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Abstract: In orthopedics, bone drilling is a crucial part of a surgical method commonly carried out
for internal fixation in bone fracture treatment. The primary purpose of bone drilling is the creation
of holes for screw insertion to immobilize fractured parts. The bone drilling task depends on the
orthopedist and surgeon’s high level of skill and experience. This paper aimed to provide a summary
of previously published review studies in the field of bone drilling. This review paper also presents
a comprehensive review of the application of machine learning for bone drilling and as a future
direction for automation systems. This review can also help medical surgeons and bone drillers
understand the latest improvements through parameter selection and optimization strategies to
reduce bone damage in bone drilling procedures. Apart from the review, bone drilling vibration data
collected in a university laboratory experiment is also presented in this study. The vibration data
consist of three different layers of femur cow bone, which are processed and classified using several
deep learning (DL) methods such as long short-term memory (LSTM), convolutional neural network
(CNN), and recurrent neural network (RNN). These DL methods are used in the bone drilling lab
case study to prove that the layers of bone drilling are associated with the vibration signal and that
they can be classified and predicted using DL methods. The result shows that LSTM is outperformed
by CNN and RNN.

Keywords: bone drilling parameters; bone drilling vibration; bone layer classification; deep learning;
machine learning

1. Introduction

Bone drilling is a medical procedure that involves the creation of small holes or drilling
into bones for various purposes, including diagnosis, treatment, and research. Although
bone drilling may be invasive, this technique has become an integral part of modern
medical science, and it offers various important benefits. Bone drilling plays a crucial role
in accurately diagnosing various diseases and conditions. In addition to diagnosis, bone
drilling also makes a significant contribution to medical research. The development of safer
and more precise drilling equipment and techniques has become possible because of the
efforts of scientists and doctors. These innovations have a positive impact on patient safety
and the effectiveness of medical procedures and can help reduce the risk of complications
and speed up the healing process. In bone drilling, inner base bone structures that are
examined and treated with nails and screws are generally composed of three layers, namely
first cortical, spongy, and second cortical [1].

Currently, manual hand drilling is still the main method in orthopedic surgery in which
the process is solely controlled by a surgeon and orthopedist. Bone drilling requires the
orthopedist’s and the surgeon’s extensive experience and dexterity. The drilling procedures
are performed without visual guidance, making it difficult for surgeons to determine the
depth of the holes they are creating [2]. As a result, the effectiveness of the bone drilling

Eng 2024, 5, 1566–1593. https://doi.org/10.3390/eng5030083 https://www.mdpi.com/journal/eng

https://doi.org/10.3390/eng5030083
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/eng
https://www.mdpi.com
https://orcid.org/0000-0002-9784-4204
https://doi.org/10.3390/eng5030083
https://www.mdpi.com/journal/eng
https://www.mdpi.com/article/10.3390/eng5030083?type=check_update&version=1


Eng 2024, 5 1567

process is strongly dependent on the surgeon’s skill and ability to evaluate the drilling
operation based on their own understanding [3]. The bone drilling experience by the
surgeon is subjective; for example, the applied force given by the surgeon depends on the
drill bit speed, the bone condition, and the type of drill bit [4,5].

A recent study that compares ultrasonic-assisted drilling (UAD) to conventional
drilling in bone surgeries is presented in [6]. The study examines optimal drilling parame-
ters such as drilling force, temperature elevation, osteonecrosis, and micro-crack formation.
The study found that the ultrasonic drilling resulted in less force and did not produce
micro-cracks in cortical bone compared to the conventional drilling. However, it has the
side effect in which the temperature elevation is higher than in conventional drilling. In
addition, histopathological and scanning electron microscopic (SEM) analysis is conducted
to evaluate the osteonecrosis and structural damage. The result shows that UAD is more
advantageous for bone surgeries than the conventional method because it can reduce tissue
damage. Another comparison study of conventional and UAD techniques is presented
in [7]. The study presents in detail the comparative analysis of diametric delamination in
the drilling of cortical bone using conventional drilling and UAD techniques. A coordinate
measuring machine (CMM) is used in the study to characterize delamination during bone
drilling. A quantitative comparison was also presented in the study with the finding that
UAD causes less delamination than conventional drilling, with maximum delamination
for UAD and conventional drilling of 8.54% and 9.15%, respectively. Ultrasonic actuation
application in bone drilling is also presented in [8]. The objective is to reduce the cutting
force and temperature during the bone drilling. The comparison study between conven-
tional drilling and UAD is discussed. The study found that UAD has a higher viability and
greater pullout strength, which can potentially lead to low-trauma surgeries.

Recently, bone drilling research has mostly focused on monitoring techniques and
drilling parameters. An automated bone drilling system and a bone-drilling medical
training system (MTS) [9] are the future directions of this particular research area. The
bone drilling MTS is a sophisticated tool designed to train medical professionals in the
application of force during bone drilling procedures. This system operates in a virtual
environment (VE) and aims to teach users how to apply force within a specific range,
thereby maintaining a constant drilling thrust velocity. The virtual reality (VR) simulator
consists of visual, acoustic, and haptic warning signals [9]. Another study that presents
the training system with 3 degrees of freedom (DOF) force feedback is presented in [10].
Another proposed MTS concept is presented in [11]. The concept generally consists of the
following: (1) The system architecture based on haptic display (HD) and graphical user
interface (GUI); (2) A control system using proportional derivative (PD) position control.

A comprehensive review of surgical simulators for orthopedic and neurosurgeries,
which focuses on haptic and VR technologies, is presented in [12]. The review paper
informs that the main part of the orthopedic simulator is the haptic system. The haptic
system in the simulator is expected to provide tactile sensations that mimic the real-life
feel of orthopedic surgery. The haptic system is supported by force feedback, which is
calculated based on the interaction between virtual tools and the simulated anatomy [12].
More details of the review on MTS and potential automated systems in bone drilling are
presented in Section 3.

A current review paper provides a different side of bone drilling, which discusses
the vibration analysis of different bone layers and the application of the DL methods.
The structure of the paper following the introduction is as follows: Section 2 presents a
summary of the previously published review paper on bone drilling. A brief review of
the MTS and robotic drilling as potential future technologies are discussed in Section 3.
Section 4 presents a review of published papers on bone drilling vibration analysis and
the application of ML methods for bone layer classifications. Section 5 presents the bone
drilling lab’s experimental setup and procedure. An application of DL methods is presented
in Sections 6 and 7. A detailed description of the LSTM method and its results is presented
in Section 6. For other DL methods, i.e., convolutional neural network (CNN) and recurrent
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neural network (RNN), a performance comparison is presented in Section 7. Section 8
presents the conclusions and the future direction of the study. For ease of understanding in
reading this review paper, which consists of a lot of terminologies, an abbreviation table is
provided and presented in Table 1.

Table 1. Abbreviations of terminologies used in the paper.

Full Terminology Abbreviation

Acoustic Emission AE
Artificial Neural Network ANN
Analysis of Variance ANOVA
Computer-Aided Orthopedic Surgery CAOS
Coordinate Measuring Machine CMM
Computer Numerical Control CNC
Convolutional Neural Network CNN
Deep Learning DL
Direct Current DC
Degree of Freedom DOF
Decision Tree DT
Genetic Algorithm GA
Grey Fuzzy Reasoning Grade GFRG
Grey Relation Analysis GRA
Graphical User Interface GUI
Haptic Display HD
Human-Robot Interaction HRI
High-Speed Steel HSS
K-Nearest Neighbors KNN
Laser-Assisted Drilling LAD
Leaning-based Guidance LbG
Long Short-Term Memory LSTM
Mean Absolute Error MAE
Machine Learning ML
Mean Square Error MSE
Medical Training System MTS
National Instrument NI
Proportional Derivative PD
Radial Basis Function Neural Network RBFNN
Random Forest RF
Rotation Per Minute RPM
Root Mean Square Error RMSE
Rotary Ultrasonic Bone Drilling RUBD
Response Surface Methodology RSM
Scanning Electron Microscopic SEM
Support Vector Machine SVM
Ultrasonic-Assisted Drilling UAD
Virtual Environment VE
Virtual Reality VR
Water Jet-Assisted Drilling WJAD

2. Previous Review Studies on Bone Drilling

Extensive review studies related to bone drilling have been presented. Information
about what is the difference between the present review paper and other published review
papers is presented in Table 2. The following is a more detailed description of Table 2:

A detailed review paper of various studies on bone drilling is presented in [4]. The
paper compares various studies on bone drilling, highlighting the influence of bone drilling
parameters and drill specifications to find the optimized bone drill specifications for a
better outcome. The study described that a significant risk during drilling is the increase in
bone temperature, which can lead to osteonecrosis and can affect the stability and strength
of the bone fixation. In their future directions section, the authors emphasize the need for
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more advanced drilling methods, precise experimental setups, and automated systems to
minimize human error and reduce associated risks. At the end of the paper, the authors
provided eight points for future works, one of which is to improve the control penetration
of the manual skill in typical bone drilling by developing automated drilling systems
using a fuzzy logic controller that analyzes the current consumption by the direct current
(DC) motor.

A study that presents practicality, limitations, and complications related to surgical
drill bits in bone drilling is discussed in [13]. The study starts with the types and anatomy
of surgical drill bits, followed by the cutting operation, which caused heat generation.
Mechanical properties of the drill bit, such as moment of inertia, wear, and dulling of the
cutting face, are also explained. Intraoperative and postoperative complications of the
drill bit during surgical bone drilling are also presented comprehensively. A study also
summarizes the previous research related to the thermonecrosis biological models. In the
future direction, the study mentioned that ultrasonic or vibration-assisted drilling is one
technology to reduce both axial thrust force and drilling torque.

A review that focused on cutting force and temperature variation in bone drilling
is presented in [14]. Drilling accurate position holes and maintaining clean surrounding
holes are crucial. The study also mentioned the importance of maintaining a temperature
of less than 47 ◦C during drilling to avoid bone cell death due to the occurrence of thermal
osteonecrosis. Drill design, drill parameters, and coolant were reported as the important
factors for controlling heat in the bone drilling. Other factors, such as spindle speed and
feed rate, are also important to avoid bone damage.

A comprehensive review of the mechanical and thermal responses in bone drilling,
which is a critical aspect of various procedures, is presented in [15]. The discussion of the
paper includes the bone structure, drill-bit geometry, operating conditions of bone drilling,
and techniques and optimization. In bone structure, the inhomogeneity and anisotropy of
bone tissues and their impact on drilling outcomes are discussed. The influence of drill-bit
design on the efficiency and safety of bone drilling is a part of the drill-bit geometry section.
The effect of drilling parameters such as spindle speed and feed rate on the mechanical
and thermal responses during drilling is presented in the operating condition of the bone
drilling section. Current techniques used in bone drilling and parameters optimization are
presented in the last part of the review paper. However, future works or future direction
was not provided.

Another review that discusses the factors affecting heat generation in bone drilling is
presented in [16]. The paper focused on the thermal osteonecrosis that occurred during the
bone drilling. The study suggests the need for more in vivo studies on human bone and
how drilling parameters interact to influence heat generation. However, there is a challenge
in the measurement method of bone temperature due to the complex properties of bone
tissue and the lack of a standard procedure.

Another comprehensive review on the bone drilling process investigation and possible
research is presented in [17]. A typical schematic diagram of the bone drilling process
is provided. Factors influencing bone drilling efficiency and temperature rise are also
discussed. The study mainly focused on the investigations of conventional bone drilling
to obtain information such as bone type, experimental type, experimental details, and
research outcome. To complement the conventional bone drilling review, the authors also
provided the investigations of non-conventional bone drilling studies such as ultrasonic-
assisted drilling (UAD) [18], vibrational drilling technique [19], water-jet drilling [20],
automatic drilling process [21], and acoustic emission (AE) based monitoring process [22].
In the summary section, the authors highlight that most of the previously published
research articles presented temperature measurement and analysis during orthopedic
drilling. Another summary can be read in detail in the paper.
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Heat is one of the major issues in the bone drilling procedure, and the study in [23]
presents the factors that affect drilling behavior to prevent excessive heat generation. The
study also discusses a model of bone drilling to find the relationships between the drilling
parameters. The study also highlights the necessity of the improved drill bit to minimize
thermal and mechanical damage to the bone in the future direction. The development and
application of a robotic bone drilling system as an advanced bone drilling procedure is also
necessary and emphasized in the paper.

A state-of-the-art review and comprehensive analysis of orthopedic drilling are pre-
sented in [24]. The review summarized numerous articles on conventional and non-
conventional drilling parameters and their technologies. Bone drilling characteristics and
control variables were presented in very detail and inclusively. Apart from the detailed
review, non-conventional techniques in orthopedic drilling are also described. It includes
water jet-assisted drilling (WJAD), laser-assisted drilling (LAD), and UAD. Design of ex-
periments and modeling in orthopedic drilling based on the Taguchi method, analysis of
variance (ANOVA), and fuzzy logic are also presented. The review paper also provided
several future directions, two of which are as follows: (1) The vibrational bone drilling with
an internal closed-loop irrigation system is potentially used to minimize heat and thrust
force; (2) Robotic bone drilling with multiobjective optimization can reduce thermal and
mechanical damage.

A review paper that highlights the use of robotics and autonomous systems designed
in bone drilling as part of computer-aided orthopedic surgery (CAOS) is presented in [25].
The robotic autonomous systems were designed to optimize drilling speed, safety, and
effectiveness of various drilling parameters. The study also reviews several potential signal
processing-based approaches for detecting a condition when a drill bit breaks through bone.
Therefore, The authors stated that signal processing methods for motor current, drilling
sound, and vibration signal for breakthrough detection in conventional drills are viable
new research topics.

A review that focuses on the advancements in surgical drill bit design and its impact
on reducing thermomechanical damage during bone drilling is presented in [26]. The
paper discusses how different geometries of drill bits influence bone damage, especially
the importance of precise cutting tools to prevent damage to surrounding tissues. The
review explores various drill bit geometries, highlighting how each design influences
bone damage. The general objective of the review is to provide guidelines for designing
drill bits to minimize damage and improve the effectiveness and safety of bone drilling
surgeries. The paper suggests future research directions for improving surgical drill bit
design, including flexible drill bits and chip-breaker designs, to enhance safety.

Jung et al. [27] present internal and external factors on heat generation. Drill properties,
drill diameter, drill coating, and wear are categorized as internal factors. The external factors
include drilling speed or feed rate, drilling depth, cooling, drilling energy, methodology
used, and patient individual factors. An almost similar review that also discussed drill bit
heat generation on surgical bone drilling is presented in [28]. The paper highlights that
drill bit design is one of the important factors in reducing thermal damage during surgical
bone drilling. In addition, other key parameters, such as feed rate and applied force, also
contribute to heat generation. Another review paper on the impact of temperature on the
bone drilling process is presented in [29]. The review paper encapsulates several related
studies that emphasize the critical role of temperature control in the bone drilling process.
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Table 2. Highlight the previously published review papers on bone drilling.

Reference and
Publication Year Content of the Review Paper and Significant Future Study and Future Direction

Bertollo and Walsh
(2011) [13]

- Types and anatomy of surgical drill-bit
- Drilling and cutting operations
- Mechanical properties
- Complications

- Drill bit wear or breakage
- Heat generation
- Postoperative complications

- Biological models of bone research
- Measurement methods

Improving drill-bit design for better
surgical outcomes and
patient recovery.
Ultrasonic-assisted drilling reduces
axial thrust force and drilling torque.

Pandey et al. (2013) [4]

- Thermal osteonecrosis
- Bone drilling parameters:

- Drilling parameters, e.g., drilling speed and feed rate
- Drill specifications, e.g., drill diameter and

cutting face

- Temperature measurement

Predicting model development for
the relationship between drilling
force, drill temperature, and surface
roughness 1.

Ginta et al. (2014) [14] - Cutting force in bone drilling
- Temperature variation in one drilling

Not available

Lee et al. (2018) [15]

- Experimental conditions:

- Cutting direction
- Operating condition

- Dill-bit geometry
- Bone chips
- Bone drilling techniques
- Parameter optimization

Not available

Timon et al. (2019) [16]

- Bone drilling parameters
- Temperature measurement
- Experiment setup
- Thermal osteonecrosis

Not available

Bohra et al. (2019) [17]

- Typical process of bone drilling
- Factors influencing the efficiency and temperature rise of

bone drilling:

- Variables of the drilling process
- Drill-bit specifications

- Investigations of conventional drilling studies
- Investigations of non-conventional drilling studies

- Ultrasonic assisted drilling
- Vibrational drilling technique
- Water-jet drilling
- Automatic drilling process
- Acoustic emission based monitoring

Acoustic emission (AE) based
technique can improve bone surgical
quality in micro-drilling and support
bone surgery robot systems in
the future.

Samarasinghe et al.
(2020) [23]

- Thermal necrosis
- Factors affecting the drilling process
- Rotational speed and feed rate
- Drill geometry
- Effect of hole depth
- Effect of bone structure
- Modeling of bone drilling
- Robotic drilling

Improve the prediction model using
the force variation based on
bone layers.
Enhance hand-held drill with
intelligent sensors and data
acquisition system.
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Table 2. Cont.

Reference and
Publication Year Content of the Review Paper and Significant Future Study and Future Direction

Jamil et al. (2020) [24]

- Bone drilling characteristics:

- Temperature
- Drilling force and torque
- Surface roughness and drill tool wear, etc.

- Control variables of bone drilling
- Non-conventional techniques:

- Water-jet-assisted drilling
- Laser-assisted drilling
- Ultrasonic-assisted drilling

- Modeling and design of experiment in bone drilling

Robotic bone drilling with
multiobjective optimization can
reduce thermal and
mechanical damage 2.

Torun et al. (2020) [25]

- Breakthrough detection
- Robotic drilling
- Experimental parameters:

- Force and moment parameter
- Temperature control

Signal information and processing to
identify different bone densities from
motor current, drilling sound, and
vibration is one of the
future directions.

Akhbar and Sulong
(2021) [26]

- Thermomechanical damage
- Surgical drill bit specifications
- Surgical drill bit design

A flexible drill design.

Jung et al. (2021) [27]

- Influencing factors in bone drilling

- Internal factors
- External factors

- Finite element method simulation
- In vivo examination results

Not available

Islam et al. (2022) [28]

- Thermomechanical properties
- Bone drilling practice
- Conventional vs. non-conventional bone drilling
- Heat generation in bone drilling
- Bone drilling characterization
- Drill bit geometry
- Temperature measurement
- Challenges in bone drilling

Use more suitable drill bit geometry.
Use medical-grade material for the
drill bit.

Chouhan et al.
(2023) [29]

- Temperature effect in bone drilling
- Numerical simulation

Not available

1 A more detail of the future study of Ref. [4] is explained in the paragraph in Section 2. 2 An interested reader for
a detailed future work may read the article in Ref. [24].

3. A Brief Review of Medical Training System and Robotic Drilling

A medical training system (MTS) development for bone drilling is presented in [9].
The main objective of the training system development is to train and enhance the medical
professionals’ skills via VE. In particular, it controls the force in a certain range and main-
tains the drill thrust velocity constant at a certain time. Multi-user is the unique feature of
the proposed MTS. One of the important parts of the training system is the haptic feedback
for simulating realistic bone drilling sensations. The training system was validated through
user tests and assessed using Euclidean distance.

A virtual training simulation approach called machine learning-based guidance (LbG)
was introduced in [30]. The LbG approach aims for kinesthetic human-robot interaction
(HRI) in virtual training simulations, particularly for bone surgical drilling. A femur bone
drilling simulation is developed based on haptic feedback and X-ray views to help orthope-
dic residents practice, train, and improve their skills. The skill level of users and surgical
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expertise were assessed using machine learning tools. In addition, the virtual training
system uses adaptive LbG forces, which are informed by expert surgeon knowledge, to
enhance the resident’s performance during simulation.

Another study that applied haptic feedback for virtual reality (VR) simulation of
surgical drilling is presented in [31]. The general objective of the study is to shift surgical
training to VR simulation for otolaryngology and temporal bone dissection due to the
complexity of anatomy. The haptic feedback in the VR simulation is used to provide a
realistic sense of touch, especially the rendering of vibrations during surgical drill use.
In detail, the ability of four different haptic hand controllers was evaluated to render
realistic drill vibrations in VR surgical training. Some future applications of the study are
as follows: (1) To enhance VR surgical simulators by incorporating vibrotactile feedback;
(2) To improve the training experience in bone drilling procedures.

The application of physical and virtual prototypes for temporal bone drilling simu-
lation is discussed in [32]. The authors mentioned that a combined method of physical
and virtual prototypes offers advantages such as ease of access, the possibility of repeated
practice, and the absence of ethical issues. The future work of the study is to develop and
use virtual reality in bone surgical simulation.

4. An Application of Vibration and Machine Learning Methods for Bone Drilling

This section presents a review on techniques in bone drilling experiments with vibra-
tion, ultrasonic, and acoustic emission signals. This section also presents an application of
various machine learning (ML) methods for optimization, regression, and classification in
bone drilling studies.

4.1. Bone Drilling Vibration

When a drill bit makes mechanical contact with bone during bone drilling, it applies
force to the bone surface, causing it to penetrate and trigger a vibration signal. The vibration
signal exhibited from this process can be captured using an accelerometer. A study of
vibration signal characteristics for bone drilling, especially for bone layer classification, is
presented in [33]. The vibration signal dataset was acquired intermittently when the drill
bit passed through three different layers: periosteum, first cortical, and spongy. Time and
frequency domain features were extracted for the acquired vibration signal for three differ-
ent layers. The features analysis results of the frequency domain show outperformed time
domain features, indicating that frequency domain features have more information related
to the bone layer compared to the time domain features. This is because the frequency
characteristics of the vibration signal generated during bone drilling correspond to the
structure and condition of the bone layer itself. Different bone densities will exhibit differ-
ent frequency characteristics of the vibration signal. These properties can be investigated
further using various signal and image processing techniques.

Another study found that the vibration signal during the milling of the ventral cortical
bone (VCB), which has a higher density, is different from that during the milling of the
cancellous bone (CCB) [34]. Cortical bone tends to show higher frequency responses,
reflecting greater hardness and density, whereas cancellous bone exhibits lower frequency
responses due to its porous structure. These studies [34,35] provide strong evidence that
cortical and cancellous bones differ in the frequency patterns of the vibration signals.

A novel ultrasonic vibration-assisted drilling (UVD) technique for precise bone surgery
is presented by Kong and Lee [36]. An analytical force model is developed for ultrasonic
vibration-assisted bone drilling. In comparison to traditional drilling techniques, force
and torque were significantly decreased in an experimental study on bovine bone utilizing
ultrasonically assisted drilling [18]. The study found that sensors-aided drilling, with a
vibration frequency of 20 kHz and amplitude of 4–20 µm, produced lower temperatures
than conventional drills [3,37].



Eng 2024, 5 1574

4.2. Applied Machine Learning Methods

An application of the machine learning (ML) method for optimum bone drilling
parameters prediction is presented in [38]. A genetic algorithm (GA) is used to find a
minimum thrust force value from the combination of the bone drilling parameters during
bone drilling. A mathematical model of the thrust force as a function of spindle speed and
feed rate is calculated using response surface methodology (RSM). In the study, the optimal
value of the spindle speed and the feed rate to achieve the minimum thrust force during
bone drilling is developed using the GA method. The GA method uses a developed RSM of
thrust force as an objective function. The GA optimization result shows that a feed rate of
30 mm/min and a spindle speed of 1000 rpm are the optimal parameters for the minimum
thrust force value. The GA predicted result is also compared to the experiment result for a
similar feed rate and spindle speed value of 710 rpm.

Pandey et al. [39] presented a combined method to obtain an optimized grey fuzzy
reasoning grade (GFRG) from all quality characteristics of bone drilling. The combined
method consists of two methods: grey relation analysis (GRA) and fuzzy logic. The GFRG
determines the optimal combination of bone drilling parameters that minimize temperature,
force, and surface roughness. The highest GFRG is obtained at the speed of 500 rpm and
the feed rate of 40 mm/min.

A study that reported the application of radial basis function neural network (RBFNN)
for drill wear classification in bone drilling is available [40]. The RBFNN is utilized to
develop a drill wear classification model based on a multi-sensor approach. The features
for the RBFNN classification model were extracted from signals such as cutting forces,
servomotor drive currents, and acoustic emission (AE).

Various ML models such as k-nearest neighbors (KNN), support vector regression
(SVR), decision tree (DT), and random forest (RF) were used for predicting temperature
elevation rotary ultrasonic bone drilling (RUBD) [41]. The machine learning models were
compared with the response surface methodology (RSM) analysis. The result shows that
SVR is the most outperformed model for this application compared to other ML methods.

The monitoring and prediction of temperature elevation during real-time in vivo med-
ical surgery is a challenging task. A study that presents the Ridge regression for prediction
of the temperature rise during orthopedic bone drilling is presented by Agarwal et al. [42].
The Ridge regression model is compared with other ML models such as multilayer per-
ceptron (MLP), lasso regression, and multi-linear regression. The performance metrics
such as mean square error (MSE), root mean square error (RMSE), and mean absolute
error (MAE) show that the error metrics of the Ridge regression are lower than other ML
models, indicating that the proposed method outperformed other models. In another study
by Agarwal et al. [43], the Ridge regression was compared with other ML models such
as lassor regression, SVR, multi-linear regression, and artificial neural network (ANN).
Ridge regression and other ML methods are used to predict the surface roughness and
cutting force during rotary ultrasonic bone drilling. According to the statistical analysis
of the predictive results, it was observed that Ridge regression has the least error metrics
compared to other ML methods in terms of surface roughness prediction. In the case of
the cutting force prediction, SVR was the most accurate model compared to the other
ML models.

KNN and ensemble classifiers were utilized in [44] for breakthrough detection in
robotic orthopedic surgery. A feature set containing closed-loop control signals and force
sensor data were used as the training datasets to develop the prediction models. It was
found that the ML models accurately detected the breakthrough during bone drilling oper-
ations. The best accuracy of breakthrough detection is 98.1 ± 0.2% for sheep femur bone.

A successful strategy for identifying bone drilling levels (bone layers) using a cus-
tomized convolutional neural network (CNN) is described in [35]. The CNN classification
used vibration signals from a three-axial accelerometer attached to the cow femur bone.
The CNN accurately classified raw vibration signals from the three-axial accelerometer into
three distinct bone layers: periosteum (the outermost layer), first cortical (the next layer
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beneath the periosteum), and spongy (the innermost layer). A summary of the application
of ML methods in bone drilling is presented in Table 3.

Table 3. Summary of the application of machine learning methods on bone drilling.

Author (Year)
Data Used in the

Machine Learning
Method

Machine Learning
Method

Machine Learning Is
Used for?

The Purpose of Using
Machine Learning Method

Pandey et al.
(2014) [38]

Temperature, force, and
surface roughness

Grey relation analysis
and fuzzy logic Optimization

To determine the optimal
combination of bone drilling

parameters that minimize
temperature, force, and

surface roughness.

Pandey et al.
(2014) [39]

Temperature, force, and
surface roughness

Grey fuzzy
reasoning grade Classification

To find an optimal value of
feed rate (mm/min) and

speed (rpm).

Staroveski et al.
(2015) [40]

Cutting forces,
servomotor drive

currents, and
acoustic emission

Radial basis function
neural network Classification

To develop a drill wear
classification model based on

a multi-sensor approach.

Torun et al.
(2020) [44]

Closed-loop signal and
force sensor data

K-nearest neighbors
and ensemble classifier Classification

To detect breakthroughs and
estimate the condition of the

drill bit in robotic
bone drilling.

Agarwal et al.
(2022) [41] Temperature

K-nearest neighbors
Support vector

regression
Decision trees
Random forest

Regression

To introduce different ML
predicting methods for the
temperature elevations of

rotary ultrasonic
bone drilling.

Agarwal et al.
(2022) [42] Temperature

Multilayer perceptron
Lasso regression
Ridge regression

Regression To predict temperature rise
during bone drilling.

Agarwal et al.
(2022) [43]

Surface roughness and
cutting force

Ridge regression, lasso
regression, support
vector regression,

multi-linear regression,
artificial

neural network

Regression

To predict the surface
roughness and cutting force

during rotary ultrasonic
bone drilling.

Caesarendra et al.
(2024) [35] Vibration signal Convolutional

neural network Classification To classify three bone layers
based on vibration signal.

5. Experimental Procedure of Bone Drilling
5.1. Previous Studies

Several tools are required in the drilling process, namely the hand drill machines and
drill bits. Currently, the drilling speed of the hand drill machine varies between 500 and
1500 rpm. The reason for this difference is that some manufacturers have also introduced
high speeds as an advantage in their marketing activities. Drill bits are also employed
in preparing bone tunnels, for instance, in anterior ligament reconstructions. Typically,
drilling is utilized to create holes in the bone before inserting screws. Nevertheless, since
rigid bone is invariably surrounded by soft tissues like muscles, fat, ligaments, and tendons,
which allow for bone movement, the bone can deviate from its normal position due to the
shearing forces exerted by the drilling tool. The process of drilling a bone is depicted in a
typical block diagram in Figure 1.
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Figure 1. Schematic block diagram of typical bone drilling experiment.

Several other critical performance characteristics that determine the success of bone
drilling include the straightness of the created hole, an efficient coefficient of friction, and
healing time. Therefore, during surgical procedures, the force exerted by the surgeon and
the position of the drill bit must be accurate. The accuracy of drilled holes during orthopedic
fracture treatment relies greatly on the manual skills of the surgeon. However, currently,
bone drilling tools used in surgeries do not include any mechanisms for penetration control.
Thus, an automatic drilling system must be developed to minimize human errors during
bone drilling. Much research has been conducted to explore new drill-bit designs [13–16]
and new drilling techniques [17–19]. This was performed to avoid the accumulation of heat
at the point where the drill was located.

In [45], there are two approaches to minimize thermal damage during bone drilling.
The first strategy involves employing a higher feed rate to decrease the duration of the
drilling process. The second method involves utilizing a lower feed rate to achieve a lower
maximum temperature.

Bone drilling has been studied in past decades and is still a promising and developing
research area. Table 4 shows the selected research from 1976 to 2023 that briefly described
the bone sample used, the experimental description and procedure, and the outcome of
the study.
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Table 4. Review paper on experimental bone drilling.

Author (Year) Bone Sample Brief Experimental Description The Outcome of the Study

Chen and Gundjian
(1976) [46] Bovine femur

The bovine femur was split into seven
thin-disc samples. Each thin-disc sample
dimension is approximately 1 mm thick
and 3 mm in diameter.

The material characteristic that affects
the bone’s maximum temperature
when a heat source is present is
specific heat.

Cordioli and Majzoub
(1997) [47]

Bovine cortical
femur bone

The bone sample was drilled with a
diameter of 2 and 3 mm running at
1500 rpm and 200 N of axial force.

Correlation between drilling depth
and maximum temperature.

Hillery et al.
(1999) [48]

Femur heads,
Bovine tibia

The drilling machine was operated from
400 to 2000 rpm with an interval of
200 rpm. The feed rate during the bone
drilling was 50 mm/min.

The temperature increased with the
increasing depth of the hole.
The optimal speed range is between
800 and 1400 rpm with a drill bit
diameter of 3.2 mm.

Lee et al. (2012) [49] Bovine femur

Each bone specimen was attached to a
drilling dynamometer. The controlled
parameters for the drilling time are gauge
torque and thrust.

Presented a novel method based on a
CNC system for temperature
measurement, various thermocouples,
and an accurate position.

Pandey et al.
(2014) [50] Bovine bone

Using an MTAB 3-axis Flex mill.
Temperature data were gathered using a
K-type Extech thermocouple and
data-gathering software.

The study found that drill diameter
had the greatest influence among
these variables based on the result of
the Taguchi method.

Sarparast et al.
(2020) [51] Bovine femur

A high-speed electrical motor with a
rotational speed higher than 10,000 rpm
was mounted in the lathe machine.
High-speed steel (HSS) drill bit that was
2 mm in diameter was selected for the
experiment. The lathe machine was run
with an increasing feed rate from 10 to
50 mm/min. Single footing load cells and
k-type thermocouples are used for force
and temperature measurement.

Bone drilling optimum (minimum)
temperature was revealed at a
rotational speed of 12,000 rpm and
feed rate of 50 mm/min.
By increasing the feed rate slightly, it
increases the process force, which can
also lead to the
increasing temperature.

Alam et al. (2023) [52] Femoral and
tibia bones

A custom-made drilling setup with a
feedback control system for force, torque,
and temperature was used in drilling
tests. Small holes of 1.5 mm in diameter
through the bone were produced with
rotational speed of 400 rpm and feed rate
of 40 mm/min.

Increasing pressure on a worn drill is
necessary when drilling passes
through the hard cortex of the bone.
The torque in bone drilling has a
direct relationship with the depth
of drilling.
Bone temperature was increased
when the drill progressed to wear.

5.2. Bone Drilling Lab Experiment of the Present Study

A bone drilling lab experiment utilized a Dobot Magician robot, National Instrument
(NI) data acquisition (DAQ) module NI-9345, Brüel & Kjær three-axis accelerometer type
4535-B, and standalone academic LabVIEW software. A Dobot Magician robot was con-
nected to a PC with available software for robot programming. A schematic of the bone
drilling lab experiment is presented in Figure 2.
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Figure 2. Schematic diagram of the bone drilling experiment. Figure 2. Schematic diagram of the bone drilling experiment.

The original end effector of the Dobot Magician robot was replaced with the cus-
tomized drilling mechanism, as presented in Figure 2. In the bone drilling experiment,
each layer’s depth penetration is accurately controlled by the Dobot Magician robot. Bone
drilling vibration was performed intermittently from the periosteum layer (the outermost
layer), first cortical layer (the layer beneath the periosteum layer), and spongy layer (the in-
nermost layer) as illustrated in the table part of Figure 2. The vibration signal was acquired
using a three-axial accelerometer B&K type 4535-B-001 with a sensitivity for the x-, y-, and
z-axis of 96.44, 100.4, and 100.6 mV/g, respectively. A LabVIEW block diagram for the
bone drilling vibration experiment was developed, and the vibration data were acquired
with a sampling rate of 5 kHz. The drill was run at 500 rpm and a feed rate of 0.002 to
0.006 in/min during the experiment. The drill geometry was chosen as a twisted drill bit
with a 3.5 mm diameter. The vibration data were collected in 5 s for each layer and saved
in the Microsoft Excel 2013 Worksheet. The experiment does not involve data processing
because the vibration signal is not filtered or denoised. This is to simplify the method by
excluding the data processing step and to examine the robustness of deep learning methods
in predicting and classifying the raw vibration signals of bone drilling.
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The three-axial accelerometer was mounted to the bone that would be drilled, and
another one was attached to the customized drilling mechanism to receive vibration signals
during the drilling operation, as presented in Figure 2. The drill bit was then placed at
the anterior surface of the proximal femur and drilled in clockwise rotation continuously.
A fresh frozen cow femur was used in this research because this type of bone has almost
similar characteristics to human bone [16]. The sample was fixed with a laboratory clamp
while the drilling process was performed. The total number of holes produced in the
experiment was 10. However, two holes did not go through the bone (holes #2 and #7). The
remaining eight holes were successfully drilled through the bone sample.

The vibration signal of the bone drilling experiment (hole #5) for three different layers
is presented in Figures 3–5. Figure 3 presents the bone drilling vibration data (x-axis) for
the duration of one second. Figure 3a, Figure 3b, and Figure 3c are the vibration signals
from different layers: periosteum, first cortical, and spongy, respectively. The vibration
signals from several layers are difficult to differentiate. On the other hand, the vibration
signal displays a distinct form, as seen in Zoom in portions of Figure 3a–c, if it was only
plotted for 0.2 s (0.5~0.7 s) for zooming purposes. Another information that can be revealed
in Figure 3 is the vibration signal amplitude of each layer. The deeper the drill bit comes in,
the higher the amplitude (in mV) of the vibration signal.

 

3 

 
3  

Figure 3. Bone drilling vibration signal (x-axis) of three different layers: (a) Periosteum; (b) First
cortical; (c) Spongy.
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Figure 4 presents the bone drilling vibration data (y-axis) for the duration of one
second. Figure 4a, Figure 4b, and Figure 4c are the vibration signals from different layers:
periosteum, first cortical, and spongy, respectively. Similar to Figure 3, the vibration signals
of three different layers in Figure 4 are also difficult to distinguish visually. However, zoom-
ing in on the vibration signal for 0.2 s (0.5~0.7 s results in a distinct form and amplitude, as
seen in Figure 4a–c.

Figure 5 presents the bone drilling vibration data (z-axis) for the duration of one
second. Figure 5a, Figure 5b, and Figure 5c are the vibration signals from the periosteum
layer, first cortical layer, and spongy layer, respectively. Similar to Figures 3 and 4, the
vibration signals of three separate layers in Figure 5 are visually indistinguishable. Zooming
in on the vibration signal for 0.2 s (0.5–0.7 s) results in a changed shape and amplitude.

 

4 

 
4  

Figure 4. Bone drilling vibration signal (y-axis) of three different layers: (a) Periosteum; (b) First
cortical; (c) Spongy.

Table 5 shows the root mean square (RMS) of the vibration amplitude during bone
drilling. It is demonstrated that as the drill bit penetrates deeper, the RMS amplitude
increases. It implies that each layer’s bone structure is different, and when the drill bit
makes contact with the bone structure, the vibration signal is triggered. In particular, the
RPM values increase significantly from the first cortical to spongy layer than from the
periosteum to the first cortical layer. It shows that the spongy layer is less rigid and dense
than the periosteum and first cortical layer.
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Figure 5. Bone drilling vibration signal (z-axis) of three different layers: (a) Periosteum; (b) First
cortical; (c) Spongy.

Table 5. Vibration amplitude of different axes and different layers represented by RMS.

Layer RMS of x-Axis
Vibration (mV)

RMS of y-Axis
Vibration (mV)

RMS of z-Axis
Vibration (mV)

Periosteum (layer 1) 0.04 0.04 0.04
First cortical (layer 2) 0.09 0.06 0.05

Spongy (layer 3) 4.04 5.51 5.85

6. Long Term-Short Memory Method

Long short-term memory (LSTM) is a type of recurrent neural network (RNN) ar-
chitecture that processes sequential input. The LSTM is an improved method of RNN,
which was designed by Hochreiter and Schmidhuber for sequence prediction tasks [53]. In
addition, the LSTM method excels in capturing long-term dependencies in sequence data
and handling the vanishing gradient problem [53]. The LSTM method has been applied
previously in an ECG-rhythm classification study [54] and has been used to optimize reac-
tive power usage in high-rise buildings [55]. According to the summary of the machine
learning application presented in Table 3, LSTM has not been used for orthopedic bone
drilling; this is the motivation for selecting the LSTM method in the present bone layer
classification study.

An example application of the LSTM method for reproducing variable forces in
haptic technology focusing on tactile feedback enhancement in real-time robotic surgery
simulation is presented in [56]. The LSTM method is used in the study to replicate varied
force feedback during a skin layer surgical procedure. The LSTM method is also applied
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in the study to increase force prediction accuracy in robotic surgery simulation. This is
because the bone experiment was conducted intermittently from the periosteum, through
the first cortical, and ended at spongy; a sequential method is suitable for this type of data.
This is the main reason why LSTM was selected in this study.

6.1. LSTM Architecture

The characteristic of LSTM is a chain of repeating modules, as presented in Figure 6a.
Each module looks at some input xt and outputs a hidden state value ht. A loop passes
information from one network phase to the next. The difference between RNN and LSTM
is in the construction of the chained units. The unit of standard RNN has a simple structure,
like a single tanh layer, while LSTM has a more complicated unit, as presented in Figure 6b.
The keys of LSTM are cell state and gates. The cell state is kind of like a conveyor belt. The
cell state (memory) learns new information from the input. The LSTM can remove or add
information to the cell state (Ct) using a mechanism called gates. Gates can remove or add
information to the cell state. Gates decides whether information should be added to the
units or not. In general, the gate equation is presented in (1) [57]:

Gate(f,i,o) (ht−1, xt) = σ(U ht−1 + W xt + b), (1)

where U, W, and b are the parameters of the door. In this equation, the parameters of each
door are different. The variable xt in the current input, and ht−1 is the previous hidden state.
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Figure 6. LSTM architecture: (a) LSTM chain; (b) LSTM unit construction.

There are three gates in an LSTM unit: forget gate, input gate, and output gate. Forget
gate (Ft) controls which information should be removed from the cell state. Input gate (It)
determines which information from the previous timestamps should be remembered or
forgotten. The input gate also controls how much new information is added to the cell state.
Output gate (Ot) selects useful information from the current cell state and produces it as
the output. The output gate additionally sends updated data to the following timestamp.

The forget gate (Ft), input gate (It), and output gate (Ot) equations are presented in
(2)–(4), respectively [57].

Ft = σ(Uf ht−1 + Wf xt + bf), (2)

It = σ(Ui ht−1 + Wi xt + bi), (3)

Ot = σ(Uo ht−1 + Wo xt + bo), (4)

6.2. LSTM Model

During the Lab experiment, eight holes were successfully drilled through the femur
bone in the bone drilling experiment. They were holes #1, #3, #4, #5, #6, #8, #9, and #10.
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Among the eight datasets, holes #1 and #3 were not included in DL multiclassification and
prediction. Six holes were used in LSTM, CNN, and RNN training and testing (holes #4,
#5, #6, #8, #9, and #10). Holes #1 and #3 were not included because they were corrupted
by an expected noise after initial dataset checking using MATLAB. The assessment was
conducted visually and was not explained in detail in this paper.

In this study, the LSTM algorithm that is available in TensorFlow Keras was used. To
develop the LSTM model, 70% of the vibration data were used for training, and 30% of the
data were used for testing. The validation data were obtained from 20% of the training data.
The LSTM architecture used in this project is presented in Table 6, and the summary is as
follows: Input Layer → LSTM Layer (return_sequences = True) → LSTM Layer → Flatten
Layer → Dense Layer (Output Layer). With this architecture, the model can accept the
sequential vibration data from the x-, y-, and z-axis for each layer. The sequential vibration
data were processed in two LSTM layers to obtain the prediction model for multiclass
classification. The ‘softmax’ activation function was selected as the dense layer.

Table 6. LSTM architecture for multiclass classification.

Layer (Type) Output Shape Param #

input_1 (InputLayer) [(None, 3, 1)] 0
Astm (LSTM) [(None, 3, 32)] 4352
lstm_1 (LSTM) (None, 32) 8320
flatten (Flatten) (None, 32) 0
dense (Dense) (None, 3) 99

Total params: 12,771 (49.89 KB)
Trainable params: 12,771 (49.89 KB)
Non-trainable params: 0 (0.00 Byte)

6.3. LSTM Classification Results and Discussion

In the multi-classification model development, the LSTM model is configured with an
‘adam’ optimizer and a ‘categorical_crossentropy’ loss function. Some ‘callback’ functions,
such as EarlyStopping, ModelCheckpoint, and LearningRateScheduler, are also used to
control the training process. An ‘accuracy’ metric to evaluate the model’s performance is
used during the training process. The model evaluation is presented in Figure 7 with a test
loss of 0.018 and test accuracy of 0.993.
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Table 7 shows a classification report of LSTM, which provides detailed information
regarding model performance for each target class. The evaluation of layer 1 (periosteum)
shows that the model has a result of 0.99 for precision, recall, and F1-score. In layer 2 (first
cortical), the model also has a result of 0.99 for precision, recall, and F1-score. In the case of
layer 3 (spongy), it produces the highest result of 1 for recall and 0.99 for both precision
and F1-score. Figure 8 shows the precision–recall curve of all three layers was close to 1.

Table 7. LSTM classification report.

Precision Recall F1-Score Support

Periosteum (layer 1) 0.99 0.99 0.99 45,042
First cortical (layer 2) 0.99 0.99 0.99 44,948

Spongy (layer 3) 0.99 1 0.99 45,010
Accuracy 0.99 135,000

Macro avg 0.99 0.99 0.99 135,000
Weighted avg 0.99 0.99 0.99 135,000
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A confusion matrix for the training and testing of the LSTM model with 10 epochs is
presented in Figure 9. It is shown the classification of the three bone layers is generally
successful. However, there were very few misclassification results, as presented in the
confusion matrix of training and testing. In the confusion matrix of training, 366 out of the
total 104,957 data points of the periosteum layer wwere misclassified in the first cortical
layer, which is about a 0.35% incorrect prediction, and 694 out of the total 104,957 data
points of the periosteum layer were predicted as a spongy layer, which resulted in a 0.66%
error. For the first cortical layer, 698 out of the total 105,052 data points were misclassified
as the periosteum layer (0.66% error), and there is no first cortical data classified as spongy.
Another minor misclassification is also found in the first cortical layer, with 346 out of
104,644 data predicted in the periosteum layer, which is about 0.33% classification error,
and zero spongy data were classified in the periosteum.

In the testing confusion matrix, 134 and 306 out of 45,042 periosteum data were
misclassified in a first cortical layer and spongy layer, respectively, which resulted in 0.3%
and 0.68% incorrect prediction error. Similar to the training confusion matrix, only 302 out
of the first 44,948 cortical data points were predicted in the periosteum layer, which is about
a 0.67% classification error, and no data were classified as spongy. A better classification
result is found in the spongy data, with only 154 out of 44,856 data predicted in the first
cortical layer, which is about 0.34% classification error, and zero spongy data were classified
in the periosteum layer.
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7. Other Deep Learning (DL) Methods for Performance Comparison with LSTM

Two other DL methods were selected for performance comparisons with LSTM: CNN
and RNN.

7.1. Brief Information of Convolutional Neural Network (CNN)

Convolutional neural network (CNN) is a popular network design for deep learning
that is particularly useful for detecting patterns in 2D (image) data. CNN uses layers of
interconnected neurons, including convolutional layers that learn features directly from
data. These filters slide over input features, extracting relevant patterns. CNN has been
used in previous studies, e.g., for automated Cobb angle measurement [58], for bird sound
classification [59], and for vibration signal analysis in belt grinding tool wear prediction [60].

CNNs were initially created for the application in images or 2D (image) data; however,
there is an increasing trend of CNN applications in 1D data, especially in audio signals,
time-series data, biomedical data, structural health monitoring data, and fault detection-
based vibration data. A review of the application of CNNs in 1D data is presented in [61].
The review paper also described in detail the fundamental theory and architecture of
applied 1D CNNs. In the review, the 1D CNNs were applied to the speech signal, ECG
signal for arrhythmia detection, and vibration data for structural damage detection. The
review discovered that 1D CNNs have advantages compared to 2D CNNs due to the
simpler and more compact configuration. In detail, there are three main advantages of
1D CNNs: (1) Lower computational complexity; (2) Feasibility for real-time; (3) Low-cost
hardware implementation [61].

7.2. CNN Classification Results and Discussion

Similar to the LSTM model, the CNN model is also configured with an ‘adam’ op-
timizer and ‘categorical_crossentropy’ loss function in the application of a multiclass
classification of bone layers. An ‘accuracy’ metric to evaluate the model’s performance is
used during the training process. The model evaluation is presented in Figure 10.

Table 8 shows a CNN classification report of bone layers. The evaluation result of
layer 1 (periosteum) shows the model has 0.95 for precision and 0.94 for both recall and F1-
score. In layer 2 (first cortical), the model has 0.95 for precision, 0.97 for recall, and 0.96 for
F1-score. In the case of layer 3 (spongy), it has 0.95 for precision, 0.93 for recall, and 0.94 for
F1-score. The overall multi-classification accuracy of RNN is 0.95. The precision–recall
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curve is presented in Figure 11; it is shown that the first cortical layer has better results
compared to the other two layers (periosteum and spongy).
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Table 8. CNN classification report.

Precision Recall F1-Score Support

Periosteum (layer 1) 0.95 0.94 0.94 45,042
First cortical (layer 2) 0.95 0.97 0.96 44,948

Spongy (layer 3) 0.95 0.93 0.94 45,010
Accuracy 0.95 135,000

Macro avg 0.95 0.95 0.95 135,000
Weighted avg 0.95 0.95 0.95 135,000
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A confusion matrix for the training and testing of the CNN model with 10 epochs
is presented in Figure 12. There were greater misclassification results as presented in
the CNN confusion matrix of training and testing, compared to the LSTM confusion
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matrix. In the confusion matrix of training, 2086 out of the total 104,957 layer 1 data points
were misclassified in layer 2, which is about a 1.99% incorrect prediction; 4022 out of
the total 104,957 layer 1 data points were predicted as layer 3, which resulted in a 3.83%
classification error. For layer 2 prediction, 2094 out of the total 105,052 layer 2 data points
were misclassified as layer 1 (1.99% error), and 1205 out of the total 105,052 layer 2 data
points were predicted incorrectly as layer 3 (1.15% error). Another misclassification is also
found in layer 3, with 3321 out of the total 104,990 layer 3 data points being predicted in
layer 1, which is about a 3.16% classification error, and 3482 out of the total 104,990 layer 3
data points being predicted in layer 2, which is about 3.32% prediction error.
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In the confusion matrix of testing, 914 and 1728 out of the total 45,042 layer 1 data
points were misclassified in layer 2 and layer 3, respectively, which produced prediction
errors of 2.03% and 3.84% for each layer. In layer 2, 906 out of the total 44,948 layer 2 data
points were predicted in layer 1 with a 2.02% classification error, and 545 out of the total
44,948 layer 2 data points were misclassified in layer 3 with a 1.21% prediction error. For
layer 3 classification, 1429 out of the total 45,010 layer 3 data points were predicted in layer
1 with a 3.17% classification error, and 1518 out of the total 45,010 layer 3 data points were
misclassified in layer 2 with a 3.37% prediction error.

7.3. Brief Information of Recurrent Neural Network (RNN)

A recurrent neural network (RNN) is a superset of a feedforward neural network
(FFNN) that is enhanced by the addition of edges spanning neighboring time steps, which
gives the model an understanding of time [62]. The RNN makes use of sequential infor-
mation and can, therefore, simultaneously model sequential and time dependencies on
multiple scales. This enables a unidirectional process to take information from the past to
process later inputs. A basic RNN model is presented in Figure 13a.

Figure 13b illustrates the architecture of a single RNN cell. Each cell has two inputs
and two outputs at each time step. For the inputs, a(t−1) and x(t) denote the hidden state
from the previous cell and the current time step’s input data, respectively. The inputs
interact with the weights and biases ( Waa, Wax, and ba), which are reused in each time step.
The new hidden state at the end of each cell is then used to calculate the prediction during
the forward propagation using a softmax function, s. The indifferent new hidden value
is carried forward; the two needed outputs are produced, which are the hidden state and
predictions, as represented by a(t) and ŷ(t).
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7.4. RNN Classification Results and Discussion

Similar to the LSTM and CNN model, the RNN model also is configured with an ‘adam’
optimizer, and ‘categorical_crossentropy’ loss function in the application of a multiclass
classification of bone layers. An ‘accuracy’ metric to evaluate the model’s performance is
also used during the training process. The model evaluation is presented in Figure 14.

Table 9 shows an RNN model performance for each target class. The classification
report of (periosteum (layer 1) shows that the model has 0.96 for recall and 0.95 for both
precision and F1-score. In the first cortical (layer 2), the model has 0.97 for precision and
0.96 for both recall and F1-score. In the case of spongy (layer 3), the precision, recall, and
F1-score of the model are 0.94, 0.96, and 0.95, respectively. The overall multi-classification
accuracy of RNN is 0.96. The precision–recall curve is presented in Figure 15; it shows that
the first cortical layer has better results compared to the other two layers (periosteum and
spongy), which is similar to the CNN result.
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Table 9. RNN classification report.

Precision Recall F1-Score Support

Periosteum (layer 1) 0.95 0.96 0.95 45,042
First cortical (layer 2) 0.97 0.96 0.96 44,948

Spongy (layer 3) 0.94 0.96 0.95 45,010
Accuracy 0.96 135,000

Macro avg 0.96 0.96 0.96 135,000
Weighted avg 0.96 0.96 0.96 135,000
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A confusion matrix for the training and testing process of RNN model development
with 10 epochs is presented in Figure 16. In general, the confusion matrix result of the
RNN is slightly better than that of the CNN. However, it does not perform as well as
LSTM. For the confusion matrix of training, 1202 out of the total 104,957 layer 1 data points
were misclassified in layer 2 with a 1.15% classification error, and 3341 out of the total
104,957 layer 1 data points were predicted incorrectly in layer 3 with a 3.18% prediction
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error. In layer 2, 1928 out of the total 105,052 layer 2 data points were predicted incorrectly
in layer 1 with a 1.84% error, and 2855 out of the total 105,052 layer 2 data points were
misclassified in layer 3 with a 2.72% error. In layer 3, 3164 and 1572 out of the total
104,990 layer 3 data points were misclassified in layer 1 and layer 2, respectively, with 3.01%
and 1.5% prediction error for layer 1 and layer 2, respectively.
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In the confusion matrix of testing, 548 and 1409 out of the total 45,042 layer 1 data
points were predicted incorrectly in layer 2 and layer 3, respectively. This misclassification
results in a prediction error of 1.22% for layer 2 and 3.13% for layer 3. In layer 2 classification,
822 out of the total 44,948 layer 2 data points were predicted incorrectly in layer 1 with a
1.83% classification error, and 1145 out of 44,948 were misclassified in layer 3 with a 2.55%
prediction error. For layer 3 classification, 1336 and 678 out of the total 45,010 layer 3 data
points were predicted in layer 1 and layer 2, respectively, with a 2.97% classification error
in layer 1 and a 1.51% prediction error in layer 2.

8. Conclusions

A review of an orthopedic bone drilling study with an example of bone layer classifi-
cation using vibration signal and deep learning methods such as LSTM, CNN, and RNN is
presented. This review aimed to provide a state-of-the-art bone drilling study that will be
useful for researchers developing a new method or a new research direction. One summary
that can be highlighted according to the review is the potential research direction and future
work in the development of the medical training system simulation that comprises sensor
and robotic technologies, haptic mechanisms, and real-time monitoring systems. Sensor
technology is one of the main factors in the simulation of medical training systems for
providing user feedback. This paper presented a potential sensor input-based accelerometer
or vibration signal to enable user feedback information in conducting bone drilling.

Three DL methods, i.e., LSTM, CNN, and RNN, are selected to describe the benefit of
utilizing the vibration signal for bone drilling study, especially for bone layer classification.
The following are a few of the multi-classifications of bone layers based on the three applied
DL methods:

• With an almost similar DL model development parameters and epoch number, the
LSTM shows that it is better than CNN and RNN for vibration data (1D data) of bone
layer classification.

• The overall multi-classification accuracy of LSTM, CNN, and RNN, according to
the classification report tables, is 0.99, 0.95, and 0.96. This indicates that LSTM is
outperformed by CNN and RNN.
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• The bone layer classification study based on vibration signals is still developing. This
study can be particularly useful in medical procedures in bone drilling, where accurate
identification of different bone layers is crucial.

• The future work related to the bone drilling experiment is to generate more datasets
and to use other potential methods.
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