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Abstract: A computationally time-efficient method is introduced to implement pressure load to a
Finite element model. Hexahedron elements of the Lagrangian family with Gauss–Lobatto nodes
and integration quadrature are utilized, where the integration points follow the same sequence as
the nodes. This method calculates the equivalent nodal force due to pressure load using a single
Hadamard multiplication. The arithmetic operations of this method are determined, which affirms
its computational efficiency. Finally, the method is tested with finite element implementation and
observed to increase the runtime ratio compared to the conventional method by over 20 times. This
method can benefit the implementation of finite element models in fields where computational time
is crucial, such as real-time and cyber–physical testbed implementation.

Keywords: equivalent pressure load; Lagrangian; Gauss–Lobatto nodes; computational time efficient;
real-time FEM

1. Introduction

Surface traction and body forces are the two main forms of external loadings that cause
solids to deform. Body forces act on the inner, dispersed mass of the solid, whereas surface
tractions act by applying normal and shearing stresses to the surface of the solid [1–3]. In
the context of the finite element method (FEM), these two loading conditions are used to
solve for the displacement of solids [3]. Other properties, such as stress and strain, can be
computed from the displacement to analyze and design components of solid objects, i.e.,
structures. If multiple solid bodies are involved, contact models are crucial for enforcing
continuity and compatibility conditions between the interacting surfaces [3–5]. There
are several contact modeling techniques, such as surface-to-surface or node-to-surface
models, where surface tractions are applied to model interfaces for coupling. However,
the surface tractions cannot be applied to a FEM directly; instead, an equivalent nodal
force vector is computed and applied. The computation of the equivalent nodal force
consists of several steps: determination of (1) traction force, (2) equivalent nodal force for
each of the integration points on the surface, and (3) assembly. This procedure involves
several matrix–matrix multiplications. The total FE simulation consists of two phases:
(1) precomputation and (2) runtime. For a dynamic case, during the runtime phase, if there
is varying pressure loading or the model is in contact with another model, force vector
assembly, followed by the computation of an equivalent nodal force vector for surface
traction, needs to be carried out at each time step. Such computation requires substantial
computational effort.

In fields where real-time computation is involved, computational time becomes very
crucial. Such fields include cyber–physical testing, which involves real-time communication
between an experimental and computational model [6]. Also, in a system of systems
(SoS) [7,8] framework, there is a growing need to incorporate multiple solid or structural
bodies to achieve accurate and holistic modeling in real time [9]. Recently, such testing has
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been implemented to design resilient space habitats [10,11] that require high-fidelity two-
and three-dimensional dynamic FE models. These models can be subjected to pressure
loading, and the interaction between the cyber and physical components (cyber–physical
testing [12]) can also employ such loading that needs to be computed in real time [13].
Hence, implementing a computational time-efficient method to calculate equivalent nodal
force due to pressure load during runtime is necessary.

Efforts have been made to reduce computational time, specifically for dynamic appli-
cations. For example, diagonal mass matrices [13] have been implemented in the field of
spectral element methods [14–17]. Because it is efficient to invert a mass matrix, this ap-
proach can expedite the explicit dynamic simulation. Here, the diagonalization of the mass
matrices has resulted from the hexahedral elements of the Lagrangian family with Gauss–
Lobatto nodes [18] and integration quadrature, which is different from the Gauss–Legendre
quadrature [19]. However, for FE application, equivalent nodal force vector calculation
from pressure load is computationally demanding, and minimizing the computational time
associated with it has not been approached.

In this paper, a method is developed to reduce the computational cost associated with
the implementation of the pressure load to a three-dimensional FEM during the runtime
phase of a dynamic simulation. According to this method, the computational overhead for
the total procedure to compute equivalent nodal force can be split into two sub-procedures,
where the majority of the computation is performed during the precomputation phase. For
this purpose, the hexahedral elements of the Lagrangian family with Gauss–Lobatto nodes
and integration quadrature are implemented for surface integration. For such an integration
quadrature, the integration points overlap with the nodal coordinates. As a result, the
value of a shape function evaluated at the integration points is one at one integration point
and zero at all others. This property is then utilized to reduce the equivalent nodal force
vector computations to a single Hadamard multiplication [20] for the runtime phase. Such
multiplication is also known as elementwise multiplication and is implemented in many
languages, such as PYTHON (3.12.6) and MATLAB®(2023b). This method will come with
a limitation as it cannot be implemented for large deformation when the surface area or
surface normal vector changes.

The remainder of this paper is organized as follows. The methodology section first
describes the implementation of the Lagrangian elements of the hexahedral family and
integration quadrature. Then, the properties of such elements are utilized to develop a
computationally time-efficient algorithm that utilizes a single Hadamard multiplication
to compute the equivalent nodal force vector from the pressure load. Next, arithmetic
operations are determined for the new algorithm and compared against the existing one.
Then, the algorithms are implemented into FE models, and the CPU time is computed,
which shows the efficiency of the current method compared to the conventional method.
Next, a convergence study is conducted, and a dynamic analysis is carried out using an
FE model of a space habitat subjected to a dynamic pressure load. Then, the limitations of
the current method are discussed in detail. Finally, the conclusion section concludes this
current work with some remarks.

2. Materials and Methods

This section first discusses the computation of the equivalent nodal force vector due to
surface pressure. Next, the element that will be incorporated into this method is illustrated.
Finally, the procedure to implement Hadamard multiplication to compute equivalent nodal
force based on the framework discussed priorly is presented.

2.1. Conventional Method to Compute the Equivalent Nodal Force from Pressure Load

For an element, the equation of motion of the model in the coordinate x (x, y, z) is
as follows:

[m]
{ ..

u
}T

+ [c]
{ .

u
}T

+ [k]{u}T = {re}T (1)
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where [m], [c], [k] are the mass, damping, and stiffness matrix; {u},
{ .

u
}

, and
{ ..

u
}

are the
displacement, velocity, and acceleration, respectively, for an element. On the right-hand
side of Equation (1), {re} is the equivalent nodal force due to external forces on element e.
The matrices [m], [c], [k], and {re} are computed following the isoparametric formulation
that can be found in the literature [4]. The vector of shape functions for an element in the
isoparametric coordinate ξ(ξ, η, ζ) is expressed as follows:

{χ} =
{

N1 N2 . . . Nne

}
(2)

where ne is the number of nodes of an element and Ni is the value of i shape function at the
isoparametric coordinate ξ. Following Equation (3), a shape function matrix is defined as

[N] =

N1 0 0 N2 0 0 . . . Nne 0 0
0 N1 0 0 N2 0 . . . 0 Nne 0
0 0 N1 0 0 N2 . . . 0 0 Nne

 (3)

Different types of forces, such as surface traction, { ftrac} and body force,
{

fbody
}

,
contribute to the equivalent nodal force vector. Considering the normal surface traction
{φ}, the { ftrac} can be determined following isoparametric formulation as follows:

{ ftrac}T =
∫ 1

−1

∫ 1

−1
[N]T. P{dΓ}Tdηdξ =

i=ng

∑
i=1

[N]Ti Pi{dΓ}T
i wi (4)

Here, the normal surface traction {φ} = P{n̂}, where P is the traction magnitude
and {n̂} is the normal unit vector on the surface of an element pointing outward from the
element. Pi is the normal traction magnitude pointing outward from the element surface,
wi is the weight at integration point i, and ng is the number of integration points of the
element on the surface of the element subjected to the traction load. Note: pressure is the
negative of the Pi. {dΓ} is a vector in the global coordinate perpendicular to the surface
the pressure is acting on, with ∥dΓ∥ being the ratio of a differential area of the element
between global and local coordinates. There are six surfaces for hexahedral elements. For
demonstration purposes in this paper, considering [J] as the Jacobian matrix, only the case
of the ζ = 1 plane of a hexahedral element is presented, as follows:

{dΓ}T =


J22 J33 − J23 J32
J23 J31 − J21 J33
J21 J32 − J22 J31

 (5)

Evaluation of the traction value at the integration point i can be simplified by assigning
nodal traction value. If the tractions of all nodes of the element e are {P}e, following the
isoparametric formulation

Pi = {χ}i{p}T
e (6)

The { ftrac} is the equivalent nodal force vector for a single surface of an element.
A single element can have multiple surfaces, i.e., hexahedral elements have six surfaces.
Hence, { ftrac} needs to be computed for all the surfaces of an element. This paper considers
just one surface of each element subjected to pressure loading. Hence, the total number of
surfaces of the whole model equals the number of elements. Considering nE as the number
of elements of the model, the computation of the global force vector can be determined by
summing through elements. The equation of motion (EOM) for the assembled system is
as follows:

[M]
{ ..

U
}T

+ [C]
{ ..

U
}T

+ [K]{U}T = {Ftrac}T +
{

Fbody

}T
(7)

where
{ ..

U
}

,
{ ..

U
}

, and {U} are the acceleration, velocity, and displacement vectors, [M], [C],
and [K] are the mass, damping, and stiffness matrices, and

{
Fbody

}
is the body force vector
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for the assembled model. Several time-stepping algorithms exist to solve the EOM. For
this study, the implicit Newmark-Beta method [4] is implemented, which is an implicit
time-stepping method for solving the displacement at discrete time t + ∆t as follows:

[
K
]{t+∆t

.U
}T

=
{t

. R
}T (8)

where
[
K
]

is the equivalent stiffness matrix of the form[
K
]
= [K] + a0[M] + a1[C] (9)

And
{t

. R
}

is the equivalent nodal force vector

{t
. R
}T

= [M]

(
a0
{t

. U
}T

+ a2

{
t
.

.
U
}T

+ a3

{
t
.

..
U
}T
)
+ [C]

(
a1
{t

. U
}T

+ a4

{
t
.

.
U
}T

+ a5

{
t
.

..
U
}T
)
+ {Ftrac}T +

{
Fbody

}T
(10)

Upon obtaining the displacement vector, the acceleration and velocity can be obtained,
respectively, as follows:{

t+∆t
.

..
U
}
= a0

({
t+∆t

.U
}
−
{t

. U
})

− a2

{
t
.

.
U
}
− a3

{
t
.

..
U
}

(11){
t+∆t

.
.

U
}
=
{

t
.

.
U
}
+ a7

{
t+∆t

.
..
U
}
+ a6

{
t
.

..
U
}

(12)

where the definition of a0 − a7 in Equations (8)–(12) can be found in [4].

2.2. Lagrangian Element with Legendre-Gauss-Lobatto Nodes and Integration Quadrature

The hexahedron elements used for FE analysis can be divided into two families:
(1) serendipity, i.e., a 20-node brick quadratic widely used in commercial software such as
Abaqus 6.9 [21] and (2) Lagrangian, i.e., a 27-node brick quadratic [22]. The Lagrangian
element consists of Legendre–Gauss–Lobatto (LGL) nodes and integration quadrature. For
a one-dimensional n-point LGL quadrature between −1 and 1, along the ξ axis, the nodal
coordinates are the solution of (

1 − ξ2
) d

dξ
Ln−1 = 0 (13)

where Ln−1 indicates the Legendre polynomial of the degree n − 1. The weight correspond-
ing to a node i, with coordinate ξi, can be calculated as follows:

wi =
2

n(n − 1)[Ln(ξi)]
2 (14)

This formulation can be extended to 3D elements with a different order along the ξ, η, ζ
axis, as nξ , nη , and nζ , respectively. A schematic of such 3D elements with nξ = 6, nη = 6,
and nζ = 3 utilized by [23] to simulate wave propagation is presented in Figure 1. One of
the shape functions is plotted, and the 0 value is presented as void. The integration points
of the element overlap with the nodal coordinates; hence, the shape function is 1 at one
integration point and 0 at all others.
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region (red) 

2.3. Development of a Computationally Time-Efficient Algorithm to Compute Equivalent Nodal 
Force from Pressure Load 

The procedure to implement Hadamard multiplication to compute equivalent nodal 
force is presented in this section. First, the implementation of the Lagrangian element is 
discussed. In this paper, the Legendre–Gauss–Lobatto integration quadrature for a La-
grangian element is computed such that the sequence of node numbers is the same as the 
sequence of the integration points. A schematic of such an element is presented in Figure 
1C, with all integration points on the surface (green) shown to coincide with the nodes on 
the surface. Also, for a shape function 𝑁 (𝑖 = 70 in the figure), the 𝑖 indicates both the 
node number and the integration point number of the element. Note: the Gauss–Legendre 
integration quadrature can be used for region integration, as shown in Figure 1D. As the 
node numbers and integration points follow the same coordinate and same sequence, for 
an integration point number 𝑖, Equations (2) and (3) are as follows: 

Figure 1. Schematic of a Lagrangian element with Legendre–Gauss–Lobatto nodes and integration
quadrature. nξ = 6, nη = 6, and nζ = 3, (A) isometric, (B) top view, (C) Legendre–Gauss–Lobatto
integration quadrature on the surface (green), (D) Gauss–Legendre integration quadrature for the
region (red).

2.3. Development of a Computationally Time-Efficient Algorithm to Compute Equivalent Nodal
Force from Pressure Load

The procedure to implement Hadamard multiplication to compute equivalent nodal
force is presented in this section. First, the implementation of the Lagrangian element
is discussed. In this paper, the Legendre–Gauss–Lobatto integration quadrature for a
Lagrangian element is computed such that the sequence of node numbers is the same as the
sequence of the integration points. A schematic of such an element is presented in Figure 1C,
with all integration points on the surface (green) shown to coincide with the nodes on
the surface. Also, for a shape function Ni ( i = 70 in the figure), the i indicates both the
node number and the integration point number of the element. Note: the Gauss–Legendre
integration quadrature can be used for region integration, as shown in Figure 1D. As the
node numbers and integration points follow the same coordinate and same sequence, for
an integration point number i, Equations (2) and (3) are as follows:

{χ}i =
{

0 . . . Ni = 1 . . . 0
}

(15)
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[N]i =

[0 0 0 . . . Ni = 1 0 0 . . . 0 0 0

0 0 0 . . . 0 Ni = 1 0 . . . 0 0 0

0 0 0 . . . 0 0 Ni = 1 . . . 0 0 0

]
(16)

Next, the algorithm that reduces the equivalent nodal force calculation into a sin-
gle Hadamard multiplication utilizing Equations (15) and (16) is developed. Following
Equation (15), Equation (6) is reduced into

Pi = pi (17)

Similarly, following Equation (16) and replacing Pi with pi, the components of { ftrac}
are as follows: 

ftrac3i−2

ftrac3i−1

ftrac3i

 = [N]Ti wi{dΓ}T
i pi (18)

Equation (18) can be written in terms of Hadamard multiplication as follows:
ftrac3i−2

ftrac3i−1

ftrac3i

 =
{
[N]Ti wi{dΓ}T

i

}
#


pi
pi
pi


T

(19)

Due to the linear independence of the components of { ftrac} from 3i − 2 to 3i, the force
vector for an element can be written as follows:

{ ftrac}T =

(i=ng

∑
i=1

[N]Ti wi{dΓ}T
i

)
#
{

fp
}T (20)

During assembly, if node i of element e1 and node j of the element e2 have the same
coordinate and are denoted as node k in the global coordinate, the k components of the
force vector of the global coordinate are as follows:

Ftrac3k−2

Ftrac3k−1

Ftrac3k

 =


ftrac3i−2

ftrac3i−1

ftrac3i


e1

+


ftrac3j−2

ftrac3j−1

ftrac3j


e2

(21)

Following Equation (19), Equation (21) can be written as
Ftrac3k−2

Ftrac3k−1

Ftrac3k

 =

{{
[N]Ti wi{dΓ}T

i

}
e1
+
{
[N]Tj wj{dΓ}T

j

}
e2

}
#


pk
pk
pk


T

(22)

Hence, the total force vector is as follows:

{Ftrac}T =

(
j=e

∑
j=1

(i=ng

∑
i=1

[N]Ti wi{dΓ}T
i

))
#
{

Fp
}T (23)

where {
Fp
}T

=
{{

p1 p1 p1
} {

p2 p2 p2
}

. . .
{

pnn pnn pnn

}}
(24)

where nn is the total number of nodes of the assembled model. The summation term of
Equation (24) is defined as

{
FP_unity

}
, which follows

{
FP_unity

}T
=

(
j=e

∑
j=1

(i=ng

∑
i=1

[N]Ti wi{dΓ}T
i

))
(25)
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Although the Gauss–Legendre quadrature is widely used in finite element applications
and requires two fewer integration points than Gauss–Lobatto to integrate a polynomial
exactly, Equation (17) cannot be implemented as the nodal coordinates do not coincide with
the integration points. Hence, Equation (6) needs to be used, restricting the development
towards Equation (23).

If large deformation is not involved,
{

FP_unity
}

is constant for a model; hence, it
can be precomputed before the simulation, and only the Hadamard multiplication needs
to be carried out between 2 vectors according to Equation (25). The procedure and the
number of arithmetic operations are determined for the conventional and current methods
in Tables 1 and 2, respectively. In Table 2, the operations are computed for the precomputed
and runtime phases.

Table 1. Arithmetic operations of the conventional method.

Operation Operation Description No of Arithmetic Operations

Extract {p}.
e from

{p} of Equation (6)

1: Elementwise addition
ne{p}.

e = {p}.
e + {p}

ne × 1 ne × 1 nn × 1

Compute Pi, Equation (6)
2: Matrix vector multiplication

2nePi = {χ}i × {p}T
e

1 × 1 1 × ne ne × 1

Compute { ftrac}, Equation (4)

3.1: Matrix–matrix multiplication
12ne{a} = [N]Ti × {dΓ}T

i
3ne × 1 3ne × 3 3 × 1

3.2: Scalar–scalar multiplication
1b = Pi × wi

1 × 1 1 × 1 1 × 1

3.3: Scalar–vector multiplication
3ne{c} = {a} × b

3ne × 1 3ne × 1 1 × 1

3.4: Sum to { ftrac}
3ne{ ftrac} = { ftrac} + {c}

3ne × 1 3ne × 1 3ne × 1

Assembly of the force vector for one surface

4.1: Operation 1 once and 2 to 3, ng times (20ne + 1)ng + ne

4.2: Elementwise addition
3nn{Ftrac} = {Ftrac} + { ftrac}

3nn × 1 3nn × 1 3ne × 1

Total for the whole model 5: Operation 4, nE times
(
(20ne + 1)ng + ne + 3nn

)
nE

The algorithm flowchart for both methods is presented in Figure 2, with the precom-
putation and runtime phases marked as blue and yellow, respectively. The pressure load in
an input to the FE models is used for the equivalent nodal force computation. It is evident
from Figure 2B that the precomputation phase handles most of the operations, leaving only
6nn operations during the runtime phase for such computation. Note that the conventional
method involves

(
(20ne + 1)ng + ng + 3nn

)
nE ≫ 6nn operations that have to be carried

out during runtime (Figure 2A).
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Table 2. Arithmetic operations of the current method.

Operation Operation Description
No of Arithmetic

Operations for
Precomputation

No of Arithmetic
Operation
Runtimes

Compute
{

FP_unity

}
,

Equation (25)

1.1: Matrix–matrix multiplication
12ne{a} = [N]Ti × {dΓ}T

i
3ne × 1 3ne × 3 3 × 1

1.2: Scalar–vector multiplication
3ne{c} = {a} × wi

3ne × 1 3ne × 1 1 × 1

1.3: Sum to {d}
3ne{d} = {d} + {c}

3ne × 1 3ne × 1 3ne × 1

1.4 : Operations 1.1 to 1.3, ng times 18ne × ng

1.5: Elementwise addition

3nn

{
FP_unity

}
=

{
FP_unity

}
+ {d}

3nn × 1 3nn × 1 3ne × 1

1.6 : Operations 1.4 and 1.5, nE times
(
18ne × ng + 3nn

)
nE

Compute
{

Fp
}

, Equation (24)
2: Elementwise addition

3nn
{

Fp
}
= {FP} + {p}

3nn × 1 3nn × 1 nn × 1

Compute {Ftrac}, Equation (23)
3: Hammard multiplication

3nn{Ftrac} =
{

FP_unity

}
#

{
Fp
}

3nn × 1 3nn × 1 3nn × 1

Total for the whole model
(
18ne × ng + 3nn

)
nE 6nn

1 
 

 
 

(A) (B) 

Figure 2. 

 
  

Figure 2. Flowchart for (A) conventional method using Table 1 and (B) current method using Table 2.
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Additionally, as the
{

FP_unity
}

is a one-dimensional vector of size 3n × 1, the memory
requirement for storing the vector is the same as the force vector for the whole model
computed during the assembly operation. Hence, this current method does not increase
the memory overhead with respect to the conventional method.

2.4. Application: Model Details

First, the efficiency in terms of computational time is tested with a plate model.
Although, for 3D implementation, a single layer of elements is not recommended, the
objective is to prove computational efficiency. Hence, the algorithm is tested to a simple
model: a one-element layer thick plate of dimension 30 m × 30 m × 3 m, where pressure
load is applied on the top surface (yellow surface of Figure 3). The Gauss–Legendre
quadrature is used for region integration, whereas the Gauss–Lobatto is used for equivalent
nodal force calculation from the pressure load.
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Figure 3. Plate model with (A) 1 element and (B) 64 elements with 27-node elements. Figure 3. Plate model with (A) 1 element and (B) 64 elements with 27-node elements.

As only one of the surfaces for each element is involved, the total number of surfaces is
equal to the number of elements. The computational time with respect to the conventional
method is measured as the runtime ratio, which is the ratio of CPU time following the
current and conventional method during runtime.

Two cases are carried out. First, the number of elements increases from 1 to 121 as 1, 4,
9, 16, 25, 36, 49, 64, 81, 100, and 121, by changing the number of elements along x and y and
keeping just 1 element along z. The equivalent nodal forces are calculated for a pressure
load of 1 Pa.

Next, for the case of 36 elements, the nodes of a single element are increased from
2 to 9 as nη and nξ and nζ is kept as 3. A schematic of one of the cases, nξ = nη = 7, is
presented in Figure 4.

Next, a convergence study is carried out using the plate model. The static displacement
with the material property described in Table 3 was utilized for convergence analysis. The
edge of the plate on the z = 0 plane was considered fixed for the boundary condition, and a
pressure load of 0.1 MPa was implemented. The finest mesh of all of these test cases is with
121 elements. Although increasing the number of elements is expected to reduce error, the
convergence behavior can be shown with the 121-element mesh. Hence, the displacement
of the fine mesh with 121 elements was computed and set as the reference.
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Table 3. Material properties.

Material Properties Value

Modulus of elasticity 68 GPa
Poission’s ratio 0.3
Density 2703 kg/m3

Damping [C] 0.00001[K]

With u121 determined, the difference in displacement or error for other models ∆u is
computed as follows:

∆u =
(u − u121)

u121
× 100% (26)

Finally, this method is implemented on a space habitat model. A space habitat dome
model with inner and outer radii of 2.5 and 2.9 m is modeled using 64 27-node quadratic
elements, 819 nodes, and a 2457 DOF, as shown in Figure 5. The habitat has two surfaces:
red indicates the inner, and blue indicates the outer surface, subjected to pressure load
Pinner and Pouter, respectively. The yellow region from z = 0 to −1 is developed for ground
consideration, and the habitat will be connected to the ground. For the analysis, the nodes
at the yellow region with z < 0 are considered fixed-end boundary conditions.

Figure 5. The space habitat FE model.
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Dynamic analyses are carried out using the traction load following both current and
conventional methods. The time-varying pressure load is set as follows:

Pouter = 104y × sin(2πt) (27)

Pinner = 101325 + 102sin(20πt) (28)

For analysis, first, during the precomputation stage, a static analysis with
Pinner = 101, 325 and Pouter = 0 is performed. Next, the inverse of

[
K
]

is precomputed
following Equation (9). Finally, the dynamic simulation is performed as the runtime stage,
following the NB integration scheme (Equations (8)–(12)) with timestep ∆t = 0.0001 s.
Besides displacement, velocity, and acceleration, the stress is calculated for the integration
points following the procedure described in [6]. Finally, the stress is extrapolated to the
nodal points.

3. Results and Discussion
3.1. Computational Efficiency and Convergence Test

The runtime ratio is obtained following both conventional and current methods for the
plate subjected to pressure load. The obtained equivalent nodal force for both procedures
matches and verifies the procedure. For the study with the increase in element number,
the results are presented in Figure 6A, where the current method is 5.3 times faster for one
element. As the number of elements increases, the ratio reaches 27.5 asymptotically. The
runtime ratio for the increase in element order is illustrated in Figure 6B, where it is evident
that the current method is at least > 20 times faster than the conventional method, but the
change in element order does not affect the computational performance predictably.

 

2 

  

(A) (B) 

Figure 6. Figure 6. The runtime ratio for (A) an increase in element number with 27-node elements and (B) an
increase in element order with 36 elements.

The displacement for the 121-element model is computed as u121 = 16.12 mm. A 3D
overview of the displacement profile is shown in Figure 7. Equation (26) is used to obtain
the error for the increase in the number of elements and the increase in the element order,
presented in Figures 8A and 8B, respectively. It is obvious from the plot that the error
decreases with an increase in both the number of elements and element order.
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Figure 7. Plate model with 121 27-node brick elements.

Figure 8. Convergence for (A) an increase in element number with 27-node elements and (B) an
increase in element order with 36 elements.

3.2. Application to Space Habitat Models

The displacement profile for the dynamic scheme for the topmost node at z = 2.9 is
shown in Figure 9A along y and Figure 9B along the z-axis, which shows that the frequency
of the sinusoidal behavior of the displacement matches the loading frequency. A 3D profile
of the displacement and von Mises stress are presented in Figures 10A and 10B at 0.75 s,
respectively.

The time required for the pressure calculation following the current and conventional
method, as well as the NB integration with precomputed

[
K
]
, is presented in Figure 11.

It is obvious from the figure that the current method (around 6 s) takes significantly less
time compared to the conventional method (around 175 s), which is higher than the NB
integration scheme (around 55 s). The calculated runtime ratio is 26.25.
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3.3. Limitations

This work has three limitations: First, only the Lagrangian element can benefit from
this method, as nodes of the serendipity family elements do not coincide with the LGL inte-
gration quadrature. Second, time-invariant {dΓ} is required to precompute Equation (25).
Hence, this method may not be applicable to large deformations [24]. Finally, it primarily
considers elements with a single surface subjected to traction loading. If multiple surfaces
of an element experience unequal pressure loads, the method presented cannot be directly
applied. While the detailed implementation of such cases is beyond the scope of this paper,
a procedure to address this scenario is outlined here. Figure 12 illustrates an example where
elements e1 and e2 each have two faces subjected to traction loads. For element e1, node i
experiences equal pressure loading on both surfaces, denoted as a. Conversely, for the ele-
ment e2, node j is subjected to differing traction loads from two distinct surfaces. To handle
this, the method involves partitioning all surfaces into two groups, Γ1 and Γ2, represented
by red and blue, respectively. Subsequently, Equation (23) is applied independently for
each group and calculates the

{
Fp
}

vector. Finally, a Hadamard product is employed to
compute the global force vector, as shown in Equation (29).

{Ftrac}T =

[{
FPunity

}∣∣∣
Γ1

{
FPunity

}∣∣∣
Γ2

. . .
]T

#
[{

Fp
}∣∣

Γ1

{
Fp
}∣∣

Γ2
. . .
]T

(29)
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Figure 12. Surface partitioning to account for corner nodes subjected to two different traction loads
from two different surfaces.

4. Conclusions

A computationally time-efficient method was developed to compute equivalent nodal
force due to pressure load. Elements of the Lagrangian family with Gauss–Lobatto nodes
and integration quadrature were implemented in such a way that the integration points
follow the same sequence as the nodes. Through the implementation of such an element, the
computation of the equivalent nodal force is reduced into a single Hadamard multiplication.
Computational efficiency was established by computing the arithmetic complexity of this
method. This method is implemented in a single-element thick plate model with different
element densities. As the number of elements increases, the runtime ratio increases,
surpassing 20 for 36 elements for a one-element thick plate model. It is also observed
that the increase in element order decreases the runtime ratio by around 22% for the
36-element density but still outperforms the conventional method. Finally, a habitat model
is developed, and dynamic analysis is carried out with a time-varying pressure load on two
different surfaces that showed a runtime ratio over 20 by the current method to compute
the equivalent nodal force from the pressure load.
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Nomenclature

[m] Mass matrix for an element
[c] Damping matrix for an element
[k] Stiffness matrix for an element{ ..

u
}

Acceleration vector for an element{ .
u
}

Velocity vector for an element
{u} Displacement vector for an element
{re} Equivalent nodal force due to external forces on element e{

fbody
}

Body force vector of an element{
ftrac

}
Tractor force vector of an element{

Ftrac
}

Traction vector of the assembled model{
Fbody

}
Body force vector of the assembled model

[M] Mass matrix for the assembled model
[K] Stiffness matrix for the assembled model
[C] Damping matrix for the assembled model{ ..

U
}

Acceleration vector for the assembled model{ .
U
}

Velocity vector for the assembled model[
K
]

Equivalent stiffness matrix for the assembled model
{U} Displacement vector for the assembled model
{φ} Normal surface traction vector
Ni Shape function corresponds to node i of an element
[J] Jacobian matrix
Pi Traction magnitude on an integration point i
wi Weight of an integration point i
{χ} vector of shape functions
n Number of nodes
nξ Number of nodes along ξ axis
nη Number of nodes along η axis
nζ Number of nodes along ζ axis
pi Pressure at node i
ne Number of nodes of an element e
ng Number of integration points of an element e
nE Number of elements of the assembled model
nn Number of nodes of the assembled model
Abbreviations
FE Finite element
FEM Finite element method
LGL Legendre–Gauss–Lobatto
NB Newmark-Beta
EOM Equation of motion
SoS System of systems
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