Evaluating Field-Effect Separation on Rare Earth and Critical Metals
Abstract
:1. Introduction
1.1. Theory
1.1.1. Magnetic Separation
1.1.2. Electrostatic Separation
1.1.3. Advection and Mixing
2. Materials and Methods
3. Results and Discussion
3.1. Microchannel Device Analysis
3.2. Magnetic Separation Performance
3.3. Electrostatic Separation Performance
3.4. Discussion
4. Conclusions
- •
- Significant concentration changes between the top and bottom stream of the microchannel device of 10–20% can be generated using magnetic and electrostatic fields;
- •
- Trends of ion mobility based on magnetic susceptibility and residence time in the field are observed, with individual element separations of 2–3% achieved per cycle;
- •
- Manipulating the effective charge in solution of metal cations by changing its pH allows them to be separated electrostatically;
- •
- The designed microchannel device sufficiently constricts flow to facilitate separation and minimize advective mixing.
5. Patents
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jyothi, R.K.; Thenepalli, T.; Ahn, J.W.; Parhi, P.K.; Chung, K.W.; Lee, J.-Y. Review of rare earth elements recovery from secondary resources for clean energy technologies: Grand opportunities to create wealth from waste. J. Clean. Prod. 2020, 267, 122048. [Google Scholar] [CrossRef]
- Chen, Z.; Li, Z.; Chen, J.; Tan, H.; Wu, J.; Qiu, H. Selective Adsorption of Rare Earth Elements by Zn-BDC MOF/Graphene Oxide Nanocomposites Synthesized via In Situ Interlayer-Confined Strategy. Ind. Eng. Chem. Res. 2022, 61, 1841–1849. [Google Scholar] [CrossRef]
- Massari, S.; Ruberti, M. Rare earth elements as critical raw materials: Focus on international markets and future strategies. Resour. Policy 2013, 38, 36–43. [Google Scholar] [CrossRef]
- Golev, A.; Scott, M.; Erskine, P.D.; Ali, S.H.; Ballantyne, G.R. Rare earths supply chains: Current status, constraints and opportunities. Resour. Policy 2014, 41, 52–59. [Google Scholar] [CrossRef]
- Florek, J.; Larivière, D.; Kählig, H.; Fiorilli, S.L.; Onida, B.; Fontaine, F.-G.; Kleitz, F. Understanding Selectivity of Mesoporous Silica-Grafted Diglycolamide-Type Ligands in the Solid-Phase Extraction of Rare Earths. ACS Appl. Mater. Interfaces 2020, 12, 57003–57016. [Google Scholar] [CrossRef]
- Liu, T.; Chen, J. Extraction and separation of heavy rare earth elements: A review. Sep. Purif. Technol. 2021, 276, 119263. [Google Scholar] [CrossRef]
- Pereira Neves, H.; Ferreira, G.M.D.; de Lemos, L.R.; Rodrigues, G.D.; Leão, V.A.; Mageste, A.B. Liquid-liquid extraction of rare earth elements using systems that are more environmentally friendly: Advances, challenges and perspectives. Sep. Purif. Technol. 2022, 282, 120064. [Google Scholar] [CrossRef]
- Zheng, X.; Zhang, F.; Liu, E.; Xu, X.; Yan, Y. Efficient recovery of neodymium in acidic system by free-standing dual-template docking oriented ionic imprinted mesoporous films. ACS Appl. Mater. Interfaces 2017, 9, 730–739. [Google Scholar] [CrossRef] [PubMed]
- Arshi, P.S.; Vahidi, E.; Zhao, F. Behind the Scenes of Clean Energy: The Environmental Footprint of Rare Earth Products. ACS Sustain. Chem. Eng. 2018, 6, 3311–3320. [Google Scholar] [CrossRef]
- Pathapati, S.V.S.H.; Singh, R.S.; Free, M.L.; Sarswat, P.K. Exploring the REEs Energy Footprint: Interlocking AI/ML with an Empirical Approach for Analysis of Energy Consumption in REEs Production. Processes 2024, 12, 570. [Google Scholar] [CrossRef]
- Pathapati, S.V.S.H.; Free, M.L.; Sarswat, P.K. A Comparative Study on Recent Developments for Individual Rare Earth Elements Separation. Processes 2023, 11, 2070. [Google Scholar] [CrossRef]
- Zhang, S.; Ding, Y.; Liu, B.; Chang, C. Supply and demand of some critical metals and present status of their recycling in WEEE. Waste Manag. 2017, 65, 113–127. [Google Scholar] [CrossRef] [PubMed]
- Kuipers, K.J.J.; van Oers, L.F.C.M.; Verboon, M.; van der Voet, E. Assessing environmental implications associated with global copper demand and supply scenarios from 2010 to 2050. Glob. Environ. Chang. 2018, 49, 106–115. [Google Scholar] [CrossRef]
- Woodward, P.M.; Karen, P.; Evans, J.S.O.; Vogt, T. Solid State Materials Chemistry; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar] [CrossRef]
- Schijf, J.; Byrne, R.H. Speciation of yttrium and the rare earth elements in seawater: Review of a 20-year analytical journey. Chem. Geol. 2021, 584, 120479. [Google Scholar] [CrossRef]
- Gritmon, T.F.; Goedken, M.P.; Choppin, G.R. The complexation of lanthanides by aminocarboxylate ligands—I: Stability constants. J. Inorg. Nucl. Chem. 1977, 39, 2021–2023. [Google Scholar] [CrossRef]
- Fernández, R.G.; Alonso, J.I.G. Separation of rare earth elements by anion-exchange chromatography using ethylenediaminetetraacetic acid as mobile phase. J. Chromatogr. A 2008, 1180, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Fritzsche, B.; Lei, Z.; Yang, X.; Eckert, K. Localization of rare earth ions in an inhomogeneous magnetic field toward their magnetic separation. J. Rare Earths 2022, 40, 1598–1605. [Google Scholar] [CrossRef]
- Rodrigues, I.R.; Lukina, L.; Dehaeck, S.; Colinet, P.; Binnemans, K.; Fransaer, J. Effect of Magnetic Susceptibility Gradient on the Magnetomigration of Rare-Earth Ions. J. Phys. Chem. C 2019, 123, 23131–23139. [Google Scholar] [CrossRef]
- Fujiwara, M.; Chie, K.; Sawai, J.; Shimizu, D.; Tanimoto, Y. On the movement of paramagnetic ions in an inhomogeneous magnetic field. J. Phys. Chem. B 2004, 108, 3531–3534. [Google Scholar] [CrossRef]
- Ji, B.; Wu, P.; Ren, H.; Zhang, S.; Rehman, A.; Wang, L. Segregation behavior of magnetic ions in continuous flowing solution under gradient magnetic field. Chin. Phys. B 2016, 25, 074704. [Google Scholar] [CrossRef]
- Free, M.L. Hydrometallurgy, 2nd ed.; Wiley: Hoboken, NJ, USA, 2013. [Google Scholar] [CrossRef]
- Sohn, H.Y. Constitutive elements of fluid-solid reactions. In Fluid-Solid Reactions; Elsevier: Amsterdam, The Netherlands, 2020; pp. 11–84. [Google Scholar] [CrossRef]
- Liyananadirah, M.S.; Deraman, M.R.; Ibrahim, W.H.; Harun, N. Diffusion coefficients of trivalent rare earth/actinide ions in acid and alkaline aqueous solutions. In IOP Conference Series: Materials Science and Engineering; IOP Publishing Ltd.: Bristol, UK, 2019. [Google Scholar] [CrossRef]
- Li, Z.; Merz, K.M. Systematic Evaluation of Ion Diffusion and Water Exchange. J. Chem. Theory Comput. 2021, 18, 3017–3026. [Google Scholar] [CrossRef] [PubMed]
Ion | Configuration | S | L | J | gj | µeff/µB | Type |
---|---|---|---|---|---|---|---|
Ce3+ | 4f1 | 0.50 | 3.00 | 2.50 | 0.86 | 2.54 | LREE |
Pr3+ | 4f2 | 1.00 | 5.00 | 4.00 | 0.80 | 3.58 | LREE |
Gd3+ | 4f7 | 3.50 | 0.00 | 3.50 | 2.00 | 7.94 | MREE |
Dy3+ | 4f9 | 2.50 | 5.00 | 7.50 | 1.33 | 10.63 | HREE |
Er3+ | 4f11 | 1.50 | 6.00 | 7.50 | 1.20 | 7.57 | HREE |
Li+ | 1s2 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | Alkali |
Fe3+ | 3d5 | 2.50 | 0.00 | 2.50 | 2.00 | 5.90 * | TM |
Co2+ | 3d7 | 1.50 | 3.00 | 4.50 | 1.33 | 6.63 * | TM |
Ion | D (×10−10 m2/s) | Sc | Reference |
---|---|---|---|
La3+ | 6.19 | 1438 | [24] |
Nd3+ | 6.16 | 1445 | [24] |
Li+ | 10.29 | 865 | [25] |
Fe3+ | 6.04 | 1474 | [25] |
Co2+ | 6.78 | 1313 | [25] |
Spacing | 320 µm | 170 µm |
---|---|---|
# Channels (per side) | 104 | 184 |
Residence Time (s) | 25.9 | 61.1 |
Flow Velocity (cm/s) | 0.154 | 0.066 |
Re | 54.6 | 12.3 |
Sc | Sh170 | Sh320 | |
---|---|---|---|
La3+ | 1437.803 | 25.761 | 52.018 |
Nd3+ | 1444.805 | 25.799 | 52.099 |
Li+ | 864.917 | 22.058 | 44.224 |
Fe3+ | 1473.510 | 25.956 | 52.429 |
Co2+ | 1312.684 | 25.051 | 50.523 |
Device Angle | 90° | 45° | 30° |
---|---|---|---|
Pump Rate (µL/min) | 150 | 100 | 75 |
Residence Time (s) | 61.11 | 91.67 | 122.22 |
Re | 12.31 | 8.21 | 6.16 |
Li | K | H | Cr | Cl | ||
---|---|---|---|---|---|---|
pH 2.0 | Zeff | 1 | 1 | 1 | −1 | −1 |
% Change | 9.88 | 9.15 | −17.50 | 8.98 | −8.90 | |
% I change | −0.84% | |||||
pH 10.0 | Zeff | 1 | 1 | 1 | −2 | −1 |
% Change | 9.09 | 8.28 | −7.15 | 3.70 | −23.36 | |
% I change | −0.80% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schroeder, B.; Free, M.; Sarswat, P.; Sadler, E.; Burke, J.; Evans, Z. Evaluating Field-Effect Separation on Rare Earth and Critical Metals. Eng 2024, 5, 2016-2032. https://doi.org/10.3390/eng5030107
Schroeder B, Free M, Sarswat P, Sadler E, Burke J, Evans Z. Evaluating Field-Effect Separation on Rare Earth and Critical Metals. Eng. 2024; 5(3):2016-2032. https://doi.org/10.3390/eng5030107
Chicago/Turabian StyleSchroeder, Benjamin, Michael Free, Prashant Sarswat, Easton Sadler, Jacob Burke, and Zoe Evans. 2024. "Evaluating Field-Effect Separation on Rare Earth and Critical Metals" Eng 5, no. 3: 2016-2032. https://doi.org/10.3390/eng5030107
APA StyleSchroeder, B., Free, M., Sarswat, P., Sadler, E., Burke, J., & Evans, Z. (2024). Evaluating Field-Effect Separation on Rare Earth and Critical Metals. Eng, 5(3), 2016-2032. https://doi.org/10.3390/eng5030107