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Abstract: Structural health monitoring (SHM) is crucial for ensuring the safety and performance of
offshore platforms. SHM uses advanced sensor systems to detect and respond to negative changes
in structures, improving their reliability and extending their life cycle. Model updating methods
are also useful for sensitivity analysis. It is feasible to discuss and introduce established techniques
for detecting damage in structures by utilizing their mode shapes. In this research, by considering
reducing the stiffness of elements in the damage scenarios, we conducted simulations of the models in
MATLAB, including both two-dimensional and three-dimensional structures, to update the method
suggested by Wang. Wang’s method was improved to produce a sensitivity equation for the damaged
structures. The sensitivity equation solution using a subset of mode shapes data was found to evaluate
structural parameter changes. Comparing the updated results for Wang’s method and the suggested
method in the two- and three-dimensional frames showed a noticeable modification in damage
recognition. Furthermore, the suggested method can update a model containing measurement
errors. Since Wang’s damage detection formulation is suitable only for 2D structures, this modified
framework provides a more accurate decision-making tool for damage detection of structures,
regardless of whether a 2D or 3D formulation is used.

Keywords: structural health monitoring; damage detection; model updating; modal parameters;
offshore platform

1. Introduction

Due to distinct reasons, such as earthquakes, waves crashing, fatigue, and erosion,
offshore platforms are faced with some changes in their structural properties, which can
cause structural failure, people’s deaths, and economic damage [1]. Thus, structural safety
and performance require early detection, monitoring, and analysis of the damaged structure.
Different methods have been developed to identify the damage location and severity using
non-destructive tests and detection algorithm responses [2]. According to the damaging
effect, the damage detection algorithms can lead to a detectable change in a structure’s
response [3].

There are generally two methods used to update the trends in structural health moni-
toring: applying forces or stresses and measuring the structural response. Damage detection
using dynamic data has more advantages in comparison with static techniques, which
can be more sensitive to changes in structural parameters and structural damage [4]. The
dynamic characteristics of a structure, such as its mass, stiffness, and damping, can vary
because of damage. As a result, damage detection techniques often rely on changes in
these characteristics, as measured by modal data, such as natural frequencies, mode shapes,
and damping ratios. In practice, natural frequencies can be measured more accurately
than mode shapes and are, therefore, often used to update structural models [5]. However,
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changes in natural frequencies alone do not provide detailed information about the location
or extent of damage. Therefore, utilizing mode shape data is considered to be a more
valuable approach for model updating, despite the mathematical and practical challenges
that it poses [6]. Modal data covering the natural frequencies and the mode shapes have
been considered by researchers in recent decades.

Regarding the response, updating techniques can be classified into methods based on
the mode and response. Updating a technical model based on the mode involves obtaining
modal properties, which are given by indirectly measured frequency response function
(FRF) data. Structural parameters are updating techniques that are applied using direct
methods or iterative approaches [7,8]. A straightforward method for calibrating structural
models involves adjusting the mass and stiffness parameters to match the numerical data
to the measured modal data [9]. However, these changes may not be easily interpreted
in terms of physical changes to the structure. An iterative updating approach that uses
experimental data or frequency response function (FRF) data and techniques for updating
finite element (FE) models to account for sensitivity may be required to better understand
the effects of damage on a structure [10–13].

Detecting damage using experimental modal data [14] can be difficult due to noise
and limited nodal points. There are different methods to address this issue, such as
using the imperialist competitive optimization algorithm with damage functions and
incorporating variable widths and weights. Another approach [15] involves combining
incomplete modal data with sparse regularization techniques to improve the accuracy and
robustness of damage identification. This method does not require sensitivity analysis or
complete modal data and uses a new goal function. Structural damage is detected by using
mode shape changes or the mode shape itself. Wang et al. [16] undertook a sensitivity
analysis of the structural parameters. They also achieved dynamic modification directly
and indirectly through modal data analysis. Kim and Stubbs [17] presented an algorithm
for identifying structural damage in jacket offshore structures using few-mode shapes.
Ren et al. [18] used mode shape data to locate and quantify structural damage. They
proposed using sensitivity equations that involve all mode shapes of the undamaged and
damaged structures. However, the need for complete mode shape data can be a limitation
in structures with a high degree of freedom, making it difficult to apply the method in
real-world scenarios. Lee et al. [19] used the cross-modal method as a reliable proposed
method to recognize the damage in jacket offshore platforms when incomplete modal data
is available.

Shahsavari et al. [20] undertook a mode shape analysis with the likelihood ratio (LR)
test to specify damage. Wang et al. [21] introduced the kriging model as a secondary model
to optimize by frequency response function instead of focusing just on the one FE model
repeatedly. Umar et al. [22] remarked on a new response surface methodology (RSM), which
used both the natural frequencies and mode shapes to upgrade the damage recognition.

Hariri-Ardebili et al. [23] coupled a polynomial chaos expansion metamodel and
modal analysis to find the most vulnerable areas of arch dams in an efficient way.
Dahak et al. [24] declared an approach based on normalized natural frequencies using
experimental data in order to recognize damage in a cantilever beam. Khatir et al. [25]
achieved a new method for the determination of cracks, which simultaneously investi-
gates changes from measured frequencies experimentally and by using particle swarm
optimization.

Model updating methods use the modal parameters elicited from vibration data in
the structures, which were measured before and after damage. In order to distinguish
the damage intensity in structures, Park et al. [26] presented a damage intensity function
to clarify the relationship between damage intensity and multiple-per-revolution (MPR)
changes for the baseline model. Schacht et al. [27] produced a modified method for damage
evaluation in which the modified indexes were found using a given function combined with
a genetic algorithm (GA). The identification of damage in truss and beam-like structures
which was achieved using FRF data combined with optimization techniques [28], presenting
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the fastest solution compared with other approaches that used a GA and bat algorithm
(BA) to find the location and severity of the damage.

Pérez and López [29] developed a fully functional SHM system based on spectral
domain indices. They characterized a comparison between experimental data and nu-
merical data, which led to a careful assessment of proposed spectral correlation indices
(SCIs) for structural evaluation and damage identification. Khatir et al. [30] indicated one
specific approach that has two steps in order to assess damage in beam-like structures
using two dimensions, namely, isogeometric analysis (IGA) and finite element method
besides optimization techniques. Abasi et al. [31] presented a damage identification method
using the nearest neighbor search method to evaluate structures. Consequently, the nearest
neighbor search method was rather strong for noisy data in comparison to the artificial
neural network.

Sensitivity-based model updating can be done based on mode shape changes [32]. The
accurate assessment of mode shape changes by considering unknown structural parameters
is a crucial issue for updating a model. A sensitivity equation can be linear or of a higher
degree. Linear sensitivity needs measurement in all freedom degrees, which is a challenging
issue for real structures. Furthermore, the first-order Taylor series expansion enables the
calculation of a linear formula for updating the model.

Iannelli et al. [33] researched using deep learning to identify damage in large space
antennas. They explored the use of a long short-term memory neural network for the
classification of various types of damage, and the results indicate successful detection.
Wang ad Wu [34] suggested an enhanced version of explicit connectivity Bayesian networks
for analyzing system reliability. Their approach considers multiple failure modes and the
probabilistic relationships between different components.

To understand the relationship between changes in the mode shapes and structural
parameters, a sensitivity equation was employed to revise the model. This equation
utilizes eigenvector derivatives, and various techniques were proposed by researchers to
calculate these derivatives. One method is the modal method, which is used to estimate
the derivative of mode shapes based on design variables. Another method, which is called
the Nelson method, is a reliable way to evaluate eigenvalue derivatives. Additionally, the
Wang method, which improves upon the modal method by incorporating a quasi-static
term into the eigenvector derivative equation, was shown to accelerate the convergence
of the modal method [35–37]. Damage detection by using both modal and Wang methods
leads to similar results, which were confirmed using the equation. The superiority of the
Wang method is because of its better convergence [38].

In this article, a brief consideration of both standard damage recognition methods
(modal and Wang’s methods) is presented. An improved model updating method based
on natural frequencies combination was suggested. To enhance Wang’s method [37] for
accurate damage recognition in both two-dimensional and three-dimensional frames, an
updated model incorporating measurement errors and precise damage identification was
employed. This update involved utilizing the natural frequency of the damaged structure
to establish a more precise correlation between changes in mode shapes and structural
parameters. Wang’s damage detection formula is limited to 2D structures, but this adapted
framework provides a precise tool for identifying damage in structures, irrespective of their
2D or 3D formulation.

According to our detailed review in Section 1, the need for proposing a modified
damage detection framework based on Wang’s model formed the backbone of the current
study. Since Wang’s damage detection formulation is suitable only for 2D structures,
this study was centered on extending the applicability of Wang’s model to 3D structures.
Furthermore, one may note that it can be appealing to increase the accuracy of Wang’s
model by adding an error metric during updating the model. To meet these two major
contributions of this study, some ingredients are required, which are comprehensively
described in the following.
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In Section 2, the background theory of Wang’s model is introduced, along with the
basis of the updating procedure. Next, assumptions for numerical simulation and the
configuration of strain gauges are described briefly in Sections 3 and 4, respectively. The
application of the proposed formulation for 2D and 3D structures is demonstrated in
Section 5. Finally, the major contributions and outputs of this study, in conjunction with
some recommendations for future works, are described in Section 6. This research de-
veloped an improved SHM method that extends the capability of existing techniques,
enabling accurate damage detection in both 2D and 3D structures, and accommodating
model updates and measurement errors. This advancement can significantly enhance the
reliability and effectiveness of structural health monitoring systems for offshore platforms
and other structures.

2. Description of Theory and Analysis Method
2.1. Theory

This section provides a brief overview of the methods presented in Wang’s model [37]
and the modal method. It also mentions the characteristic equation of eigenvalues for an
undamaged structure (without damping), which is introduced by Equation (1).

Kϕi = (λi M)ϕi f or i = 1, . . . , n (1)

In the equation provided, Knxn and Mnxn represent the structural stiffness matrix and
mass matrix, respectively. The variable ϕi is the eigenvector and λi is the ith eigenvalue.
The square of the ith natural frequency is represented by ωi and the number of freedom
degrees is represented by n. By taking the derivative of both sides of the equation, the
equation can be rewritten.(

K′ − λi M′
)

ϕi + (K− λi M)ϕ′i − λ′i Mϕi = 0 (2)

The derivative of an eigenvalue can be found by multiplying Equation (2) through by
ϕT

i , as shown in Equation (3).

λ′i = ϕT
i
(
K′ − λi M′

)
ϕi (3)

where λ′i, K′, and M′ give the derivatives of eigenvalues, stiffness matrix, and mass matrix,
respectively. Based on the modal method, the derivative of the ith eigenvector is expressed
as a series expansion of all eigenvectors:

ϕ′i =
n

∑
j=1

cij ϕj (4)

Moreover, the factor cij is defined as follows:

cij =

{
1

λi−λj
ϕ′ j(K

′ − λi M′)ϕi i f i 6= j

−0.5ϕ′ j Mϕj i f i = j

}
(5)

The modal method or Fax formula is a common way to appraise the derivative of a
mode shape. Wang [37] presented the modified modal method. Using Wang’s method
leads to expressing the derivative of the ith mode shape as a linear combination of mode
shapes, as indicated by Equation (6).

ϕ′i = ϕ′i0 +
n

∑
j=1

aij ϕj (6)

ϕ′i0 = −K−1(K′ − λ′i M− λi M′
)

ϕi (7)
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In Equation (6), the combinatory coefficients demonstrate the share of the jth mode
shape, as expressed by Equation (8).

aij =

{
λi
λj

1
λi−λj

ϕj
T(K′ − λi M′)ϕi i f i 6= j

−0.5ϕj
T M′ϕj i f i = j

}
(8)

Wang’s method [37] is employed for determining the derivative of the modal shapes.
In this method, the derivatives of the eigenvalues must be taken into consideration.
Equation (3) serves as the sole means of evaluating the derivatives of natural frequen-
cies in response to design variables. Accordingly, the initial evaluation of alterations in
modal shapes is presented by Equation (9), wherein p constitutes a diagonal matrix of
stiffness parameters.

δϕi =
∂ϕi
∂p

δp = −K−1
(

∂k
∂p

δp−
(

∂λi
∂p

δp
)

M− λi
∂M
∂p

δp
)

ϕi +
n

∑
j=1

ϕj ϕ
T
j

λi
λj

1
λi − λj

(
∂K
∂p

δp− λi
∂M
∂p

δp
)

ϕi (9)

The matrices of mass and stiffness of linear function are unknown matrices from
structural parameters:

∂K
∂p

δp = δK (10)

∂M
∂p

δp = δM (11)

As a result, eigenvalue changes can be found as follows:

∂λi
∂p

δp = δλi (12)

A method was developed for determining structural damage by analyzing changes in
the natural frequencies. δλi can be calculated using the following equation:

δλi = λid − λiI (13)

Equation (13) can be used to account the accuracy and logical value for δλi in compari-
son to Equation (3). Consequently, the mode shape changes can be revealed by replacing
Equation (13) in Equation (9), and thus, rewriting it as Equation (14).

δϕi = δλiK−1Mϕi − K−1(δK− λiδM)ϕi +
n

∑
j=1

ϕj ϕ
T
j

λi
λj

1
λi − λj

(δK− λiδM)ϕi (14)

The first term of Equation (14) is calculated by utilizing the damaged structure, which
measures the natural frequencies, mass, stiffness, and mode shapes. Therefore, it can be
utilized instead of the parametric formula of this term for updating the model.

To define the term δϕia, Equation (9) is rewritten as follows:

δϕi = δϕi − δϕia = −K−1(δK− λiδM)ϕi +
n

∑
j=1

ϕj ϕ
T
j

λi
λj

1
λi − λj

(δK− λiδM)ϕi (15)

δϕia = δλiK−1Mϕi (16)

Since the changes in the structure’s mass matrix are minimal, even after destruction,
the difference in mass can be discarded. The stiffness matrix as a function of structural
parameters is depicted by Equation (17).

[K] = [A][P][A]T (17)
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Matrix A, with dimensions of npxnp, is referred to as the stiffness connectivity matrix.
It is a diagonal matrix, with the stiffness parameters of elements, which are represented by
npx1 P-forms and P-vectors, serving as its input.

diag[P] = {P} (18)

The total stiffness matrix, as stated in Equation (19), is a linear function of the stiffness
parameters. Furthermore, the matrix [A] is not dependent on the matrix [P].

[K + δK] = [A][P + δP][A]T (19)

Expanding Equation (19) and subtracting it from Equation (17) leads to obtaining a
parametric form of the total stiffness matrix, as revealed in Equation (20).

[δK] = [A][δP][A]T (20)

If Equation (20) is accommodated in Equation (19), the changes in the ith mode shape
can depend on changes in the stiffness parameters:

δϕi = SK
ϕiδPk (21)

Equation (22) illustrates the relationship between the strain and the displacement.

δεi = SK
εiδPk (22)

SK
εi = −K−1 ASdiag(AT

S ϕi) +
n

∑
j=1

ϕj ϕ
T
j

λi
λj

1
λi − λj

ASdiag(AT
S ϕi) (23)

As an overview, the steps for updating the model are provided in the following
flowchart (Figure 1). The purpose of updating the model is to align the predicted results of
the model with actual measurements by adjusting certain key parameters. The distance
between the theoretical and experimental outcomes is often measured using the mean of
the least squares, and thus, updating the model can be seen as a problem of structural
optimization. Since the variation of the ith mode shape is related to changes in the stiffness
parameters, by altering the natural frequency and mode shape of healthy modes and mea-
suring the strain, we can obtain changes in the diagonal matrix, including the eigenvalues
of the combined stiffness matrix of the components. Finally, the structural update process is
compared with the individual components. If the results are not in agreement, the process
is repeated with variations in stiffness. The steps in the flowchart are as follows:

∅I
i : ith eigenvector in the healthy state;

λI
i : ith eigenvalue in the healthy state;

Knew: updated stiffness;
δk: stiffness variation;
δεi: strain variation.

2.2. Analysis Method

In practical applications, the successful utilization of vibration information models
is limited due to measurement errors. These errors can arise from factors such as noise
during frequency and mode measurements of the structure being tested. Such errors have
undesirable consequences, as they can lead to failures going undetected or result in exces-
sive predictions of failure. To simulate the presence of errors and noise in the measurement
process, random noise of 1% was generated using MATLAB software. This noise was then
multiplied by the mode shape of the damaged structure. The noise application loop, which
operated outside the failure detection loop, generated a noise matrix for each iteration.
The loop ran fifty times, creating fifty noise matrices. Each time, failure detection was
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performed, and the average of the detected failures over fifty iterations was calculated.
Additionally, the standard deviation was computed and plotted to indicate the dispersion
of failure detections across the fifty noise applications. By simulating fifty measurement
errors, the goal was to mimic a scenario where the structure’s response was measured fifty
times in a laboratory, with failure detection performed each time. This method aimed to
assess the accuracy of the approach in the presence of measurement errors.
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3. Assumptions and Constraints of Numerical Modeling

In this research, we assumed that damage causes a change in the stiffness of structural
elements, and this change, along with reduced flexural stiffness, applies to the structure.
The proposed method links the alterations in the valid parameters to the mode shape of a
structurally damaged object, as informed by the data. The stiffness matrix can be computed
by adding together the stiffness matrices of the parts, as outlined in Equation (24).

K =
nE

∑
r

Kr (24)

Here, Kr represents the contribution of a specific part to the overall stiffness matrices,
and nE stands for the number of elements. Hence, the behavior of the stiffness matrix can
be rewritten as follows:

δK =
nE

∑
r=1

δKr =
nE

∑
r=1

(K rd −Kr) =
nE

∑
r=1

δKrKr (25)

Krd symbolizes the stiffness of the rth element when it is damaged, and δKr is a scalar
multiplier that demonstrates the proportional changes in the stiffness of the rth element in
both damaged and undamaged states. The fluctuation of axial rigidity is indicated by the
value of δKr, which is obtained from the truss elements. Equation (25) is utilized to modify
both the bending and axial rigidities in frame elements through decomposition.

To use methods of damage identification, the response of the structure should continue
to display linear behavior after a seismic load; this method supposed which analytical
model of the structure should be obtained before applying this method. The linear finite
element modeling for a healthy structure was monitored as a basic model update to detect
parameters of structural model stiffness [26]. For verification, the simulated structure was
updated with the finite element method of the structural model and the behavior of the
existing model was consistent with the realistic structural model.

The proposed method’s effectiveness was examined in two models in this study. The
approach was tested on a two-dimensional frame with 32 elements that underwent multiple
damage scenarios. Additionally, the same method was tested on a three-dimensional frame
that had 48 elements.

In the study, the mode shapes of the damaged structure were subjected to noise [14]
about fifty times. Furthermore, by applying the same noise level (around 1%), the mea-
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surement error and standard deviation value were calculated. To ensure a reliable solution,
several factors needed to be considered, including the type and location of the sensor,
the type and location of the excitation, the quality of the measurement data (measure-
ment error), the accuracy of the mathematical model (modeling error), and the numerical
methods used.

4. Installation of the Strain Gauge

The placement of strain gauges on 2D and 3D frames depends on the specific require-
ments of the structure and the type of information needed for the analysis. Typically, strain
gauges are placed at critical locations on the structure, such as near joints, supports, or
areas susceptible to damage. For 2D frames, strain gauges are typically installed at the top
and bottom of the frame, while for 3D frames, they can be placed on different faces of the
structure to capture the deformations in different directions. The specific positioning of
strain gauges can be determined through careful analysis and modeling of the structure to
ensure the accuracy and reliability of the collected data. In this study, natural frequencies
and mode shapes were acquired from sensors and applied to the damaged structure. The
data was used to detect damage by using optimized equations, which improved Wang’s
method. The performance and validity of this approach were verified and investigated for
both 2D and 3D frames. Due to various factors that affect the detection of the structure,
a limited number of sensors must be used to measure strains, including determining the
sensor location for access to different sides of the structure and measuring capabilities.
Hence, the sensor location was determined based on the element’s strain energy density,
which is calculated using Equation (26).

Ue
i = 1

2
{

ϕe
i
}Tke

{
ϕe

i
}

f or e = 1, . . . , ne i = 1, . . . , n (26)

The strain energy density is close to the same strain energy density of the whole
structure assigned as a target element, and it can generally be used to find the behavior
of the structure. According to the circumscription of the use of strain gauges, the number
of gauges in the 2D frame and 3D frames were limited to 18 and 20 units, respectively.
Moreover, by using trial and error as a fundamental method for solving the problem, the
strain gauges were placed in various positions along the length of the elements, where
these distances were 3/4, 1/2, and 1/4. The positions of the strain gauges in the 2D and 3D
frames are depicted in Figure 2.
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5. Damage Detection of Offshore Structures Using the Proposed Formulation
5.1. Two-Dimensional Frame Analysis

Based on Figure 3, a one-bay four-story frame was modeled to investigate the suffi-
ciency of the proposed method in order to complete the model and identification of the
structural damages. All 32 elements of the frame were constructed of steel material. The
specification of the steel structure, including the elasticity modulus, density, circular cross-
section with a thickness of 2 cm, and moment of inertia were 2.1 GPa, 7850 kg/m3, 307 cm2,
and 91,430 kg/m2 respectively. During the simulation of a damaged two-dimensional
frame structure, measurements were taken at specific locations. These locations include
elements at positions 32, 31, 30, 28, 25, 24, 21, 20, 17, 16, 15, 14, 12, 9, 8, 7, 5, and 1.
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Figure 3. Two-dimensional frame structure equipped with gauges.

The unknown parameters in the two-dimensional frame were flexural rigidity (EI)
and axial rigidity (EA), where E and A are used to define the elasticity modulus and cross-
section of the element, respectively. The structural response of the two-dimensional frame
is influenced by both the flexural and axial behavior, by which the rigidities should be
allocated to update the model.

However, the excitation of a structure in axial mode differs from reality. The measur-
able mode shapes are often low mode shapes, which are dominated by flexural behavior.
The axial rigidity as an unknown parameter has a minimum contribution rate on the sen-
sitivity equations, which can lead to obtaining incompatible sensitivity equations and a
lack of convergence. Hence, this article places significant emphasis on the consideration of
flexural rigidity.

The geometry of the frame was entered into the numerical modeling and the damage
was modeled. To estimate and investigate the effectiveness of the parameters, the location
and severity of several instances of damage were classified, as shown in Table 1.
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Table 1. Percentage of stiffness reduction of elements for the considered damage scenarios(2D).

Damage Case 1 2 3 4 5 6

Element no. 11 25 22 7 21 15
Damage rate 20% 20% 30% 20% 30% 20%
Element no. 13 26 27 10 23 17
Damage rate 40% 30% 20% 30% 20% 20%
Element no. 16 32 31 20 25 24
Damage rate 20% 40% 40% 30% 20% 30%
Element no. . . . . . . . . . 30 29 25
Damage rate . . . . . . . . . 40% 40% 30%
Element no. . . . . . . . . . . . . . . . 29
Damage rate . . . . . . . . . . . . . . . 40%

For instance, the damage for case 3 was modified by three modes, where an increasing
trend in element number from 22 to 31 correlated with downward and upward percentage
changes in damage of approximately 10% and 20%, respectively.

Measurement errors are inevitable, where this issue is due to the preparation process
of the experimental and real data; determining the damage using Wang’s method [37] and
the proposed method was influenced by measurement errors. In this study, we assumed
the measurement spread between the lowest and highest measured values. To resemble
the measurement errors, some errors with uniform distribution were added to the correct
information. To correctly simulate the measured data, one percentage of error was added
to strain data with a uniform distribution.

Monte Carlo simulation (MCS) is the most robust and accurate method for estimating
the probability of failure [39]. MCS [40] is a statistical method that uses random variables
with a probability distribution to simulate measurement errors for unknown inputs in
a problem. The damage detection algorithm repeatedly uses a set of data errors that
are randomly simulated, and similar conditions are applied in the damage recognition
process based on the absolute difference between the methods. Numerical simulations were
performed using 50 observations, and the average of all results was used as the predicted
damage for each damage scenario. The results of the parameter estimation, including the
predicted and actual damage ratio of the 2D frame model in six cases, are displayed in
Figures 4 and 5.

Figure 4 illustrates that the proposed method was accurate in diagnosing the location
and severity of the damage while the Wang method [37] did not have the ability to recognize
the damage. The given information and the input data were mostly the same for both
methods. Consequently, the sensitivity equation was accurate and reliable, and it improved
the results of the model updating.

Scattering of the obtained damage detection results using 50 Monte Carlo simula-
tions [40] around the average value could be measured by using a standard statistical
measurement known as the coefficient of variation (COV) or relative standard deviation
(RSD), which gives the ratio of the standard deviation to the average value. The COV index
is used for robustness evaluation against measurement errors, and a low level of the COV
denotes the power of the method. In more detail, a higher COV value indicates that small
changes in the monitored variable can have a larger impact on the structure, making it
more sensitive to variability. In terms of health monitoring, higher COV values can affect
reliability and safety, introducing uncertainty and variability that may impact the overall
performance. When assessing risks and making decisions related to health monitoring,
higher COV values suggest a higher level of risk and uncertainty, calling for additional
measures to mitigate potential failures or accommodate variability in the design. Therefore,
COV values in health monitoring provide important insights into the variability and its
implications for reliability, safety, and risk assessment.
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Figure 4. Predicted and actual damage ratio of the 2D frame model using the present method.

The COV does not have a limited number or an upper bound. The COV is calculated
as the ratio of the standard deviation to the mean of a variable, expressed as a percentage.
Since both the standard deviation and mean can take any positive value, the COV can
theoretically range from 0% to positive infinity. However, it is important to note that the
COV is not a suitable measure for variables with a mean close to zero or approaching
zero, as it can lead to undefined or misleading results. The coefficients of variation of the
predicted damage are shown in Figure 5.
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The COVs indicated less variability in the results of the evaluated parameters in the
proposed method. Certain metrics are employed to quantitatively compare the accuracy of
the results. This accuracy can be assessed through the closeness index (CI), which measures
the proximity between the actual and predicted damage vectors.

CI = 1− |δPP − δPa|∣∣δpp
∣∣ (27)

The closeness index (CI) [41] is a measure of the accuracy of the predicted damage pa-
rameters. It is calculated as the distance between the actual damage vector (δpp) and the pre-
dicted damage vector (δPa), with dimensions of npxp, as shown in Equations (17) and (27).

The CI quantitatively evaluates how similar the predicted damage vector is to the
actual damage vector. Higher values of the CI indicate greater similarity between the
predicted and actual damage vectors, leading to more accurate damage detection results.



Eng 2023, 4 1754

Using the CI as a performance metric allows researchers to compare the effectiveness of
different damage detection methods, which can result in the development of more precise
and dependable techniques for structural systems. The use of the CI can also enhance
the overall safety and performance of structural systems by enabling the early detection
of damage, which can be repaired or reinforced before a catastrophic failure occurs, thus
increasing the system’s durability and resilience.

The accuracy of the proposed method based on the results obtained is presented
in Table 2. The CI index is defined in this table to determine the accuracy of the failure
detection. The closer the CI value is to one, the more accurately the failure value is
predicted, and the closer it is to zero, the less accurately the failure value is calculated [41]
The proposed method in this study identified the damaged elements (Table 1) with high
accuracy. The accuracy of the method was evaluated by calculating the proximity index;
for example, in the first case, 0.64768 was obtained, indicating the accuracy of the proposed
method. Additionally, this table demonstrates that the results were reliable and had
low variability.

Table 2. Closeness indexes of the estimated parameters of the 2D frame model using the
present method.

Damage Case Closeness Index (CI)

1 0.64768
2 0.74341
3 0.76866
4 0.66808
5 0.62217
6 0.64667

The results of the CI for different damage cases are presented in Table 2 and indicate
the effectiveness of the proposed method in improving the sensitivity equation.

5.2. The Assessment of the 3D Frame

Referring to Figure 6, a one-bay four-story frame was modeled to investigate the
usefulness of the proposed method in order to produce the model and identify the damage.
Finite element analysis was performed for a three-dimensional frame element to simulate
and compare the experimental data.

In the 3D frame, the steel element properties were as follows: elasticity modulus
of 2.1 GPa, a density of 7850 kg/m3, and a moment of inertia limited to 91,430 kg/m2.
Moreover, the cross-section’s element was 307 cm2. To process data of a damaged structure,
measurements were made using elements 2, 4, 7, 12, 8, 15, 16, 20, 23, 24, 27, 28, 29, 30, 35,
37, 38, 43, 44, and 46.

The unknown parameters in a three-dimensional frame are the torsional rigidity GJ,
flexural rigidity EI, and axial rigidity EA, where E is the elasticity modulus, G is the shear
modulus, and A is the cross-section of each element. In three-dimensional mode, torsional
and flexural rigidity appeared too. Several instances of damage are explained in Table 3.
For instance, for damage case 2, the number of elements changed simultaneously with the
damage percent. In more detail, for element number 32, when the damage rate was limited
to 50 percent, and for element number 45, the damage rate remained the same.
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Table 3. Percentage of stiffness reduction of elements for considered damage scenarios(3D).

Damage Case 1 2 3 4 5 6

Element no. 29 32 10 17 5 17
Damage percent 50% 50% 30% 30% 30% 40%

Element no. 33 45 18 25 14 21
Damage percent 50% 50% 20% 30% 20% 30%

Element no. . . . . . . 23 34 20 27
Damage percent . . . . . . 40% 30% 50% 20%

Element no. . . . . . . . . . . . . 46 40
Damage percent . . . . . . . . . . . . 30% 20%

In order to check the effects of the damage location and severity to estimate the
considered parameters, we updated the model results by using 50 sets of data containing
modeling errors, as shown in Figure 7. A comparison between the damage prediction
results using the Wang and proposed methods indicated that accurate results of parameter
estimation could be achieved using the presented method, while Wang’s method was
not able to recognize the damage. Results of the parameter estimation base using the CI
index are shown in Table 4. The obtained CI values denoted the accuracy of the proposed
method for predicting the stiffness parameters of a moment frame. The COV values for the
predicted damage are shown in Figure 8.

Table 4. Closeness index of the estimated parameters of the 3D frame model using the
present method.

Damage Case Closeness Index (CI)

1 0.88691
2 0.60954
3 0.7718
4 0.6474
5 0.55761
6 0.62643
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6. Conclusions

This research focused on the goals of structural health monitoring (SHM) and the
limitations of Wang’s method in accurately assessing damage in two-dimensional and three-
dimensional structural elements, particularly in offshore structures. This study reviewed
Wang’s method and proposed a new method to enhance its accuracy and applicability for
2D and 3D structural elements.

In this study, six damage cases were considered for assessing and achieving the CI
and COV indexes, and by using the proposed equation, the failure rates in 2D and 3D
structural elements were calculated with appropriate accuracies. For example, a COV
value of 0.04 suggests that the standard deviation is only 4% of the mean value, indicating
that the data points are relatively close to the mean and exhibit limited variability. This
level of consistency can be advantageous in applications where precision, accuracy, and
reliability are critical, such as in high-precision manufacturing, quality control processes,
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or safety-critical systems. This method can be used to improve structures with axial and
bending behavior. Due to the high sensitivity of the strain to failure and the high accuracy
of the sensitivity equations, an enhanced SHM method for accurate damage detection in 2D
and 3D structures that accommodates model updates and measurement errors enhances
the reliability and effectiveness of structural health monitoring systems.

The following could be the focus of potential future studies: Due to the importance
of seismic loads for offshore structures, the impact of the ground motion record [42,43]
on the SHM of offshore structures using the proposed damage detection method can be
investigated in future works.

Combining the probabilistic risk assessment methodology introduced in [44] and the
proposed damage detection formulation for assessing the lifecycle of offshore structures.

A comparison of the proposed method with other well-known damage detection
techniques, such as the finite element method, to evaluate the performance and accuracy of
the method in different structures.

An evaluation of structural damage through the soil–structure interaction by consider-
ing the seismic analysis results of soil deposits, which can obtain a better understanding
of the behavior of the soil–structure system and design structures that can withstand the
effects of earthquakes [45].

An extension of the proposed method to more complex structures, such as bridges [46]
and post-tensioned joints [47,48], to validate the method’s adaptability to a wider range of
structures. The damage assessment of joints in the frame structure [49] can be a useful way
to produce better designs based on performance.

An integration of the proposed method with other structural health monitoring tech-
niques, such as strain and load monitoring, to provide a comprehensive view of a structure’s
behavior and health.

An extension of the proposed method to include the analysis of non-linear struc-
tures, such as those with large deformations and material non-linearities, to evaluate its
applicability to a wider range of structures.
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Nomenclature

A Structure stiffness joint matrix
Ae Non-zero eigenvector stiffness matrix
B Strain–displacement matrix
d Damage mode index
I Healthy mode index
K Structure stiffness matrix
M Structure mass matrix
ne Number of elements
P Diagonal matrix of stiffness parameters
Pe Stiffness parameters vector
T Transform matrix
Ue Displacement vector’s eth element
εe Strain of eth element
∅I ith mode shape
λI ith natural frequency
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