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Abstract: This article presents a systematic review using PRISMA methodology to explore trends
in the use of machine and deep learning in diagnosing and detecting Alzheimer’s disease using
electroencephalography. This review covers studies published between 2013 and 2023, drawing on
three leading academic databases: Scopus, Web of Science, and PubMed. The validity of the databases
is evaluated considering essential factors such as the arrangement of EEG electrodes, data acquisition
methodologies, and the number of participants. Additionally, the specific properties of the databases
used in the research are highlighted, including EEG signal classification, filtering, segmentation
approaches, and selected features. Finally, the performance metrics of the classification algorithms
are evaluated, especially the accuracy achieved, offering a comprehensive view of the current state
and future trends in the use of these technologies for the diagnosis of Alzheimer’s disease.

Keywords: deep learning; diagnosis of Alzheimer’s disease; EEG; machine learning; systematic
review

1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative pathology that progresses over time
and mainly affects older people. Its symptoms vary among those affected but include
memory loss, confusion, and extensive cognitive impairment [1,2]. Early identification
and accurate diagnosis are essential to provide appropriate medical care and improve the
quality of life of patients [3,4]. With technological progress in capturing brain signals, such
as the electroencephalogram (EEG), more accurate and effective diagnostic methods have
been developed. Due to its non-invasive nature, the EEG records the brain’s electrical
activity through electrodes on the scalp, offering valuable insights into brain alterations
linked to Alzheimer’s disease [5–7].

Machine learning (ML) and deep learning (DL) techniques for classifying EEG signals
have been established as an expanding area of research. These methods allow the analysis of
large volumes of EEG data to identify non-obvious patterns, potentially facilitating the early
diagnosis of AD [8,9]. However, the effective implementation of these techniques needs to
be improved. Critical factors such as the appropriate choice of EEG databases, a correct
arrangement of the electrodes, the selection of an appropriate number of participants, the
identification of relevant features for the analysis, the choice of appropriate classification
algorithms, and a rigorous evaluation of its performance is decisive in the quality and
reliability of the results obtained [10].

This work aims to carry out a systematic review of current trends in the use of ML
and DL to detect and diagnose AD through the use of EEG. Fundamental aspects such as
preparation prior to data collection is addressed, including the selection of the EEG database,
the electrode placement strategy, data acquisition methodologies, and the selection of the
number of volunteers. A detailed analysis of ML and DL methods will be carried out,
including everything from filtering and segmentation techniques to feature selection. The
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evaluation metrics used to determine the effectiveness of the classification algorithms
are also reviewed. This article offers a comprehensive overview of the advances and
methodologies in applying ML and DL in EEG analysis to diagnose and detect AD early.

The main contributions of the work are:

• Artificial intelligence is a booming branch that offers an alternative to understanding
diseases. However, it is susceptible to the input data and its processing. This work
analyzes these critical points described in the state of the art.

• No work has been carried out in the last ten years with this approach to analysis; before
the application of artificial intelligence algorithms, their selection and classification
levels focused on Alzheimer’s disease.

• This review covers the analysis of EEG signal databases for use in AI, the demographic
data of the patients that comprise them, and the data acquisition paradigms, resulting
in a necessary tool for future research.

The structure of the current work is divided as follows: Section 2 exposes the sequential
steps that must be followed to implement the proposed review. The results and discoveries
obtained are presented in Section 3. Section 4 analyzes and interprets the results. Finally, in
Section 5, the areas covered by the scope of this work are exposed.

2. Materials and Methods

The article selection and screening methodology are described in this section. The
inclusion and exclusion criteria are detailed to select relevant studies. The searches in
scientific databases and the screening process are discussed and divided into two main
stages: an initial review based on titles and abstracts and a full-text review. The selection
was based on the relevance and relationship to the topic of interest.

Search Strategy

The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA)
guidelines were used in this systematic review [11]. The systematic search was conducted
to identify studies investigating the use of ML and DL methods in the diagnosis of mild
cognitive impairment (MCI) and Alzheimer’s Disease using EEG. Articles written in English
and published between 2013 and 2023 were exclusively selected. The search strategy
used the PubMed, Scopus, and Web of Science databases. The following key terms were
combined using Boolean operators:

• TITLE-ABS-KEY ((mci OR (mild AND cognitive AND impairment) OR (amnestic
AND mild AND cognitive AND impairment) OR Alzheimer) AND (eeg OR electroen-
cephalography) AND (detection OR diagnosis OR classification OR diagnostic) AND
((deep AND learning) OR (machine AND learning)) AND (LIMIT-TO (DOCTYPE,
“ar”)) AND (LIMIT-TO (PUBYEAR, 2023) OR LIMIT-TO (PUBYEAR, 2022) OR LIMIT-
TO (PUBYEAR, 2021) OR LIMIT-TO (PUBYEAR, 2020) OR LIMIT-TO (PUBYEAR,
2019) OR LIMIT-TO (PUBYEAR, 2018) OR LIMIT-TO (PUBYEAR, 2017))).

Three independent reviewers removed duplicates and applied eligibility criteria to
select relevant articles. Those who met the following criteria were included:

• Use of AD or MCI databases.
• Use of EEG data.
• Use of classification methods based on ML or DL algorithms.
• The works presenting objective performance measures were included, which allows

an accurate evaluation of ML and DL’s capacity to diagnose MCI and AD.

Relevant data were extracted from each selected study, including diagnostic meth-
ods prior to database acquisition, study groups, sample size, mean age, EEG electrode
placement, acquisition, classification techniques used, signal processing, features used
for classification, feature evaluation metrics, and the classification percentages obtained.
These data allow it to comprehensively analyze the selected studies and evaluate their
contribution to diagnosing MCI and AD using EEG. To ensure a systematic and transparent
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process in this review, the PRISMA methodology was followed. Initially, 425 articles from
the PubMed (107), WOS (141), and Scopus (177) databases were included. Duplicates
were subsequently removed, resulting in 241 unique articles. Then, the exclusion criteria
were strictly applied, which included cohorts other than Alzheimer’s or MCI, the non-use
of EEG, the absence of machine learning or deep learning techniques, volunteers with
conditions additional to MCI or AD, and the lack of presentation of performance metrics
such as algorithm efficiency and incomplete information. After this evaluation, 109 articles
met all criteria and were included in this review. The Figure 1 illustrates this selection
process in detail.
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Articles included in the search database: 
425(PubMed = 107, WOS = 141, Scopus = 177)

Remaining articles after removing 
duplicates n = 241

Articles remaining after the application 
of the exclusion criteria n = 109

Articles were excluded for one or
more of the following criteria:

• The cohort is other than
Alzheimer's or MCI

• EEG is not used

• No machine or deep learning
technique is used

• Volunteers suffer from some
other condition besides MCI or
EA

• No metric of algorithm efficiency
is presented

• Incomplete information

Articles included n = 109

Figure 1. General methodology for the selection of articles.

Additionally, to ensure data integrity and methodological consistency, the following
steps were adopted:

• Study selection criteria: Only studies that met predefined inclusion criteria, which
guaranteed the use of EEG, were included. These criteria included specifying the
EEG acquisition methodology, using cohorts diagnosed with Alzheimer’s or MCI, and
applying standardized machine learning or deep learning techniques.

• Review of methodologies: The methodologies used in each study for the acquisition
and processing of EEG data were reviewed in detail. This included the evaluation
of recording parameters, experimental conditions, and preprocessing procedures,
ensuring that they met the standards established in the scientific literature.

• Peer review: All studies selected for review underwent a peer review process, ensuring
the additional scrutiny of the validity and reliability of the data and methods used.

• Transparency and reproducibility: Studies were considered that provided sufficient
detail about their methods and data, allowing the reproducibility of the experiments.
Transparency in the presentation of results and analysis methods was also an important
criterion for inclusion.

3. Results

In the results section, the findings obtained are presented. This section details signifi-
cant advances, identifies emerging patterns and trends in current research, and highlights
the most effective methodologies and areas requiring further research.

3.1. Traditional Alzheimer’s Diagnosis Techniques for Database Formation

The database quality implemented for the classifiers’ training is a critical point in ML
and DL. In this section, an exhaustive analysis of the diagnostic techniques implemented
before the ML and DL methodology is carried out to diagnose the volunteers and confirm
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Additionally, to ensure data integrity and methodological consistency, the following
steps were adopted:

• Study selection criteria: Only studies that met predefined inclusion criteria, which
guaranteed the use of EEG, were included. These criteria included specifying the
EEG acquisition methodology, using cohorts diagnosed with Alzheimer’s or MCI,
and applying standardized machine learning or deep learning techniques.

• Review of methodologies: The methodologies used in each study for the acquisition
and processing of EEG data were reviewed in detail. This included the evaluation
of recording parameters, experimental conditions, and preprocessing procedures,
ensuring that they met the standards established in the scientific literature.

• Peer review: All studies selected for review underwent a peer review process, ensuring
the additional scrutiny of the validity and reliability of the data and methods used.

• Transparency and reproducibility: Studies were considered that provided sufficient
detail about their methods and data, allowing the reproducibility of the experiments.
Transparency in the presentation of results and analysis methods was also an impor-
tant criterion for inclusion.

3. Results

In the results section, the findings obtained are presented. This section details signifi-
cant advances, identifies emerging patterns and trends in current research, and highlights
the most effective methodologies and areas requiring further research.
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3.1. Traditional Alzheimer’s Diagnosis Techniques for Database Formation

The database quality implemented for the classifiers’ training is a critical point in ML
and DL. In this section, an exhaustive analysis of the diagnostic techniques implemented
before the ML and DL methodology is carried out to diagnose the volunteers and confirm
which cohort they belong to. An incorrect diagnosis before the application of artificial
intelligence algorithms affects the accuracy of the results and makes it difficult to obtain
solid conclusions. If a participant is misdiagnosed, either by classifying them as healthy
when they have early disease symptoms or by labeling them as Alzheimer’s patients when
they are not, the results of classifiers trained with such a database could be biased and lead
to wrong conclusions.

In analyzing the diagnostic techniques used in the reviewed studies, several tools
and methods widely used to detect dementia and cognitive impairment were identified.
The Mini-Mental State Examination (MMSE) is the most used diagnostic technique in 50%
of the analyzed studies [5–7,12–19]. This test is used to detect the presence of dementia
in psychiatric patients through systematic screening. In addition, it is used to follow the
evolution of cognitive deterioration in patients with dementia over time.

Another relevant diagnostic technique is the Montreal Cognitive Assessment (MoCA) [20–24].
This brief screening test assesses cognitive function in six domains: memory, visuospatial
capacity, executive function, attention, concentration, working memory, language, and
orientation. This test was used in 15% of the papers analyzed and comprehensively
assessed cognitive function. As for imaging tests, it was found that magnetic resonance
imaging (9.5%), positron emission tomography (4.25%), computed tomography (3.77%),
and single-photon emission tomography (2.83%) techniques were also used in the diagnosis
of dementia. These techniques allow for the visualization and analysis of the brain to
identify possible structural and functional abnormalities.

In addition to these tools, other diagnostic tests were used to a lesser extent. The
Neuropsychiatry Unit Cognitive Assessment Tool (NUCOG) was presented in 3.7% of the
papers [14,21,25], while the Wechsler Memory Scale represented 2.83% and the Boston
Naming Test 1.88%. These tests assess specific aspects of cognitive function and contribute
to the accurate diagnosis of dementia. It is essential to highlight that some studies do
not specify the initial diagnostic process for creating the database. In these cases, the
presence of unspecified brain images was demonstrated in 4.71% of the works, unspecified
neurological examinations in 11.3%, diagnosis made by experts in 9.43%, interviews in
5.66%, and 11.3% did not describe any prior diagnostic methodology.

Concerning the diagnostic criteria used in the studies analyzed, several standards
and metrics widely used in detecting and diagnosing dementia were identified. One of
the most used criteria was the National Institute of Neurological and Communicative
Disorders and Stroke and the AD and Related Disorders Association (NINCDS-ADRDA),
present in 20.75% of the papers analyzed [26–30]. This criterion establishes the clinical and
neuropathological standards for diagnosing AD.

Another main diagnostic criterion was the Dementia Rating (CDR), which was used
in 12.26% of the studies [31–35]. The CDR is a clinical tool that assesses and classifies
dementia severity across multiple cognitive domains and provides a standardized and
reliable measure for diagnosing and monitoring cognitive impairment. The Diagnostic and
Statistical Manual of Mental Disorders (DSM), a widely used reference manual in mental
health, was also mentioned in 9.43% of the papers. This manual provides diagnostic criteria
for various mental disorders, including Alzheimer’s disease.

Regarding the National Institute on Aging-Alzheimer’s Association (NIA-AA) Criteria,
its presence was found in 7.5% of the papers analyzed [36,37]. These criteria have been
developed by a collaboration between the National Institute on Aging and the Alzheimer’s
Association, as well as ongoing updates and consensus for diagnosing and classifying AD.
Finally, the RedLat (Standardized Diagnostic Assessment of the Multipartner Consortium
to Expand Dementia Research in Latin America) was identified in 1.88% of the studies [23].
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This criterion is part of a consortium that aims to standardize the diagnostic evaluations of
dementia in Latin America.

These different diagnostic criteria reflect the importance of reliable tools and standards
for accurately detecting and classifying dementia in the context of machine research and
deep learning. Choosing the appropriate diagnostic criteria is crucial to guarantee the
consistency and comparability of the results obtained in the studies.

3.2. Demographic Data of the Participants from the Databases

Three main aspects are examined: the average age of the participants, the percentage
of males and females that make up the sample, and the average education level of the
subjects. It is essential to highlight that only some reviewed papers reported the informa-
tion necessary for these analyses. Of the 109 papers analyzed in this systematic review,
19 articles that did not provide the required statistics were identified [16,38–47]. This lack
of information may be due to different reasons, such as the need for greater standardization
in the presentation of demographic data.

Regarding the average age of the participants, significant differences were observed
between the groups of healthy volunteers, those with MCI, and Alzheimer’s patients.
The average age for healthy volunteers was 68.53 years, with a standard deviation of
6.18. In the MCI group, the mean age was 70.52 years, with a standard deviation of 5.68.
Finally, in the group of patients with Alzheimer’s, the average age was 73.66 years, with a
standard deviation of 5.58. These differences in average age reflect the progressive nature
of Alzheimer’s disease, which tends to manifest itself later in life.

Regarding the years of education, it was observed that the healthy volunteers had
an average of 11.24 years, with a standard deviation of 2.98. On the other hand, MCI
patients had an average of 9.67 years of education, while Alzheimer’s disease patients had
an average of 9.36 years, with a standard deviation of 2.84. These data indicate that the study
participants had varied educational levels, which is essential to remember when interpreting
the results and considering possible influences of education on cognitive performance.

Concerning the gender distribution in the databases, differences in the proportion of
males and females were found. On average, the databases comprised 47.35% male, with a
standard deviation of 10.12, and 53.57% female, with a standard deviation of 12.13. This
indicates that, in general, the databases include a slightly higher proportion of females. In
addition, the gender distribution by cohort was analyzed in healthy volunteers, MCI, and
Alzheimer’s patients. For healthy volunteers, it was found that, on average, 24.19% were
female, and 18.87% were male. In the MCI group, the proportion of females was 20.47%,
while the ratio of males was 19.68% on average. Finally, in the group of Alzheimer’s
disease patients, the proportion of females was 24.19%, and the balance of males was
21.86% on average. These differences in gender distribution by cohort may be significant in
understanding possible variations in disease patterns and clinical manifestations.

This analysis of databases used in Alzheimer’s disease screening and diagnosis studies
using ML and DL techniques reveals differences in mean age, years of education, and
gender distribution between healthy volunteers, MCI, and patient groups with Alzheimer’s
disease. These findings provide important information about the demographic features
of the samples used in the studies, which is essential to interpret and generalize the
results obtained.

The balance in the number of cases in the databases impacts the robustness of the
model. According to the analysis of the percentages for control cases against cases with the
disease, 50.47% of the databases show a difference of less than 10% between the number
of cases with the disease and the control cases, which suggests that most of the methods
reviewed used a balanced database [12–14,17,20,26,43,48,49]. On the other hand, in 8.5% of
the databases, the total number of cases with the disease represents between 70 and 90% of
the total cases, that is, they used a database with a bias in the number of cases [7,15,50,51].
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3.3. EEG Acquisition

This section analyzes the number of electrodes used, sampling frequencies, and acqui-
sition activities carried out by the volunteers who created the databases.

3.3.1. Number of Electrodes in the Acquisition of EEG Signals

In this context, 63 databases have been analyzed to understand the most used con-
figurations and their relative proportions in scientific papers. Four main configurations
were identified from the 63 analyzed databases representing the most used amounts of
electrodes. The first uses 19 electrodes, the most frequently used in 19% of the works. As
the second most used configuration, the use of 16 electrodes was found to be present in
17.46% of the total databases analyzed. This relatively minor number of electrodes may
be due to studies focused on specific brain areas or restrictions in the equipment available
for research. Thirdly, it is observed that implementing 32 electrodes is another standard
option, being used in 14.28% of the analyzed databases. This configuration offers a greater
density of information about brain activity, which is valuable for studies that seek a high
level of detail.

On the other hand, it was identified that 21 electrodes also represent a common choice,
present in 7.93% of the works analyzed. This configuration may be preferred in studies
that seek a balance between information density and available technical resources. It is
interesting to note that two configurations that stand out for their high electrode density
were found. First, using 64 electrodes in 9.52% of the databases offers much information
about brain activity, which is especially useful in research seeking comprehensive coverage.
Secondly, it was identified that the configuration of 128 electrodes, although less frequent,
was present in 6.34% of the analyzed databases.

Finally, less common configurations were found, corresponding to 25.46%. These
include sensor configurations such as 1, 7, 30, and 33, among others. All the above
configurations correspond to the international 20–10 system. Table 1 shows the electrode
configurations found in the analysis.

Table 1. Electrode configurations in AD analysis.

Ref. Electrode Configuration

[4,5,7,8,12,13,16,51–59] 19
[29,49,60–65,65] 16
[6,20,35,66–71] 32

[3,72–76] 21
[42,50] 64

[2,23,77,78] 128
[36,37,46,79–83] Less common configurations

3.3.2. Analysis of Activities in Patients for Clinical Data Collection

In the context of the early detection of AD, the careful examination of the activities
of patients becomes crucially important. This detailed analysis of daily actions allows for
detailed stratification and helps design a valuable instrument for identifying patterns and
early signs of the disease.

The above highlights the relevance of tasks, specifically resting with eyes closed at
58.67%, as a fundamental strategy for acquiring EEG signals. This highlights the importance
of these controlled conditions to obtain and record more precise and consistent brain signals
to evaluate more precise patterns for feature extraction. According to [84], these activities
evidence the synchronous activation of multiple cortical neurons that coordinate to produce
signals of considerable amplitude.

Acquisition with eyes open is another popular technique with 9.64% of the reviewed
works. Other activities, such as analyzing responses to sound and visual stimuli or cognitive
tasks, are intended to evaluate cognitive abilities in older people, represented by 11.73%.
This approach not only enables the early detection of patterns associated with Alzheimer’s
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disease, but also facilitates the continuous monitoring of disease progression. Furthermore,
these techniques allow the design of a plan for particular interventions and the development
of specific therapies and, ultimately, improve the quality of life of those affected by this
neurological condition [85].

The other activities involve more specific studies, such as analyzing signals before
sleep or after some physical activity, which represent 1.53% and 2.04%, respectively. Table 2
shows some works that apply the various acquisition paradigms for EA classification.

Table 2. Techniques and activities in the acquisition of EEG signals.

Ref. Acquisition Paradigm

[5,16,18,21,22,24,25,28,29,32,33,38,57–59,70,72,82,83,86,87] Closed eyes
[2,6,12,27,35,42,47,54,71,73–75,77,79,88–90] Open eyes

[20,26,33,80,91,92] Responses to stimuli and cognitive tasks
[19,41,93] Sleep
[48,49,64] Physical activity

3.3.3. Sampling Frequencies of EEG Signals

The analysis of the sampling frequencies implemented in the 63 databases reveals
that preferences and trends in this field have been obtained. Of the sample frequencies
analyzed, it stands out that the most used is 256 Hz, present in a considerable 22.22% of
the works reviewed. This choice may be because 256 Hz is a widely accepted standard
frequency in the scientific community to accurately and efficiently acquire brain activity
data. In second place, there is the frequency of 500 Hz, corresponding to 20.63% of the
databases. Thirdly, the 1024 Hz frequency is present in 14.28% of the acquisitions. This
choice relates to research seeking a high temporal resolution to capture brain signals. Two
other sample rate values used in a similar percentage are 1 kHz and 200 Hz, present in
11.11% and 12.68% of the databases, respectively.

On the other hand, the highest and lowest sampling frequencies found were the 128 Hz
frequency used in 6.34% of the cases, while the 5 kHz frequency was used in 3.17% of the
databases. These frequencies are related to specific investigations that require very fast or
slow sampling to detect particular phenomena in the brain. In the remaining 6.34%, some
frequencies were used only once, such as 10 kHz, 2 kHz, and 83.3 Hz. Finally, it is essential
to note that a small percentage of works did not report their sampling frequency, in 3.175%
of the cases. This highlights the importance of transparency and adequate documentation
in the presentation of research results since the sampling frequency is a crucial aspect of
the interpretation and replicability of the studies. Table 3 shows the sampling frequencies
most implemented in Alzheimer’s detection.

Table 3. Sampling frequencies of EEG signals in the analyzed databases.

Ref. Sampling Frequency

[3,5,7,13,16,28,30,40,51,54–59,63,70,72,73,75,76,87,88,93,94] 256 Hz
[6,12,20,32,36,37,47,69,71,92,95–97] 500 Hz

[8,18,23,49,56,58,60,62,65,66,87,93,98,99] 1024 Hz
[45,48,67,77] 1 kHz

[4,23,61,72,76,90,100] 128 Hz
[91,92] 5 kHz

[26,27,78,79,100] Frequencies ***

Frequencies *** refer to frequencies of 10 kHz, 2 kHz, and 83.3 Hz.

3.4. Filtering Methods for Signal Processing

The studies analyzed show a significant preference for the combined use of Band-pass
and Notch filters, with low cut-off frequencies ranging from 0.1 Hz to 1 Hz, with the most
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common option being 0.5 Hz, followed by 1 Hz. Finally, the most used low-cost frequency
is 0.1 Hz.

On the other hand, high cut-off frequencies are between 30 Hz and 45 Hz. The most
used high cut-off frequency is around 30 Hz. The second most used frequencies are close to
45 Hz. Table 4 shows the most common outage frequencies.

Table 4. Low and high cutoff frequencies in the use of filters.

Ref. Cutoff Frequency

[15,16,23,25,36–41,44,48,49,51,57,60,67,101] 0.5 Hz high pass
[7,9,20,22,52,53,55,56,63,65,69,81,86,92,102,103,103] 1 Hz high pass

[8,12,19,33,34,50,83,99,104] 0.1 Hz high pass
[4,8,16,19,22,25,35,38,40,41,46,56,57,59,60,63,66,79,86,90,96,97,101,103,105] 30 Hz low pass

[7,15,18,23,48–50,53,55,65,70,80,81,89,95,102,106] 45 Hz low pass

Filter type selection varies widely among studies, reflecting differences in analytical
needs and methodological preferences, with the most common being the Butterworth filter.
Butterworth filters are valued for their flat response in the passband, allowing minimal
distortion within the frequency range of interest.

Independent component analysis (ICA) is another frequently cited method used not
only as a filter per se but as a technique for artifact removal, underscoring the importance
of signal cleaning in EEG preprocessing. This technique is beneficial for identifying and re-
moving signal the components associated with blinks, eye movements, and other non-brain
artifacts. Additionally, the specific applications of filters such as Chebyshev, Wavelet, and
finite impulse response (FIR) are identified, which are selected for their unique properties
that may be particularly beneficial under certain study conditions, such as the need for
filters with highly selective frequency responses or the ability to decompose the signal
into frequency components for detailed analysis. The choice of filters and preprocessing
techniques in EEG analysis is a critical decision that directly influences the quality and
interpretation of the collected data. Table 5 shows the most common filter types in the
processing of EEG signals for patients with AD.

Table 5. Summary of filters and techniques in AD studies.

Ref. Filter

[3,4,6,12,14,15,17,26,34,36,46,47,52,62,70,78,91,97,102] Butterworth
[9,20,33,35,48,59,75,81,83,95,106,107] ICA

[44,78] Chebyshev
[28,34] Elliptical
[31,45] Wavelet

[4,8,16,19,22,25,35,38,40,41,46,59,60,63,66,79,86,97,101,103] FIR

3.5. Feature Extraction

The selection and analysis of features represent a fundamental pillar in studying
EEG signals from people with AD. This process allows us to identify distinctive patterns
in patients’ neurological conditions and facilitate discrimination between the different
cognitive states and stages of the disease. Through EEG processing and analysis, we
seek to extract relevant information hidden in the raw signals, transforming the data into
information applicable to diagnosis [108].

Analyzing the features in the time, frequency, and time–frequency domains is a critical
task. Each domain offers a unique perspective on brain activity, from the temporality
and amplitude of signals to their spectral composition and the interaction between dif-
ferent frequencies over time. It has been determined that 36.49% of the reviewed works
focus on analyzing the frequency domain. As for the most-used frequency feature, it is
the calculation of power spectral density (PSD) [3,36–38,56,78,95,106]. Another feature
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in this domain is the coefficients of the Fourier transform [34,58,87]. Likewise, research
that focuses on the temporal features of EEG signals makes up 22.97% of the analyzed
works. Among the most used time features are statistical indicators such as mean, variance,
kurtosis, skewness, and standard deviation [16,17,41,44,109]. Another of the most used
features is entropy [22,30,44,76] and principal component analysis [43,47,61,70]. Further-
more, studies that integrate analysis in both the time and frequency domains represent
16.22%. By combining both domains, the calculation of the spectral power and entropy is
used [15,19,67,75,83,96,102]. The PSD was also used together with the raw signal [5] or it
was used together with the fractal dimension [59,73].

Brain connectivity, which examines the interactions between various brain regions,
constitutes 10.81% of the works. Only 6.76% of the research jointly addresses frequency and
brain connectivity or time. The most popular features of brain connectivity are network
resilience, network clustering coefficient, or versatility [4,18,33,57,62]. Other implemented
features are phase locking value and phase lag index [33,77,100]. Finally, a segment equiv-
alent to 6.76% is categorized under various methodologies, including innovative or less
conventional approaches in EEG analysis, such as 2D images to save the spatial struc-
ture, multiple color channels to represent the spectral dimension [32], and the writing
features [42,81]. The left temporal volume and the cortical thickness of the frontal, parietal,
and occipital lobes were also used [54].

3.6. Classification Techniques Approach for Alzheimer Detection

Different techniques performed in diagnosing Alzheimer’s using classification models
are presented in this section. According to [110], patients with Alzheimer’s manifest
neurological changes that cause physical changes, which is detected through brain signals.
With this, classification techniques help detect these symptoms. According to the analysis
of the 109 articles in the literature, different techniques associated with the classification of
signals have been found. Figure 2 displays the most used classification techniques in the
disease of Alzheimer’s.
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Figure 2. Classification techniques most used in the diagnosis of Alzheimer.

It is found that support vector machine (SVM) is the most popular technique used
with around 30.57% of the works. It can handle nonlinear data using kernel functions,
allowing complex relationships between features to be represented and improving the
classification accuracy [112]. Then, the K-nearest neighbors (KNN) algorithm presents
about 12.1% of usage according to the literature. This finding is noteworthy as both methods
are supervised training algorithms commonly employed in ML for classification tasks.

Likewise, in recent years, the use of convolutional neural networks (CNN) has been
increasing. Among the articles studied, its use is around 8.91%. The tendency to integrate
CNN is because they can automatically learn relevant features of the images or input
signals using the convolution and pooling layers. This allows the model to autonomously
identify complex and significant patterns in the data [113]. On the other hand, decision
tree algorithms (DT) present about 7% in the analysis of AD. The recurrent neural network
(RNN) algorithms are another trend technique, which represent 6.36%. RNNs benefit
from directly operating on raw data, eliminating the need for a feature extraction step and
providing faster responses [114].
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CNN is because they can automatically learn relevant features of the images or input
signals using the convolution and pooling layers. This allows the model to autonomously
identify complex and significant patterns in the data [112]. On the other hand, decision
tree algorithms (DT) present about 7% in the analysis of AD. The recurrent neural network
(RNN) algorithms are another trend technique, which represent 6.36%. RNNs benefit
from directly operating on raw data, eliminating the need for a feature extraction step and
providing faster responses [113].

One of the current deep learning techniques implemented is the graph neural network
(GNNs). Among the analyzed works, only 2.8% used GNN networks. Linear regression
algorithms are used in 6.36% of the analyzed works. Random forest (RF) is also another
alternative used for extracting features with 5.73%. Other works, such as boost algorithms
or latent Dirichlet allocation present about 3.82% and 5.73%, respectively. Another tech-
nique employed are the Bayesian-based algorithms, that are presented in 3.82%. Other
conventional and not specified works represents the 6.36% of the analyzed works. Finally,
ensemble algorithms are used in 2.54% and autoencoder algorithms in 1.27%. Table 6 shows
the works where each of the classifiers were implemented.

Table 6. Deep and machine learning classifiers used for EA detection.

Ref. Classification Technique

[2,4,6,7,13,15–18,20,25,28,29,31,34,36,37,41,44,46,49,54–
57,59,62,67,68,70,73,75,78,80,81,83,86,88,89,92,96,103,105,106,109,114] SVM

[7,13,15,25–27,34,43,44,46,56,57,59,73,89,94,99,104,105] KNN
[3,7,8,32,38,39,42,45,69,79,90,93,107] CNN

[7,15,21,34,55,56,58,59,73,78,87] DT
[24,34,40,50,52,55,61,64,71,91] RNN
[12,22,41,51,66,78,82,83,97,109] Linear regression

[1,15,23,33,34,47,78,81,89] RF
[57,78,81] Boost

[34–37,44,52,76,83,95] Latent Dirichlet allocation
[7,15,34,59,83,98] Bayesian

[7,63,73,83] Ensemble
[41,109] Autoencoders

[77,100,115] GNN
[5,60,65,72,101,102,116] Other works

3.7. Evaluation Metrics

Accuracy shows the percentage of cases that the model got right. According to Figure 3,
it is the most used metric, followed by precision and specificity. Although accuracy is the
most used metric, it does not mean that it is the most representative metric of the model. As
a complement to accuracy, it is recommended to use precision, recall, and F1 to represent
the model regarding prediction quality, quantity, and the visualization of the types of errors.
The 55% of the articles use at least three of the metrics, while 20% do not indicate the
evaluation metrics [68,71,74,80,82,91,94,99,116].

3.8. Results in the Classification Achieved

In addition to the diversity in methodological approaches, it is crucial to highlight
the classification percentages achieved in each domain, which provides insight into the
effectiveness of the different techniques. Studies focused on the frequency domain achieved
a classification average of 86.82%, while those focused on temporal analysis achieved a
similar average of 86.81%. This suggests that both approaches, regardless of their ori-
entation towards frequency spectrum or temporal features, offer comparable results in
terms of classification ability. On the other hand, research exploring brain connectivity
showed an average classification of 88.58%, indicating a slight advantage in applying this
approach to discern between different conditions or brain states. Most notably, studies that
combined analyses over time and frequency presented an average classification of 89.72%,
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suggesting that integrating multiple dimensions of analysis provide a more complete and
detailed understanding of brain activity, reflected in a higher classification accuracy. Papers
incorporating time, frequency, and brain connectivity analysis achieved an average classifi-
cation of 89.07%. Finally, the methods classified as diverse achieved the highest average
classification, with 92.575%.
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Accuracy shows the percentage of cases that the model got right. According to Figure 3,
it is the most used metric, followed by precision and specificity. Although accuracy is the
most used metric, it does not mean that it is the most representative metric of the model. As
a complement to accuracy, it is recommended to use precision, recall, and F1 to represent
the model regarding prediction quality, quantity, and the visualization of the types of errors.
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evaluation metrics [68,71,74,80,82,91,94,99,117].
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4. Discussion

Table 7 highlights the main works analyzed, showing the various classification models
used. In addition to selecting specific filtering ranges, sample size and rankings were
also obtained.

Table 7. Summary of the main works analyzed.

Reference N◦ Volunteers Classification Model Filtering Range (Hz) Performance

[55] 11 healthy, 8 MCI, 19 AD
SVM with radial kernel,

multilayer perceptron (MLP)
and DT

1–40
DT 94.88%

SVM 95.10%
MLP 95.55%

[70] 120 healthy and 175 EA SVM 0.2–47 95%

[64] 28 healthy and 7 MCI Bidirectional LSTM 3–30 91.93%

[45] 15 healthy and 16 MCI CNN 8–30 79.66%

[13] 16 healthy and 11 MCI GRU 0–32 96.91%

[14] 16 healthy and 11 MCI LSTM 0.5–50 96.41%

[18] 21 healthy and 28 MCI SVM with Gaussian kernel 0–40 86.6%

[89] 89 EA
SVM with linear and

Gaussian kernels, RF and
KNN

0.5–45

RMSE of 1.682 between
predicted and actual MMSE

values when measuring
disease progression

[75] 13 healthy, 16 MCI, 15 EA SVM with Gaussian kernel 0.5–65 88%

[46] 50 healthy and 50 EA SVM and KNN 0.5–30 94%
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Table 7. Cont.

Reference N◦ Volunteers Classification Model Filtering Range (Hz) Performance

[107]

Synthetic EEG signals were
generated from 8 healthy
patients and 1 using EA
generative adversarial

networks and variational
autoencoders

EEGNet, DeepConvNet, and
EEGNet SSVEP 4–40 50.2%

[73] 15 healthy, 16 MCI and 16 EA KNN Iterative filtering 92%

[78] 17 healthy and 19 AD

Logistic regression, SVM, RF,
extra trees, DT, stochastic

gradient descent, Ada
boosting, and gradient

boosting

0.4–115 Hz 95.6%

[27] 20 healthy and 20 EA KNN 2–680 90%

[8] 23 healthy, 56 MCI and 63
AD CNN 0.1–30 80%

[61] 15 healthy and 20 EA LSTM - 97.9%

[81] 39 healthy and 40 MCI SVM with Gaussian kernel,
RF and Xgboost 1–45

XGboost 87.34%
SVM 93.7%
RF 84.81%

[19] 20 healthy and 20 EA Cubic SVM and bidirectional
GRU (Bi-GRU) 0.1–30 Cubic SVM 90.51%

Bi-GRU 93.46%

[7] 11 healthy, 8 MCI and 19 EA
CNN, ensemble, KNN, SVM,

naive Bayes, discriminant
analysis and DT

1–40 57%

[102] 9 healthy, 6 MCI and 11 EA MLP 1–45 82.5%

[100] 20 healthy and 20 AD GNN 0.1–51 92%

Due to the nonlinear nature of EEG signals, models implemented in nature have
proven to be robust in terms of their accuracy, since at least a classification model is
expected to present a performance of at least 80% based on its precision. With this, it is
possible to observe that SVMs are commonly used models for these tasks due to their
kernel-based architecture. Furthermore, recent years have seen the implementation of
RNN-based classification models, particularly with GRU and LSTM configurations. These
models report at least 92% accuracy according to Table 7. It is important to note that the
tendency of these models to present prominent results is based on the treatment of the
signal and configuration of the parameters, so the remaining models can improve their
accuracy if they are correctly adapted.

The analysis of EEG signals for the early diagnosis of the AD using machine and deep
learning highlights the importance of carefully selecting databases and analysis methodolo-
gies. The adequate preparation and the choice of clear diagnostic criteria are essential to
avoid bias in the results. There is a preference for using 19-electrode configurations and
selecting specific activities such as rest periods with eyes closed. Different EEG electrode
configurations can significantly affect classification results. High-density configurations,
which use more electrodes, offer better spatial resolution and brain coverage, allowing
for the more precise and subtle details of brain activity to be captured. This may improve
the accuracy of diagnoses and the identification of robust features for the detection of
AD [67]. However, these configurations also have disadvantages, such as greater com-
plexity, which could make the classification task more complex, longer configuration time,
patient discomfort, and higher economic and computational costs [117]. On the other
hand, configurations with fewer electrodes, although more practical and comfortable, can



Eng 2024, 5 1476

limit the amount of information available and affect the effectiveness of machine and deep
learning algorithms. Variability in electrode configurations introduces challenges when
comparing results between studies, as different configurations may capture the different
aspects of brain activity [118]. Given the above, it is important to standardize electrode
configurations or provide detailed analyses on how these configurations can affect the
results to improve the comparability and replicability of studies in the field.

Demographic data, such as age and gender distribution, can significantly influence
the results of EEG studies used to diagnose AD. The information in this paper shows that
notable differences in the mean age of participants were observed between the groups
of healthy volunteers, patients with MCI, and patients with Alzheimer’s, reflecting the
progressive nature of the disease. Specifically, Alzheimer’s disease patients had a higher
mean age (73.66 years) compared to healthy volunteers (68.53 years) and MCI patients
(70.52 years). These age differences may affect EEG results, as aging may influence brain
activity patterns regardless of the presence of AD.

Regarding gender, the general distribution showed a slight majority of women (53.57%)
in the databases analyzed. Furthermore, the proportion of women and men varied between
the different cohort groups, with a higher proportion of women in the healthy volunteer
and Alzheimer’s patient groups. This gender distribution may be relevant to the results of
EEG studies, as there are gender differences in the incidence and progression of AD, which
may influence the patterns of brain activity recorded.

The average educational level also varied between groups: it was higher in healthy
volunteers than in patients with MCI and Alzheimer’s. Education has been identified as a
factor that can influence cognitive reserve and, therefore, the results of EEG studies. People
with more education may show different patterns of brain activity due to a greater capacity
for cognitive compensation against the effects of AD.

The different methods of EEG data acquisition, such as being awake with eyes open,
awake with eyes closed, asleep, and responses to cognitive stimuli and tasks, may influence
the reliability of the data for diagnosing AD. The most commonly used method is being
awake with eyes closed due to its ability to provide a stable baseline and minimize eye noise,
thereby facilitating the identification of brain activity patterns indicative of AD, such as
generalized slowing of brain waves [119]. This approach is particularly useful for detecting
the changes in brain connectivity and complexity characteristic of AD. However, other
methods, such as responses to stimuli and cognitive tasks, can offer additional information
about cognitive decline and the dynamics of neural networks, although they require
more complex experimental designs and are more susceptible to individual variations.
A combination of these methods is suggested to obtain a more complete and reliable
assessment of brain status in AD.

Regarding the filtering and analysis of the signals, the combination of band-pass and
notch filters stands out as a way to maintain valuable information and eliminate noise. This
approach is complemented by analysis in the time and frequency domains, prioritizing
PSD and descriptive statistics to identify patterns related to Alzheimer’s. Exploring brain
connectivity also provides deep insights, suggesting that a multidimensional analysis
significantly improves classification.

The choice and calibration of classifiers play a crucial role in the effectiveness of the
diagnosis. Different classifiers produce varying results on the same data set due to how
their parameters are tuned, underscoring the need for careful selection and optimization.
Adequate adaptation of the classifier to the features of the dataset is decisive in achieving
high classification rates. This aspect and an evaluation of metrics beyond simple accuracy
offer a complete view of the classifier’s performance and highlight the importance of
advanced techniques for artifact removal and feature selection.

Despite its apparent simplicity, accuracy is considered the most used metric as an
indicator of success. Accuracy provides a general measure of model performance, indi-
cating the proportion of correct predictions over the total number of cases analyzed. In
addition, it is complemented by sensitivity and specificity. Sensitivity measures the model’s
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ability to correctly identify subjects with AD, which is crucial for early diagnosis and
timely treatment. On the other hand, specificity evaluates the model’s ability to correctly
identify healthy subjects, avoiding false positives that could cause unnecessary anxiety and
additional procedures.

The Figure 4 shows that SVM techniques are the predominant technique in the analysis
of Alzheimer’s. In addition, band-pass filters are the most commonly used when data
acquisition is required with eyes-closed patients. It also is observed that the bands with
relevant information are those ranging from 1 to 32 Hz. This suggests that the identification
of patterns in resting or relaxed conditions is found with this model.
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Figure 4. Sankey plot analysis of AI techniques in acquisition tasks.

This analysis suggests that the approaches combining analyses across time, frequency,
and brain connectivity, supported by a well-prepared database and the choice of appropriate
classifiers, provide the most detailed understanding of brain activity and the greatest
accuracy in the classification. Integrating these elements strengthens the ability to detect
Alzheimer’s in its early stages and improves the development of artificial intelligence
models that significantly contribute to combating this disease. In summary, the research
highlights the need for a careful approach to data preparation, method selection, and
classifier optimization to advance the use of artificial intelligence technologies in ongoing
efforts to tackle Alzheimer’s disease.

5. Conclusions

The review of recent works in artificial intelligence applied to detecting AD highlights
the importance of these technologies in understanding this condition. The studies analyzed
have shown promising results, significantly contributing to understanding the disease and
developing advanced methodologies for its early detection. In particular, it has been shown
that signal processing plays an essential role in improving data collection, highlighting the
importance of adjusting data acquisition to specific frequency bands for the design of more
accurate and efficient algorithms.

The proposal to adopt strategies that integrate various methodologies promises to
increase the effectiveness of traditional methods and to revolutionize the current paradigm
towards a more precise and robust classification of EEG signals in people with Alzheimer’s.
These innovations open new directions in research and development, facilitating the per-
sonalization of treatment and disease management with information obtained through
advanced AI techniques. In the long term, these technologies provide more accessible and
reliable diagnostic tools for early detection.

The importance of the careful analysis of EEG signals using machine and deep learning
is highlighted, underlining the need to select databases and analysis methodologies to
avoid biases appropriately. The preparation of data and choosing clear diagnostic criteria
are essential. The demographic conformation of the databases and the selection of filtering
and analysis methods, such as the combination of band-pass and notch filters, and an
analysis in the time and frequency domains, are essential to identify patterns related to
Alzheimer’s. Furthermore, the precise adaptation and calibration of classifiers highlight the
need for careful selection and meticulous optimization to achieve high classification rates.

The combination of detailed analysis in time, frequency, and brain connectivity, sup-
ported by a well-prepared database and adequately selected and tuned classifiers, provides
a deep understanding of brain activity and the highest classification accuracy. This re-
search emphasizes the need for a rigorous approach in data preparation, methodology
selection, and classifier optimization to advance the application of AI technologies in the
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highlights the need for a careful approach to data preparation, method selection, and
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5. Conclusions

The review of recent works in artificial intelligence applied to detecting AD highlights
the importance of these technologies in understanding this condition. The studies analyzed
have shown promising results, significantly contributing to understanding the disease and
developing advanced methodologies for its early detection. In particular, it has been shown
that signal processing plays an essential role in improving data collection, highlighting the
importance of adjusting data acquisition to specific frequency bands for the design of more
accurate and efficient algorithms.

The proposal to adopt strategies that integrate various methodologies promises to
increase the effectiveness of traditional methods and to revolutionize the current paradigm
towards a more precise and robust classification of EEG signals in people with Alzheimer’s.
These innovations open new directions in research and development, facilitating the per-
sonalization of treatment and disease management with information obtained through
advanced AI techniques. In the long term, these technologies provide more accessible and
reliable diagnostic tools for early detection.

The importance of the careful analysis of EEG signals using machine and deep learning
is highlighted, underlining the need to select databases and analysis methodologies to
avoid biases appropriately. The preparation of data and choosing clear diagnostic criteria
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are essential. The demographic conformation of the databases and the selection of filtering
and analysis methods, such as the combination of band-pass and notch filters, and an
analysis in the time and frequency domains, are essential to identify patterns related to
Alzheimer’s. Furthermore, the precise adaptation and calibration of classifiers highlight the
need for careful selection and meticulous optimization to achieve high classification rates.

The combination of detailed analysis in time, frequency, and brain connectivity, sup-
ported by a well-prepared database and adequately selected and tuned classifiers, provides
a deep understanding of brain activity and the highest classification accuracy. This re-
search emphasizes the need for a rigorous approach in data preparation, methodology
selection, and classifier optimization to advance the application of AI technologies in the
fight against Alzheimer’s, demonstrating the transformative potential of these technologies
in personalized medicine and patient management.

The generalization of these findings presents several challenges, given that the mani-
festation of Alzheimer’s can vary significantly depending on genetic, lifestyle, and envi-
ronmental factors. First, the studies reviewed often use cohorts that may not represent
global genetic diversity, limiting the applicability of the results to populations with different
backgrounds. Additionally, lifestyle factors such as diet, physical activity level, and sleep
habits can influence brain health and EEG patterns. Differences in these factors between the
populations studied, and other populations may lead to variations in results and reduce
the generalizability of the findings. Environmental factors, such as exposure to toxins,
level of education, and access to medical care, also play a crucial role in the manifesta-
tion of Alzheimer’s. These factors may modify disease progression and associated EEG
patterns, making the models developed in one specific context not directly applicable to
other settings.

It is important to note that many studies need to detail these aspects in the description
of their populations, which adds a layer of uncertainty about the generalizability of the
findings. The lack of specific information on genetic, lifestyle, and environmental factors in
the cohorts studied may limit the interpretation and application of the results to broader
contexts. Although the findings of our review provide a valuable basis for the EEG-based
diagnosis of AD, their generalization to different populations requires the careful considera-
tion of multiple variables not anticipated in this review. To improve generalizability, future
research should include more diverse cohorts and consider these factors when developing
and validating diagnostic models.

Finally, according to our review, a key trend is the application of advanced deep
learning techniques, which have shown great potential but are still relatively underexplored
compared to more traditional methods such as CNNs, RNNs, and GNNs.

Another promising area is the development of new feature extraction and filtering
methods. Advanced preprocessing techniques, such as adaptive filtering, can improve
the quality of EEG signals. Feature extraction using nonlinear and multifractal methods
can also capture complex brain dynamics indicative of AD. Integrating these techniques
with deep learning models can significantly improve the accuracy and effectiveness of
the diagnosis.

One of the main challenges for applying deep and machine learning in AD diagnosis is
the need for large labeled datasets, which are essential for effectively training deep learning
models. Variability in electrode configurations and data acquisition protocols between
different studies must be more consistent, making comparing results and replicating studies
difficult. Additionally, EEG signals are susceptible to artifacts and noise from various
sources, such as eye and muscle movements, which complicates effectively removing these
artifacts without losing relevant information.

Another limitation of deep learning models, often called black boxes, is their inter-
pretability. This makes it difficult to understand how and why a model makes certain
decisions, a crucial aspect of medical applications. Generalizing the models to different
populations is also problematic due to genetic, lifestyle, and environmental differences
that may need to be adequately represented in the study cohorts. The computational re-
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quirements to train and deploy deep learning models are significant, requiring specialized
hardware and access to high-performance computing infrastructures.

While deep and machine learning techniques present exciting opportunities for EEG-
based AD detection, their application is an ongoing area of research and development.
Researchers should continue to focus on optimizing and adapting these emerging technolo-
gies, as well as developing new feature extraction and filtering methods, to advance the
accuracy and effectiveness of Alzheimer’s disease diagnosis.
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