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Abstract: This article examines the comparative effectiveness of three indoor node localization
techniques—Multilateration, the Weighted Centroid algorithm, and Grid-based Received Signal
Strength (RSS)—in wireless networking applications. The comparison is based on their performance
against localization accuracy using RSS Indicator (RSSI) data in three experiments. The experiments
utilized internally generated or real-world datasets with RSSI values for the unknown tag nodes.
The datasets were obtained from various sources and evaluated in different scenarios to determine
the efficiency of the three localization techniques. The results were evaluated and compared using
mean error and standard deviation metrics. The findings indicate that trilateration achieves superior
localization accuracy and precision in a Bluetooth Low Energy (BLE) environment compared to
Wi-Fi and ZigBee. The Centroid technique showed the highest resistance to noise and outliers but is
positioned biased (unlike Trilateration). Besides that, the Grid-based RSS technique is highly sensitive
to noise, and theoretical RSS. These findings can greatly assist researchers and network operators in
carefully selecting the most suitable localization technique for their wireless networking applications,
taking into account the specific wireless technology utilized and their unique needs and limitations.

Keywords: indoor localization; RSSI; trilateration; grid-based RSS; weighted centroid algorithm;
wireless sensor network

1. Introduction

Indoor localization has become a paramount component across many fields, such
as healthcare, security, and retail [1,2]. These diverse applications require accurate and
reliable indoor localization systems to optimize functionality and performance. Outdoor
localization systems rely on GPS and Point of Interest (POI) data. POI data [3] is used in
many geospatial applications, providing semantic information for places of interest and
has many geospatial applications. On the other hand, indoor systems demand specialized
techniques that consider the unique characteristics of indoor environments, such as complex
building structures, multiple floors, and potential signal interference. In response to these
challenges, various approaches were developed to achieve precise geolocation within an
indoor setting. These methods include multilateration, weighted centroid, and Grid-based
RSS [4].

Multilateration utilizes geometric principles to determine the position of devices via
the intersection of multiple spheres. This method requires the measurement of the time
difference of arrival (TDOA) or distance from devices to at least three known reference
points or anchor nodes. These anchor nodes provide the fundamental basis for computa-
tional algorithms that triangulate an accurate position. Multilateration improves upon this
process by including additional reference points, enhancing the system’s precision [5].

The weighted centroid approach is another technique employed in indoor localization
systems. This method leverages the physics center of mass concept to determine device
location. By using known anchor nodes with respective distances or received signal
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strengths as weights, it is possible to calculate a centroid that estimates the target device’s
location. This technique can be particularly advantageous when dealing with limited access
to anchor nodes or when measurements must be taken quickly [6].

Grid-based RSS is a different approach in indoor localization systems that seeks
to maximize accuracy by comparing RSS from multiple devices or nodes in a network,
enhancing the resilience of a wireless network [7]. This method uses RSSI data to estimate
the distance between devices and nodes within a network, considering potential variables
that can impact signal transmissions, such as physical obstructions and environmental
factors [8].

In this paper, we examine and compare the effectiveness of these three distinct indoor
localization techniques, utilizing RSSI data procured via internal computations or gath-
ered from a unique real-world dataset. This dataset focuses on indoor localization and
comprises RSSI measurements from several nodes positioned within an enclosed space.
This study’s driving force stems from the increasing demand for precise and dependable
indoor localization methods for various applications. Key goals include assessing these
techniques’ accuracy, precision, and resilience and determining their aptitude for various
indoor localization scenarios.

Our methodology involves executing experiments, gathering data, scrutinizing results,
and evaluating simulation outcomes. The significance of our study is rooted in its capability
to augment indoor localization by shedding light on the performance of diverse techniques
and pinpointing factors that influence accuracy and precision.

The paper has the following organization. Section 2 provides a literature review on
indoor localization and its various approaches. Section 3 presents the problem statement
and an overview of indoor localization techniques. The specifics of each experiment
and scenario are explored in Section 4, while Section 5 presents the experimental results
and analyses with a discussion of their importance. Lastly, Section 6 presents a more
insightful discussion of the results from the three experiments, while Section 7 provides the
concluding remarks for the paper.

2. Related Work

Various articles provide comparisons between indoor positioning techniques. Liu et al. [9]
investigated indoor location algorithms such as angulation, scene analysis, and proximity.
Their research also delves into performance metrics, including accuracy, precision, com-
plexity, robustness, scalability, and cost. Technological solutions like GPS, RFID, WLAN,
Bluetooth, UWB, and cellular are considered.

In their extensive analysis of wireless indoor localization techniques, the authors in [10]
examined various methodologies from a device-oriented standpoint. The authors drew
comparisons between device-dependent and device-independent systems, considering
factors such as accuracy, cost, scalability, and energy efficiency.

He and Chan [11] examined Wi-Fi fingerprinting technology, focusing on two key
aspects: sophisticated positioning methods and effective implementation strategies. The
study analyzed different techniques using spatial and temporal signal patterns, considering
factors like indoor location accessibility, additional data for position estimation, constraints,
and reported average precision.

Hassan et al. [12] studied indoor positioning utilizing visible LED light technology.
They analyzed various systems, including Wi-Fi, Bluetooth Low Energy, and GSM, focusing
on accuracy, robustness, complexity, cost, and infrastructure reusability. Latif et al. [13]
assessed the efficacy of multiple localization methods as well.

Gu et al. [14] also compared indoor localization methods, focusing on wireless per-
sonal networks. Their extensive study examined a wide range of options, including both
commercial and research-oriented solutions, based on security and privacy, cost, perfor-
mance, resilience, complexity, user preferences, commercial availability, and limitations.
Their findings were consistent with those of prior research [15], emphasizing that each



Eng 2023, 4 2295

solution employs a certain sort of technology, has its own design, and performs best in
specific situations.

A comprehensive overview of current smartphone-based indoor localization tech-
niques was provided by Tiglao et al. [16]. A classification scheme is presented to categorize
the techniques, and it was concluded that each method has its own strengths and weak-
nesses. It was noted that fingerprinting techniques excel when the training phase is executed
well, while path loss prediction techniques offer high accuracy in specific environments.
Depending on user requirements, a suitable approach is chosen. The authors envision a
seamless indoor localization system with cm-level resolution, low-power consumption,
and minimal latency.

A low-cost and real-time indoor positioning approach that combines iBeacons and
Pedestrian Dead Reckoning (PDR) was proposed by Liu et al. [17]. The Bluetooth Low
Energy (BLE)-based iBeacon technology achieved a positioning accuracy with a Root Mean
Square Error (RMSE) of 2.75 m through the fusion of Trilateration and fingerprinting
methods. The paper introduces a PDR method that incorporates filtering on heading
orientation and presents a fusion approach of iBeacon and PDR to address positional jumps
and drifting errors. Improved trajectory accuracy and reduced influence of initial position
errors and orientation noises were demonstrated in real-time tracking experiments.

Conte et al. [18] demonstrated the utilization of BLE for addressing occupancy de-
tection by introducing a modified iBeacon protocol tailored to the issue. Their system,
BLUESENTINEL, presents a straightforward and scalable solution for occupancy detec-
tion, leveraging users’ existing smartphones and strategically positioned beacons. Their
experiments showed that even with just one beacon per room, accurate results can be
achieved, which contrasts with other methods that require a higher number of antennas.
The inherent power efficiency of the BLE protocol further supports the feasibility of their
approach. Despite its simplicity, BLUESENTINEL achieves accuracy comparable to other
advanced methods.

A non-intrusive BLE-based method was proposed for zone-level occupant localization
without the need for a dedicated mobile application [19]. This approach involves utilizing
a network of BLE beacons to collect RSSI values from nearby devices. These values are
then processed into RSSI tuples and utilized by supervised and semi-supervised machine
learning models to determine the positions of occupants at the zone level. The supervised
ensemble model showed higher accuracy and f1-score, while the semi-supervised clustering
model achieved reasonable performance with minimal training data and time. Through a
case study conducted in office spaces, the feasibility of this approach was demonstrated,
leading to the identification of occupancy profiles that provide valuable insights into
occupant behaviors. Implementation of this proposed method offers facility managers
valuable occupancy insights for effective building management.

Andò et al. [20] presented an overview of indoor localization systems, focusing on
solutions tailored to the Ambient Assisted Living framework. The paper introduces the
RESIMA system as a case study, which combines wireless Ultrasound sensors for user
positioning and an environmental map to enable User–environment interaction function-
alities. The system aims to support end-users in navigating indoor environments safely
and efficiently. By utilizing the Multi-Trilateration Algorithm (MTA), the RESIMA system
demonstrated its suitability for the addressed application field.

The study [21] extensively assessed deployment problems in wireless sensor networks
(WSNs). In smart cities, where sensor nodes are distributed and must remain active to
gather and transmit data, achieving optimal node deployment was crucial. Existing work
in the field was reviewed, and coverage schemes were categorized into different techniques.
The paper highlights the research efforts to minimize power consumption by reducing the
number of deployed nodes. A comprehensive comparison of these techniques is provided,
considering their respective advantages and drawbacks.

A comprehensive overview of indoor localization techniques and wireless technolo-
gies is presented by Obeidat et al. [22]. Various localization system technologies, including
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satellite-based navigation, inertial navigation systems, magnetic-based navigation, sound-
based technologies, optical-based technologies, and RF-based technologies, are covered in
the survey. Different localization detection techniques, such as proximity-based techniques,
scene analysis, triangulation, and dead reckoning, are also explored. Additionally, the
most commonly used localization algorithms and methods are introduced, such as angle
of arrival (AOA), time of arrival (TOA), and received signal strength (RSS). Localization
method selection depends on several factors, including cost, available resources, the type of
environment, and the desired accuracy level. Ultimately, the most powerful technique is de-
termined by its ability to provide high accuracy with minimal computational requirements.
Sadowski et al. [23] conducted an extensive investigation comparing the efficacy of Trilater-
ation, K-Nearest Neighbor (KNN), and Naive Bayes techniques. Their study encompassed
the utilization of three prevalent IoT wireless technologies: Zigbee, Bluetooth Low Energy
(BLE), and Wi-Fi. Experiments were based on three real-world datasets corresponding to
three rooms with different levels of interference. The findings revealed that KNN with a
parameter value of k = 4 emerged as the most accurate and precise localization method,
with Naive Bayes following closely.

The following table (Table 1) summarizes some of these related works.

Table 1. An overview of most relevant related works in indoor localization.

Ref. No. Localization
Techniques Used

Wireless
Technology Used

Experimental
Settings

Parameter Settings

Tag Placement/Scalability

[13]
PF-DOA, Weighted

centroid, Markov Grid,
Differential RSS

Wi-Fi, ZigBee and BLE Simulation and two
real-world datasets

Consider noise but not
dimension; Random, boundary

and diagonal tag placement

[15]

Weighted centroid
(range-based),

Proximity-based
(range-free)

Wi-Fi, ZigBee, and
Bluetooth

iMinds testbed/2
real-world environment

Consider tag placement and
dimension

[17] Trilateration,
Fingerprinting BLE Real-time positioning

experiments
Consider boundary tag

placement

[18] BLE-based iBeacon BLE A real environment with
a prototype system

Consider tag placement but
not dimension

[19] Machine Learning BLE

Two real-world datasets
(2 different office areas

with 650 m2 e and
248 m2) divided

into zones

Occupancy density in irregular
zones. Larger zones include

more beacons to ensure signal
coverage, with a total of

39 beacons

[23]

K-Nearest Neighbor
(KNN),

and Naive Bayes,
Trilateration

Zigbee, BLE and Wi-Fi Three real-world datasets
Consider interference levels;

random and grid tag
placement

In contrast to prior studies, our paper utilizes simulations and analytical processes
to investigate various indoor positioning methods employing wireless signal technology.
The techniques examined include the Centroid algorithm, Trilateration, and Grid-Based
RSS method. These methods were evaluated based on efficiency, precision, noise resis-
tance, computational effectiveness, memory consumption, and adaptability across diverse
technology environments. Simulations factored in noise levels, technology types (Wi-Fi,
ZigBee, BLE), and tag node positioning. The research conclusions offer a comprehensive
understanding of each method’s advantages and disadvantages while emphasizing the
significance of addressing specific application criteria such as noise intensity, tag node
placement, technology type, and dataset volume. All calculations were executed on the
cloud-based GPU platform Google Colab to optimize calibration procedures and augment
precision. Our results contribute valuable insights into the performance and boundaries of
these three methods under diverse circumstances, assisting in choosing appropriate indoor
localization techniques.
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The key contributions of this paper can be outlined as follows:

• Investigation of indoor localization techniques, such as the Centroid algorithm, Trilater-
ation, and Grid-Based RSS method. Analyzing their performance behavior under vari-
ous wireless technologies, as well as varying levels of path loss and setting dimension.

• Rigorous and comprehensive simulations were conducted under various experimental
scenarios. Each method’s performance was thoroughly evaluated based on criteria
such as efficiency, precision, and adaptability across diverse technology environments.

• Detailed analysis of influence factors like noise levels, technology types (Wi-Fi, ZigBee,
BLE), and tag node density and layout on the performance of each localization technique.

• Execution using Google Colab’s cloud-based GPU platform for optimized calibra-
tion procedures while providing insights into the selection of appropriate indoor
localization techniques.

3. Problem Statement and Localization Techniques
3.1. Problem Statement

Indoor localization has evolved into a significant research field, driven by the rising
demand for location-based services within indoor settings. Unlike outdoor localization, in-
door localization faces unique challenges such as signal attenuation, multipath fading, and
shadowing caused by walls, ceilings, and other obstacles. These factors contribute to the
challenge of precisely determining a target’s location in an indoor environment. The need
for accurate location-based services in GPS-denied environments, such as underground
parking lots, airports, hospitals, and shopping malls, drives the motivation for indoor
localization. Traditional GPS-based techniques fail in these environments due to weak or
no GPS signals. Indoor localization can solve this problem by using wireless signals from
Wi-Fi, Bluetooth, or ZigBee devices to estimate the location of a target. Therefore, the aim of
this study is to explore and compare different indoor localization techniques and evaluate
their performance under different scenarios. The findings of this study can be useful for
developing efficient and accurate indoor localization systems for various applications.

3.2. Localization Techniques
3.2.1. Trilateration

Trilateration [24] is a model-based technique that uses distances to determine the
receiver’s location numerically. To calculate with Trilateration, we need three transmitting
devices to obtain a 2D position and four to find a 3D position. The distances between the
transmitter and the receivers and the right number of transmitting devices are necessary. A
frequent method for calculating the distance between devices uses a signal’s RSSI. For 2D
space, with three anchor nodes i, i ∈ {1, 2, 3}, located at the position (ai, bi), we can find
the unknown position (x, y) of the receiver as

(a1 − x)2 + (b1 − y)2 = d1
2

(a2 − x)2 + (b2 − y)2 = d2
2

(a3 − x)2 + (b3 − y)2 = d3
2

(1)

where di denotes the distance between the unknown sensor and the anchor i. To minimize
the location error, we need to minimize the following objective function using a non-linear
least squares technique:

f (x, y) =
3

∑
i=1

[√
(x− ai)

2 + (y− bi)
2 − di

]2
(2)

3.2.2. The Weighted Centroid Algorithm

The basic idea of a weighted centroid localization algorithm [25] based on RSSI is that
unknown nodes gather RSSI information from the beacon nodes around them. Assuming
there are anchor nodes in the WSN, with coordinates (ai, bi) where i ∈ (1, 2, 3, . . . , n), the
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location of the unknown node can be obtained by using the improved centroid algorithm
estimating the coordinates of n nodes as

x = 1
∑n

i=1 wi

n
∑

i=1
wi × ai

y = 1
∑n

i=1 wi

n
∑

i=1
wi × bi

(3)

where wi denotes the weight of anchor i, given by the following formula:

wi =
RSSIi

RSSI1 + RSSI2 + RSSI3 + . . . + RSSIn
(4)

where RSSIi denotes the measured RSSI between anchor i and the unknown tag node, and
i ∈ (1, 2, 3, . . . , n), with n as the number of anchors.

3.2.3. Grid-Based RSS

In this algorithm [8], a floorplan is considered and divided into grid points of possible
mobile locations. During the offline phase, theoretical received RSS values are calculated
according to each grid point’s representative (measured) RSS model. During the online
phase, the measured RSS values are ‘compared’ with the theoretical ones for each grid
point. The grid point, which has its theoretical RSS values closest (least squares) to the ones
measured, is determined as the estimated location (x, y)

(x, y) = minx,y

n

∑
i=1

(
RSS(x,y),i,T − RSSi,M

)2
(5)

where RSS(x,y),i,T denotes the theoretical RSS value at the position (x, y) from anchor i,
i ∈ (1, 2, 3, . . . , n). RSSi,M is the measured RSS value from anchor i.

4. Methodology

This section presents three scenarios based on those we have performed in our experi-
ments. The results of the experiments are presented in the experiment and results section.

4.1. Experiment 1 (Tag Nodes Deployed Randomly)

This first experiment aims to explain how the three localization techniques localize the
unknown nodes. In this experiment, we have 7–200 tag nodes distributed in a 2D (x, y)-
coordinate plane and a total of four anchor nodes, which are placed on all four corners.
Figure 1 shows the distribution of 7 tag nodes and anchor nodes.
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These four anchor nodes measure the RSSI values for each tag node. For each tag node,
we have four RSSI values from four anchors. Then, using these RSSI values, we estimate
the location of tag nodes by leveraging localization techniques, as presented in Section 3.2.

4.2. Experiment 2 (Tag Nodes across Boundaries/Center)

This experiment is based on simulated data we have generated in Python. In this,
we are placing the tag nodes starting from the center to the boundaries of the simulation
workspace (x-y coordinate plane). Each tag node has its own identifying number. Here, we
also use the four anchor nodes, one for each corner. Figure 2 represents the x-y coordinate
simulation workspace with tag nodes (green).
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Figure 2. Nine boundary tags and four anchor nodes at the corners.

The four anchors communicate with every tag node in the workspace and measure
the RSSI values corresponding to tag nodes. So, for each tag node, we have four measured
RSSI values, which we are using to locate a tag node. The experiment and result section
shows the localization results from three different techniques (Multilateration, Grid-based
RSS, and Centroid Algorithm).

4.3. Experiment 3 (Real-World Dataset)

In this experiment, we perform the localization based on a real-world dataset [23,26].
Unlike experiments 2 and 1, in which we have internally generated a dataset (RSSI values),
this experiment uses existing RSSI values recorded from real-world settings using three
different wireless technologies: Wi-Fi, Bluetooth, and ZigBee. The brief description of the
real-world data set is as follows:

The dataset (consisting of three Excel files corresponding to Wi-Fi, Bluetooth, and Zig-
Bee) is a comprehensive set of RSSI readings. The RSSI readings occurred in a 6.0 m × 5.5 m
wide meeting room. Figure 3 overviews the experimental topologies performed in
the room.

Three Anchor nodes (red), also known as transmitters, were placed 4 m apart from
one another in the shape of a triangle. RSSI readings, at green dots, were taken with a
0.5 m spacing between the tag nodes in the center. This created around 49 RSSI readings
for each wireless technology (Wi-Fi, Bluetooth, and ZigBee), comprising the database. In
the figures, the red dots represent the location of the anchors, and the green dots represent
the locations where RSSI readings were gathered. Green Dots indicate RSSI measurements
taken at ground level and on top of tables, enabling experiments and tests to simulate
various situations, such as the height at which a user would carry a device in their pocket.
The experiment and result section contains a plot corresponding to Wi-Fi, Bluetooth, and
ZigBee for this scenario.
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The RSSI readings were obtained in a low-interference environment, specifically a
small meeting room containing only tables and chairs to minimize unnecessary interference
from other transmitting devices. The room’s dimensions were approximately 33 m2,
measuring 6 m × 5.5 m. This real-world dataset, featured in [23], involved creating a
dense fingerprint map for the environment by spacing points of interest 0.5 m apart in
a grid pattern. The transmitters were positioned in a right-angle triangle with a 4 m
spacing between them. This configuration aimed to simulate a typical office or classroom
environment, where transmitters are placed at room corners, and the receiver is moved
around. It also helped to create distinct signal strength patterns at various points within
the room. We chose this real-world dataset to verify localization results when tag nodes are
densely arranged.

5. Experiment and Results

This section presents the results of all the scenarios (experiments 1–3) mentioned in
the methodology section. In every experiment conducted, numerous trials or iterations
were performed. The total count of these trials depends on the variability in outcomes
observed among consecutive iterations. As the variance becomes more stable and closely
clustered, it suggests that an appropriate number of iterations has been reached.

We incorporate two key factors for more realistic simulations (localization of Wireless
Sensor Network (WSN)): shadow effect and noise. The shadow effect simulates the signal
attenuation caused by obstacles and environmental factors, while the noise accounts for
random variations and uncertainties in the RSSI measurements. To create the shadow effect,
we used a Python function that generates a 2D matrix with random values that follow a
normal distribution. The matrix has a size of 100 × 100, equal to the simulation space. In
this function, ‘0’ represents the mean and ‘2’ represents the standard deviation. We then
incorporated the shadow effect by adding a specific random value from this matrix to
the RSSI formula. This value is determined by using the position coordinates of the tag
nodes as indices for the matrix. The RSSI formula calculates the RSSI from anchor nodes
for that particular tag node. To introduce noise, we multiplied a noise factor with the
random value generated by a random function. This provides a random noise component
(ranging between 0 to 1) that is added to the RSSI measurements of each sensor node. For
experiments 1 and 2, we used a noise factor of 1. All the experiments are performed on a
cloud-based Google Colab GPU. We verified the performance of the localization techniques
in terms of accuracy measured through the Mean Error and efficiency measured through
the total time.
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5.1. Results Related to Experiment 1

Experiment 1 provided a basic understanding of how our localization of tag nodes
using different techniques (Multilateration, Grid-based RSS, and Centroid Algorithm) will
look like. As discussed in experiment 1 of the methodology section, we estimated the
position of tag nodes using the RSSI values recorded by four anchor nodes. These RSSI
values were calculated using an internally generated dataset in Python script. The scatter
plot in Figure 4a illustrates the distribution of tag nodes (green) in the simulation workspace
(x-y coordinate plane). Figure 4a clearly visualizes the results (estimated position of tag
nodes) provided by multilateration (blue triangle), grid-based RSS (purple X) and the
centroid algorithm (yellow square).
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Figure 4a shows that grid-based RSS has better localization accuracy compared to
the centroid algorithm and multilateration. Furthermore, multilateration outperforms the
centroid method. The reliance of the centroid method on geometric mean calculations for
localizing randomly distributed tag nodes in a field results in poor performance. Inaccurate
distance estimations and weight allocations for individual nodes arise due to irregular or
sparse node distributions, leading to reduced localization accuracy.
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Figure 4b shows the mean error of localization for varying tag nodes. It shows that
Grid-based RSS has the highest localization accuracy in this case (Experiment 1), irrespective
of the number of tag nodes. Also, localization accuracy is stable (not fluctuating) for all
three techniques as the number of tag nodes are changing. This shows the insensitivity
against the number of tag nodes that participated in the experiment.

5.2. Results Related to Experiment 2

As discussed in the methodology section, we generated the dataset internally in
our Python script for this experiment. We calculated the value for RSS0 using the Friis
transmission equation [27]. This equation calculates the power an antenna receives based
on the transmitted power, distance, and antenna gains. For other parameters like frequency,
path loss exponent, transmitted power, and antenna gains, we used the values widely
accepted in many wireless communication systems for convenience and practical reasons.
Figure 5a below presents the localization results for multilateration, grid-based RSS, and
centroid algorithms.
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In Figure 5a, the estimated positions (blue, purple, and yellow) have numerical values
corresponding to the actual node location (green). The node numbers help to identify
the estimated tag node location for an actual tag node location. As per the plot, for
more than half the number of tag nodes, multilateration (blue) has a highly accurate
estimated location.
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5.2.1. Dimension vs. Mean Error

As mentioned earlier, we conducted all the experimentation on the cloud-based Google
Colab GPU. Figure 5b shows the localization accuracy of the three techniques as the
dimension field expands (#Tag nodes across boundaries).

In Figure 5b, the Weighted Centroid Algorithm (purple) has less accuracy as compared
to Multilateration (blue) and Grid-based RSS (yellow) regarding the estimated position of
tag nodes. However, it localizes tag nodes placed at diagonals more accurately (as shown
in Figure 5a) than tag nodes placed on edges or any other position. On the other hand, the
centroid algorithm is robust to boundary increase as it has fewer fluctuations in localization
results. Hence, the centroid algorithm is stable for dimension expansion.

Although Grid-based RSS boasts the highest localization accuracy, it also has a high
standard deviation. This arises from its reliance on theoretical RSSI, which is recorded
randomly within the simulation space to encourage realistic experimentation. The more
theoretical RSSI readings taken, the better the localization accuracy, and vice versa.

The increased mean error for the weighted centroid stems from a growing number
of tag nodes situated on the boundaries or edges of the simulation space. The weighted
centroid algorithm localizes diagonally placed tag nodes more accurately than those in any
other position. Thus, as tag nodes on boundaries or edges increase, so does the mean error.
The mean error of multilateration remains steady as the dimension expands, indicating
that this technique is not position-biased. It treats all tag nodes equally, regardless of
their position.

Overall, in this boundary-setting experiment involving tag nodes, Grid-based RSS
demonstrated the highest accuracy. Although the weighted centroid showed the lowest
accuracy, it produced more consistent results, as indicated by a lower standard deviation.

5.2.2. Noise vs. Mean Error

Figure 6 shows the impact of noise on the localization accuracy of the three techniques.
From Figure 6, we can conclude that the weighted centroid is more robust to noise than
the other two techniques. Its localization error is similar at different noise levels, whereas
Grid-based RSS is highly sensitive to noise. It also has the highest standard deviation due
to its dependency on theoretical RSS. From noise levels 1 to 5, we can see grid-based RSS
error has a greater mean error than the Multilateration, which in turn is less sensitive to
noise than grid-based RSS. Its error difference is less than Grid-based RSS as noise increases
from 1 to 5.
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5.3. Results Related to Experiment 3

As discussed in the methodology section, experiment 3 is based on a publicly available
real-world dataset. Three anchors were used to record the RSSI reading in a wide meeting
room in Figure 3. The dataset captures RSSI observations from three wireless technologies
(Wi-Fi, Bluetooth, and ZigBee). In this section, we discuss the results of the three local-
ization techniques under these three different radio technologies. We have performed the
localization for all the tag nodes, present in the dataset, in our Python script. The values of
“RSS0” (received signal strength at a distance of 1 m) and “path-loss exponent” (the rate
at which signal strength decreases with distance) are specific to the Wi-Fi hardware and
environment being used in the experiment. We have plotted (Figure 7) the mean error of
localization techniques (Trilateration, Grid-based RSS, and Centroid Algorithm) for each
wireless technology. Through this plot, we can visualize the techniques with the highest
performance. We iterated each experiment and calculated the localization error as the
Euclidean distance between a tag node’s predicted and actual positions. So, the mean error
is the average error for all the tag nodes. Figure 7 shows the results of the three localization
techniques against the mean error for the three wireless technologies.
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From Figure 7, we can conclude that the Weighted Centroid algorithm shows the
highest localization accuracy. It has almost the same mean error in all three technologies.
This shows that the Weighted Centroid algorithm performs well in the case of a limited
number of anchor nodes (three in this case) and is more robust to noise or attenuation (path
loss) than the other two techniques. The trilateration technique works well in the case of
BLE when there is no unnecessary interference in the area or other transmitting devices.
While in the other two technologies, it has higher errors than Weighted Centroid because of
noise and limited anchors. Grid-based RSS has the highest localization error of all three
technologies. This technique is very sensitive to noise compared to the other two techniques.
It uses theoretical RSS to provide localization results. These factors contribute to its high
localization error.

6. Discussion

The results from the three experiments provide valuable insights into the performance
and accuracy of different localization techniques for WSNs using RSSI. We have observed
that the localization techniques, namely Multilateration, Grid-based RSS, and Centroid
Algorithm, have varied performance under different conditions and scenarios.
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In Experiment 1, Grid-based RSS exhibited the highest localization accuracy among all
three techniques evaluated, irrespective of the number of tag nodes. This outcome suggests
that Grid-based RSS is more robust and less sensitive to changes in the number of tag nodes
involved in the experiment. On the other hand, multilateration showed slightly lower
accuracy than Grid-based RSS but still outperformed the Centroid Algorithm. The poor
performance of the latter is attributed to its reliance on geometric mean calculations for
estimating positions with irregular or sparse node distributions.

Experiment 2 reinforced the outcomes obtained from Experiment 1, confirming that
multilateration provides accurate estimates for more than half of the tag nodes tested.
Furthermore, it demonstrates that all three methods exhibit insensitivity toward fluctua-
tions in the number of tag nodes involved. In analyzing the results of this experiment, it
is obvious that the various localization techniques performed differently under different
circumstances. Grid-based RSS demonstrated the highest accuracy in localizing tag nodes.
However, this method has some limitations, such as its sensitivity to noise and higher
standard deviation due to its reliance on theoretical RSSI. Increasing the number of theo-
retical RSSI’s could improve the localization accuracy. The weighted Centroid Algorithm
displayed lower accuracy compared to Grid-based RSS and Multilateration, but was found
to be more robust to noise with fewer fluctuations in the localization results. The algorithm
was notably effective in localizing diagonally placed tag nodes. It is interesting to observe
that its mean error increased as the number of tag nodes on the edges of the simulation
space increased. Multilateration showed similar mean errors across increasing dimensions,
suggesting that it is not position-biased and does not discriminate based on a tag node’s
position. It is less sensitive to noise compared to Grid-based RSS but not as robust as the
Weighted Centroid Algorithm regarding varying noise levels.

Experiment 3, using a real-world dataset and three different wireless technologies
(Wi-Fi, Bluetooth, and ZigBee), revealed that the Weighted Centroid algorithm consistently
produced the highest localization accuracy across all three technologies. While Grid-based
RSS exhibits superior localization accuracy under certain conditions, the Weighted Centroid
Algorithm provides more consistent results across various circumstances and technologies.
Multilateration offers an unbiased performance without reliance on a tag node’s position.
Therefore, it is essential to consider these characteristics when selecting an appropriate
localization algorithm for specific applications.

Noise and shadow effect simulations in our experiments served to incorporate realistic
conditions to better understand how these factors can influence localization performance.
Despite these added complexities, the tested algorithms maintained stable accuracies and
efficiencies through different iterations. Despite our study offering valuable perspectives
on implementing localization techniques in WSNs concerning their accuracies, it is crucial
to consider various parameters such as environmental conditions, deployment scenarios,
and specific application requirements for choosing an optimal localization method best
suited to a particular problem context.

We anticipate that our findings will also apply to three-dimensional (3D) scenarios for
the following rationale.

(1) Weighted centroid exhibits position bias:

• If the localization accuracy of boundary nodes is higher than that of diagonal
nodes in 3D, it implies that the weighted centroid is biased towards the position
of the nodes.

• If both edge nodes and diagonal nodes have the same accuracy, and the z-
coordinate of diagonal nodes has higher error than edge nodes, while the xy-
coordinate of diagonal nodes has less error than edge nodes, it also suggests that
the weighted centroid is biased towards the position of the nodes.

• If diagonal nodes have higher accuracy than edge nodes, it means that the
weighted centroid localizes diagonal tag nodes more accurately than edge nodes.
Consequently, this finding confirms the position bias of the weighted centroid
in 3D.
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Therefore, it is reasonable to assume that the weighted centroid is position-biased in
3D as well.

(2) Weighted centroid is more robust to noise compared to the other two techniques:

The weighted centroid algorithm uses only RSSI information to localize tag nodes.
Unlike multilateration, the weighted centroid algorithm does not need to calculate any
distance value using the RSSI formula. It only utilizes the RSSI information as shown in
the formula provided in Section 3.2.2. We should note that the anchor nodes record RSSI
measurements based on the RSSI formula, which applies to both 2D and 3D scenarios.
Therefore, this finding is also applicable to 3D environments.

(3) Grid-based RSS is highly sensitive to noise and theoretical RSSI:

As demonstrated in experiment 2 in Section 5.2.2, the error of the grid-based RSS
method increases at a higher rate compared to the other two techniques as the noise level
increases from 1 to 5. Similar to the 2D case, the accuracy of the grid-based RSS in 3D
heavily depends on the RSSI measurements. If the 3D environment has fluctuating noise
levels, the grid-based RSS method will still yield higher localization errors (compared to the
other techniques) due to its reliance on theoretical RSSI. Therefore, this finding is scalable
to 3D scenarios.

(4) Trilateration performs best in the BLE technology:

In 3D scenarios, multilateration requires a minimum of four anchors for accurate
localization. The addition of another anchor will further minimize the MSE for all three
technologies (BLE, WIFI, and ZIGBEE). Additionally, the multilateration algorithm utilizes
RSSI values for position estimation. Even in 3D, the anchors record RSSI values in a similar
manner as in 2D scenarios. This process also incorporates some noise or shadow effect
represented by numerical values specific to each technology (BLE, WIFI, and ZIGBEE).
Furthermore, trilateration is a geometric method that can be extended to three dimensions.
Therefore, it is reasonable to assume that trilateration would also perform well in BLE
applications in 3D.

7. Conclusions

Based on the simulations and analysis conducted in this study, we provided the
strengths and weaknesses of the three localization techniques—Grid-based RSS, Multilat-
eration, and Centroid Algorithm. Grid-based RSS demonstrated the highest localization
accuracy but is sensitive to noise, and theoretical RSS and might not be ideal in scenarios
with high fluctuations. Multilateration offered unbiased performance and was less sensi-
tive to noise; however, it did not consistently outperform the other two techniques. The
Weighted Centroid Algorithm showed impressive consistency across various conditions
and technologies while maintaining reasonable localization accuracy. Thus, it is vital to
consider each technique’s specific characteristics and potential applications when choosing
a suitable localization algorithm for one’s needs.

One interesting finding from Experiment 3 was the superior performance of the
Weighted Centroid Algorithm across all three wireless technologies. While it produced
lower accuracy results compared to Grid-based RSS and multilateration in certain cases,
its consistency across various conditions and technologies renders it a reliable choice for
real-world scenarios. As wireless technologies continue to evolve rapidly, experiments such
as these play an essential role in understanding which localization algorithms may be best
suited for diverse applications and environments. Furthermore, these results encourage
continuous research into refining and developing new techniques to improve localization
accuracy and efficiently cater to diverse use cases in both indoor and outdoor settings.

In future work, we will explore performance enhancement through parallelization,
noise-reducing correction techniques, and comparisons to Ultra-Wideband (UWB)-based lo-
calization systems for improved accuracy and effectiveness in indoor localization methods.
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