Patterns and Key Controlling Factors of the Lenghu Oil & Gas Field in the Qaidam Basin, Northwestern China. J. Earth Sci. 2021, 32, 1011–1021. [Google Scholar] [CrossRef]
- Hu, S.; Cao, Y.; Huang, J.; Mou, Z. Discussion on Formation and Evolution of Jurassic Basin-Prototype for Qaidam Basin. Exp. Pet. Geol. 1999, 21, 189–195. [Google Scholar]
- Chen, P. Paleoenvironmental Changes during the Cretaceous in Eastern China; Elsevier: Amsterdam, The Netherlands, 2000; Volume 17, pp. 81–90. [Google Scholar]
- Sun, S.; Li, J.; Chen, H.; Peng, H.; Kenneth, J.H.; Shelton, J. Mesozoic and Cenozoic Sedimentary History of South China. Am. Assoc. Pet. Geol. Bull. 1989, 73, 1247–1269. [Google Scholar] [CrossRef]
- Jiao, F.; Yang, Y.; Ran, Q.; Wu, G.; Liang, H. Distribution and Gas Exploration of the Strike–Slip Faults in the Central Sichuan Basin. Nat. Gas Ind. B 2022, 9, 63–72. [Google Scholar] [CrossRef]
- Lu, G.; Chen, X.; Zou, H.; Preto, N.; Huang, X.; Wang, C.; Shi, Z.; Jin, X. Provenance of the First Terrigenous Sediments in the Western Sichuan Basin during the Late Triassic: Implications for Basin Evolution from Marine to Continental. Mar. Pet. Geol. 2023, 147, 105992. [Google Scholar] [CrossRef]
- Jin, R.; Liu, H.; Li, X. Theoretical System of Sandstone-Type Uranium Deposits in Northern China. J. Earth Sci. 2022, 33, 257–277. [Google Scholar] [CrossRef]
- Jiao, Y.; Wu, L.; Rong, H.; Zhang, F. Review of Basin Uranium Resources in China. Earth Sci.-J. China Univ. Geosci. 2021, 46, 2675. [Google Scholar] [CrossRef]
- Min, M.-Z.; Luo, X.-Z.; Du, G.-S.; He, B.-A.; Campbell, A.R. Mineralogical and Geochemical Constraints on the Genesis of the Granite-Hosted Huangao Uranium Deposit, SE China. Ore Geol. Rev. 1999, 14, 105–127. [Google Scholar] [CrossRef]
- Min, M.; Fang, C.; Fayek, M. Petrography and Genetic History of Coffinite and Uraninite from the Liueryiqi Granite-Hosted Uranium Deposit, SE China. Ore Geol. Rev. 2005, 26, 187–197. [Google Scholar] [CrossRef]
- Hankins, D.E. Effect of Reactivity Addition Rate and of Weak Neutron Source on the Fission Yield of Uranium Solutions. Nucl. Sci. Eng. 1966, 26, 110–116. [Google Scholar] [CrossRef]
- Tran, E.L.; Teutsch, N.; Klein-BenDavid, O.; Weisbrod, N. Uranium and Cesium Sorption to Bentonite Colloids under Carbonate-Rich Environments: Implications for Radionuclide Transport. Sci. Total Environ. 2018, 643, 260–269. [Google Scholar] [CrossRef]
- Jaireth, S.; Mckay, A.; Lambert, I. Association of Large Sandstone Uranium Deposits with Hydrocarbons. AusGeo News 2009, 89, 1–6. [Google Scholar]
- Spirakis, C.S. The Roles of Organic Matter in the Formation of Uranium Deposits in Sedimentary Rocks. Ore Geol. Rev. 1996, 11, 53–69. [Google Scholar] [CrossRef]
- Liu, W.; Zhao, X.; Shi, Q.; Zhang, Z. Research on Relationship of Oil-Gas and Sandstone-Type Uranium Mineralization of Northern China. Geol. China 2017, 44, 279–287. [Google Scholar]
- Cunningham, C.G.; Rasmussen, J.D.; Steven, T.A.; Rye, R.O.; Rowley, P.D.; Romberger, S.B.; Selverstone, J. Hydrothermal Uranium Deposits Containing Molybdenum and Fluorite in the Marysvale Volcanic Field, West-Central Utah. Min. Depos. 1998, 33, 477–494. [Google Scholar] [CrossRef]
- Wilde, A.R.; Mernagh, T.P.; Bloom, M.S.; Hoffmann, C.F. Fluid Inclusion Evidence on the Origin of Some Australian Unconformity-Related Uranium Deposits. Econ. Geol. 1989, 84, 1627–1642. [Google Scholar] [CrossRef]
- Ding, B.; Liu, H.; Zhang, C.; Liu, H.; Li, P.; Zhang, B. Mineralogy, Fluid Inclusion and H-O-C-S Stable Isotopes of Mengqiguer Uranium Deposit in the Southern Yili Basin, Xinjiang: Implication for Ore Formation. Acta Geol. Sin.-Engl. Ed. 2020, 94, 1488–1503. [Google Scholar] [CrossRef]
- Heinrich, C.A. The Physical and Chemical Evolution of Low-Salinity Magmatic Fluids at the Porphyry to Epithermal Transition: A Thermodynamic Study. Min. Depos 2005, 39, 864–889. [Google Scholar] [CrossRef] [Green Version]
- Szabó, Z.; Moll, H.; Grenthe, I. Structure and Dynamics in the Complex Ion (UO2)2(CO3)(OH)3−. J. Chem. Soc. Dalton Trans. 2000, 3158–3161. [Google Scholar] [CrossRef]
- Bernhard, G.; Geipel, G.; Reich, T.; Brendler, V.; Amayri, S.; Nitsche, H. Uranyl(VI) Carbonate Complex Formation: Validation of the Ca2UO2(CO3)3(aq.) Species. Radiochim. Acta 2001, 89, 511–518. [Google Scholar] [CrossRef]
- Yue, S.; Wang, G. Relationship between the Hydrogeochemical Environment and Sandstone-Type Uranium Mineralization in the Ili Basin, China. Appl. Geochem. 2011, 26, 133–139. [Google Scholar] [CrossRef]
- Pei, S.; Zhao, J.; Sun, Y.; Xu, Z.; Wang, S.; Liu, H.; Rowe, C.A.; Toksöz, M.N.; Gao, X. Upper Mantle Seismic Velocities and Anisotropy in China Determined through Pn and Sn Tomography. J. Geophys. Res. 2007, 112, B05312. [Google Scholar] [CrossRef] [Green Version]
- Wilson, M.R.; Åkerblom, G.V. Geological Setting and Geochemistry of Uranium-Rich Granites in the Proterozoic of Sweden. Mineral. Mag. 1982, 46, 233–245. [Google Scholar] [CrossRef] [Green Version]
- Guthrie, V.A.; Kleeman, J.D. Changing Uranium Distributions during Weathering of Granite. Chem. Geol. 1986, 54, 113–126. [Google Scholar] [CrossRef]
- Skierszkan, E.K.; Dockrey, J.W.; Mayer, K.U.; Beckie, R.D. Release of Geogenic Uranium and Arsenic Results in Water-Quality Impacts in a Subarctic Permafrost Region of Granitic and Metamorphic Geology. J. Geochem. Explor. 2020, 217, 106607. [Google Scholar] [CrossRef]
- Parsons, I.; Lee, M.R.; Smith, J.V. Biochemical Evolution II: Origin of Life in Tubular Microstructures on Weathered Feldspar Surfaces. Proc. Natl. Acad. Sci. USA 1998, 95, 15173–15176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Q.; Liu, S.; Xu, L.; Zhang, H.; Xiao, D.; Deng, J.; Pan, Z. Estimation of Radon Release Rate for an Underground Uranium Mine Ventilation Shaft in China and Radon Distribution Characteristics. J. Environ. Radioact. 2019, 198, 18–26. [Google Scholar] [CrossRef]
- Ma, K.; Cui, L.; Dong, Y.; Wang, T.; Da, C.; Hirasaki, G.J.; Biswal, S.L. Adsorption of Cationic and Anionic Surfactants on Natural and Synthetic Carbonate Materials. J. Colloid Interface Sci. 2013, 408, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Guo, T. Key Controls on Accumulation and High Production of Large Non-Marine Gas Fields in Northern Sichuan Basin. Pet. Explor. Dev. 2013, 40, 150–160. [Google Scholar] [CrossRef]
- Toens, P.D.; Andrews-Speed, C.P. The Time-Bound Character of Uranium Mineralising Processes, with Special Reference to the Proterozoic of Gondwana. Precambrian Res. 1984, 25, 13–36. [Google Scholar] [CrossRef]
- Adams, S.; Smith, R. Geology and Recognition Criteria for Sandstone Uranium Deposits in Mixed Fluvial-Shallow Marine Sedimentary Sequences, South Texas. Final Report; OSTI.GOV: Oak Ridge, TN, USA, 1981.
Hydrocarbon-Bearing Basin | Basin Location | Burial Depth of Hydrocarbon Reservoirs (m) | Burial Depth of Sandstone-Type Uranium Deposits (m) | Resources (tU) |
---|---|---|---|---|
Ordos Basin | In northern China, covering parts of Shaanxi, Inner Mongolia, and Ningxia provinces | 2000–4000 | 300–1500 | 80,100 |
Yili Basin | In northern section of Xinjiang Uygur Autonomous Region | 1000–4000 | 200–800 | 42,700 |
Turpan-Hami Basin | In northwest section of Xinjiang Uyghur Autonomous Region | 3000–6000 | 100–800 | 10,100 |
Erlian Basin | In Inner Mongolia | 1500–3500 | 500–1000 | 52,100 |
Songliao Basin | In northeastern China, spanning across parts of Liaoning, Jilin, and Heilongjiang provinces | 2000–4000 | 500–1000 | 16,500 |
Badain Jaran-Bayingebi Basin | In northwestern China, spanning the provinces of Gansu, Ningxia, and Inner Mongolia | 2000–5000 | 500–1000 | 7500 |
Junggar Basin | In northwestern China, covering parts of Xinjiang and Inner Mongolia | 2500–15,000 | 150–1300 | N/A |
Tarim Basin | In Xinjiang Uygur Autonomous Region | 3000–8000 | 500–3000 | N/A |
Kumishi Basin | In Xinjiang Uygur Autonomous Region | 2000–5000 | 1000–2000 | N/A |
Qaidam Basin | In northwestern part of Qinghai province | 3000–5000 | <3000 | N/A |
Hengyang Basin | In Hunan province | 1500–3000 | <1000 | N/A |
Sichuan Basin | In southwestern China, covering parts of Sichuan, Chongqing, and Guizhou provinces | 2000–7000 | 500–1000 | 5100 |
Hydrocarbon-Bearing Basin | Formation Period of Basin | Main Formation Period of Hydrocarbon-Bearing Layers | Main Mineralization Period of Sandstone-Type Uranium Deposits |
---|---|---|---|
Ordos Basin | Paleozoic to Cenozoic | Silurian to Triassic | Jurassic to early Cretaceous |
Yili Basin | Late Paleozoic to early Mesozoic | Devonian to Triassic | Triassic to Jurassic |
Turpan-Hami Basin | Late Paleozoic to Cenozoic | Permian to early Triassic | Cretaceous |
Erlian Basin | Mesozoic to Cenozoic | Cretaceous to Paleogene | Late Jurassic to early Cretaceous |
Songliao Basin | Paleozoic to early Mesozoic | Carboniferous to Jurassic | Carboniferous to Permian |
Badain Jaran-Bayingebi Basin | Cenozoic | Neogene | Early to middle Quaternary |
Junggar Basin | Late Paleozoic to Mesozoic-Cenozoic | Cretaceous to Neogene | Cretaceous |
Tarim Basin | Early Paleozoic to early Cenozoic | Jurassic and Cretaceous | Jurassic to Paleogene |
Kumishi Basin | Cenozoic | Neogene | Neogene |
Qaidam Basin | Mesozoic to Cenozoic | Neogene | Neogene to Quaternary |
Hengyang Basin | Paleozoic | Devonian to Permian | Neogene |
Sichuan Basin | Mesozoic to Cenozoic | Cretaceous to Paleogene | Neogene |
Hydrocarbon-Bearing Basin | Geological Structure | Sedimentary Rock | Sedimentary Environment |
---|---|---|---|
Ordos Basin | Fault zone and multiple fault structures as primary structural units; Uplifts, and depressions as secondary structural units. | Sandstone, mudstone, coal seam | Continental sedimentation, including coal-bearing strata, ancient lake facies, river facies. |
Yili Basin | Fault structures as primary structural units; Reverse faults, slopes, fractures, folds, and uplifts as secondary structural units. | Sandstone and mudstone | Marine sedimentation, including shallow marine facies, continental shelf facies, and marine facies. |
Turpan-Hami Basin | Fault zone as primary structural unit; Reverse faults, blind thrust faults, folds, and uplifts as secondary structural units | Sandstone and mudstone | Continental sedimentation, including coal-bearing strata, river facies, and lake facies. |
Erlian Basin | Stable structure with only slight structural deformations. | Sandstone, shale, coal seam | Continental sedimentation, including river facies, lake facies, and wind erosion. |
Songliao Basin | Fault-rift zone as primary structural unit; Fault blocks, uplifts, depressions, and ancient buried hills as secondary structural units. | Sandstone and mudstone | Marine sedimentation, including shallow marine facies, continental shelf facies, and marine facies. |
Badain Jaran-Bayingebi Basin | Fault zone as primary structural unit; Reverse faults, blind thrust faults, slopes, and uplifts as secondary structural units | Sandstone and mudstone | Continental sedimentation, including river facies and lake facies. |
Junggar Basin | Fault zone as primary structural unit; Reverse faults, uplifts and depressions as secondary structural units. | Sandstone, mudstone, and carbonate rock | Continental sedimentation, including river facies, lake facies, and wind erosion. |
Tarim Basin | Fault zone as primary structural unit; Reverse faults, blind thrust faults, slopes, and uplifts as secondary structural units. | Sandstone and mudstone | Marine sedimentation, including shallow marine facies, continental shelf facies, and marine facies. |
Kumishi Basin | Fault zone as primary structural unit; Reverse faults, slopes, and uplifts as secondary structural units. | Sandstone and shale | Continental sedimentation, including river facies, lake facies, and wind erosion. |
Qaidam Basin | Fault zone as primary structural unit; Reverse faults, uplifts and depressions as secondary structural units. | Sandstone, mudstone, carbonate rock, and shale. | Marine sedimentation, including shallow marine facies, continental shelf facies, and marine facies. |
Hengyang Basin | Fault zone as primary structural unit; Reverse faults, normal faults, and strike-slip faults as secondary structural units. | Sandstone and mudstone | Continental sedimentation, including river facies and lake facies. |
Sichuan Basin | Fault zone as primary structural unit; thrust faults, strike-slip faults, normal faults, and uplifts as secondary structural units. | Sandstone, mudstone, shale, and coal seam. | Marine to continental sedimentation. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, G.; Yao, J.; Song, Y.; Tang, J.; Han, H.; Cui, X. A Review of the Metallogenic Mechanisms of Sandstone-Type Uranium Deposits in Hydrocarbon-Bearing Basins in China. Eng 2023, 4, 1723-1741. https://doi.org/10.3390/eng4020098
Li G, Yao J, Song Y, Tang J, Han H, Cui X. A Review of the Metallogenic Mechanisms of Sandstone-Type Uranium Deposits in Hydrocarbon-Bearing Basins in China. Eng. 2023; 4(2):1723-1741. https://doi.org/10.3390/eng4020098
Chicago/Turabian StyleLi, Guihe, Jia Yao, Yiming Song, Jieyun Tang, Hongdou Han, and Xiangdong Cui. 2023. "A Review of the Metallogenic Mechanisms of Sandstone-Type Uranium Deposits in Hydrocarbon-Bearing Basins in China" Eng 4, no. 2: 1723-1741. https://doi.org/10.3390/eng4020098
APA StyleLi, G., Yao, J., Song, Y., Tang, J., Han, H., & Cui, X. (2023). A Review of the Metallogenic Mechanisms of Sandstone-Type Uranium Deposits in Hydrocarbon-Bearing Basins in China. Eng, 4(2), 1723-1741. https://doi.org/10.3390/eng4020098