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Abstract: This study harnesses EEG signals to enable the real-time control of servo motors, utilizing
the OpenBCI Community Dataset to identify and assess brainwave patterns related to motor imagery
tasks. Specifically, the dataset includes EEG data from 52 subjects, capturing electrical brain activity
while participants imagined executing specific motor tasks. Each participant underwent multiple
trials for each motor imagery task, ensuring a diverse and comprehensive dataset for model training
and evaluation. A deep neural network model comprising convolutional and bidirectional long short-
term memory (LSTM) layers was developed and trained using k-fold cross-validation, achieving a
notable accuracy of 98%. The model’s performance was further compared against recurrent neural
networks (RNNs), multilayer perceptrons (MLPs), and Transformer algorithms, demonstrating that
the CNN-LSTM model provided the best performance due to its effective capture of both spatial
and temporal features. The model was deployed on a Python script interfacing with an Arduino
board, enabling communication with two servo motors. The Python script predicts actions from
preprocessed EEG data to control the servo motors in real-time. Real-time performance metrics,
including classification reports and confusion matrices, demonstrate the seamless integration of the
LSTM model with the Arduino board for precise and responsive control. An Arduino program was
implemented to receive commands from the Python script via serial communication and control the
servo motors, enabling accurate and responsive control based on EEG predictions. Overall, this study
presents a comprehensive approach that combines machine learning, real-time implementation, and
hardware interfacing to enable the precise and real-time control of servo motors using EEG signals,
with potential applications in the human–robot interaction and assistive technology domains.

Keywords: EEG signals; servo; machine learning; real-time control; deep neural network; LSTM;
Python; Arduino

1. Introduction

Electroencephalography (EEG) is a field dedicated to the recording and interpretation
of the electroencephalogram. The electroencephalogram (EEG) represents the electrical
signal produced by the coordinated activity of brain cells, specifically the temporal pattern
of extracellular field potentials resulting from their synchronized activity. The term “elec-
troencephalogram” is derived from the Greek words “enkephalo” (brain) and “graphein”
(to write). An EEG can be recorded using electrodes placed on the scalp or directly on the
cortex. When recorded directly on the cortex, it is sometimes referred to as an electrocor-
ticogram (ECoG). Electric fields measured intracortically are termed Local Field Potentials
(LFPs). An EEG recorded without an external stimulus is termed a spontaneous EEG, while
an EEG generated in response to an external or internal stimulus is termed an event-related
potential (ERP). The amplitude of EEG in a normal awake subject recorded with scalp
electrodes ranges from 10–100 mV. In cases of epilepsy, EEG amplitudes can increase nearly
tenfold, with cortical amplitudes ranging from 500–1500 mV. EEG rhythms include delta
(0.5–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and gamma (above 30 Hz).
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Gamma components are challenging to record with scalp electrodes, generally not exceed-
ing 45 Hz, but an ECoG can register frequencies up to 100 Hz or higher. The contributions
of these rhythms vary with age and the behavioral state, especially alertness. EEG pat-
terns also differ between individuals and are influenced by neuropathological conditions,
metabolic disorders, and drug effects. Delta rhythm is dominant during deep sleep, with
large amplitudes (75–200 mV) and strong coherence across the scalp. Theta rhythms are
rare in adult humans but common in rodents, with a broader frequency range (4–12 Hz)
and high amplitude. In humans, theta activity occurs in emotional or cognitive states.
Alpha rhythms are prominent during wakefulness, especially in the posterior regions when
the eyes are closed and the subject is relaxed. They are attenuated by visual attention and
mental effort. Mu rhythms, which are similar in frequency, are related to motor cortex
function and are blocked by motor activities. Beta activity is associated with increased
alertness and focused attention. Gamma activity relates to information processing and the
onset of voluntary movements. Generally, slower cortical rhythms are linked to an idle
brain, while faster rhythms are related to information processing.

EEGs are observed in all mammals, with primate EEG characteristics being most
similar to humans. Cat, dog, and rodent EEGs also resemble human EEGs but have
different spectral contents. In lower vertebrates, electric brain activity is observed, but it
lacks the rhythmic behavior found in recordings from higher vertebrates [1].

The brain–computer interface (BCI) [2] utilizes EEG signals to enable direct commu-
nication between the brain and external devices, such as robotic arms or computers. The
process involves the following steps: EEG signals are recorded using electrodes placed
on the scalp, and the raw EEG data are then processed to extract relevant features. These
features, such as the power spectral density, event-related potentials, or specific frequency
bands like alpha or beta rhythms, are extracted from the EEG signals. Advanced algo-
rithms, including machine learning or signal processing techniques, are used to decode the
extracted features and translate them into control commands for the robotic arm or device.
Subsequently, the decoded commands are used to control the movement or operation of
the robotic arm or device.

Types of BCI systems using EEG signals include motor imagery-based BCIs, where
users imagine specific motor movements, such as moving their right hand, which produce
distinct EEG patterns. These patterns are then decoded to control the robotic arm. In the
P300 Speller system, users focus on a specific character or item presented in a matrix, and
when the desired item flashes, a P300 waveform is elicited in the EEG signal, which is
used to select the item. Another type is the SSVEP (Steady-State Visually Evoked Potential)
system, where users focus on visual stimuli flashing at different frequencies, and the
corresponding EEG responses are used to determine the user’s intended action.

Benefits of EEG-based BCIs include their non-invasive nature, as unlike invasive
methods, they do not require surgical implantation, and their versatility, as they can be
used by individuals with severe motor disabilities to control external devices and improve
their quality of life. However, there are several challenges associated with EEG-based BCIs.
These challenges include the susceptibility of EEG signals to noise and artifacts, which can
affect the accuracy of the BCI; the need for users to undergo extensive training to generate
consistent and distinguishable EEG patterns; and the limited bandwidth of EEG signals
compared to invasive methods, which can restrict the range and complexity of tasks that
can be performed.

EEG signals play a crucial role in the development of brain–computer interfaces,
enabling direct communication and control of servo motors, robotic arms or devices through
the user’s brain activity. With advancements in signal processing techniques and machine
learning algorithms, EEG-based BCIs have the potential to revolutionize the field of assistive
technology and neurorehabilitation [3].

BCI technology has emerged as a transformative field bridging neuroscience and
engineering, enabling direct communication between the human brain and external devices.
BCI systems hold immense potential for augmenting human capabilities, particularly in
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assisting individuals with disabilities and enhancing human–machine interactions. One
promising application of BCI technology is the control of robotic systems using neural
signals extracted from the brain [4].

Related Work

Recently, there has been a growing interest in utilizing machine learning (ML) algo-
rithms, specifically utilizing long short-term memory (LSTM) neural network models [5],
to control robotic devices using electroencephalography (EEG) signals extracted from the
brain. For instance, in ref. [6], researchers introduced a classification framework utilizing
LSTM neural network models for the classification of motor imagery electroencephalograph
signals in BCI systems by employing a one-dimension-aggregate approximation (1d-AX)
for feature extraction and incorporating a channel weighting technique inspired by the
classical common spatial pattern and achieved enhanced classification performance.

In [7], the authors combined the use of discrete wavelet transform (DWT) for fre-
quency feature extraction with a bidirectional long short-term memory (BiLSTM) neural
network to improve the classification of MI-based EEG signals in a BCI system, achieving
satisfactory results.

In [8], Garcia-Moreno et al. explored the feasibility of motor imagery classification
using a low-cost and low-invasive BCI headband, achieving a validation accuracy of
96.5% with their CNN-LSTM deep learning model. The study emphasized the necessity of
analyzing all five EEG wave types (alpha, beta, theta, delta, and gamma) through specific
channels (TP9, TP10, AF7, and AF8) for accurate classification. The authors noted that raw
data alone were insufficient for achieving high accuracy, highlighting the importance of
feature extraction. While the Muse headband used in the study offers low invasiveness
compared to similar devices, its intrusiveness in outdoor activities and the small sample
size were identified as limitations. Future work aims to expand the sample size, integrate
the model with existing e-health systems, extend the detection capabilities to other types of
motor imagery, and explore real-time predictions to enhance user experience. The study
underscores the potential of such wearable technologies to democratize BCI adoption
in healthcare, enabling interactions with computer systems through thought alone and
integrating seamlessly with comprehensive health monitoring systems.

In [9], Li et al. proposed a sophisticated EEG classification algorithm for motor
imagery tasks that combines convolutional neural networks (CNN) and long short-term
memory (LSTM) networks. This hybrid CNN-LSTM feature fusion network leverages the
strengths of both architectures: the CNN is adept at capturing spatial features from the
EEG signals, while the LSTM excels at extracting temporal dependencies. The parallel
integration of these networks allows for a comprehensive feature extraction process, leading
to a significant improvement in classification accuracy. The study demonstrated that
this method outperformed traditional approaches, providing a promising avenue for
enhancing brain–computer interface (BCI) systems with more accurate and reliable EEG
signal interpretation.

In their 2023 study [10], Martín-Chinea et al. examined the impact of time windows on
the performance of LSTM networks in EEG-based brain–computer interfaces (BCIs). They
highlight the essential role of high-quality data in ensuring the efficient performance of
both classical machine learning and deep learning algorithms like LSTMs. Although deep
learning techniques typically require large datasets and incur higher computational costs,
the sequential processing capabilities of LSTMs provide significant advantages. The study
underscores that while LSTM networks have been extensively applied in the EEG-based
BCI literature, there is a notable gap in research focusing on the time window parameter,
which is critical for the success of such models.

The research demonstrates that LSTMs can effectively capture temporal patterns
in EEG signals, particularly in distinguishing between eyes open (EO) and eyes closed
(EC) states. This task is challenging due to the overlapping characteristics of alpha-band
power in both states. Using LSTM networks, the researchers show that it is possible
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to elegantly resolve these challenges without relying on the assumptions necessary for
threshold-based methods.

Their findings emphasize that the choice of the time window significantly affects the
accuracy of LSTM classifiers, with better performance compared to classical algorithms
that require extensive preprocessing. Unlike RNNs, LSTMs can retain information over
long periods, which enhances the classification results. The study concludes that, despite
the efficacy of the proposed LSTM-based approach, other modalities like EMG or video
eye tracking might yield better results for certain tasks. Nonetheless, the versatility of the
LSTM approach makes it applicable to various domains, including motor disease feedback,
neuromarketing, and complex brain task classification.

In the authors’ previous study [11], Angelakis et al. created an efficient model divided
into two parts. In Part I, the constant features approach was employed, which encompassed
data loading, feature extraction, preprocessing, model selection, and tuning to identify
the best-performing model. The performance of classification algorithms (support vector
machine (SVM), decision tree classifier, and random forest classifier) was evaluated using
root-mean-squared error metrics. In Part II, a multivariate time series approach was utilized
to enhance the accuracy and robustness of the model. A neural network architecture
consisting of convolutional filters followed by a LSTM was employed for EEG classification.
The convolutional layer’s purpose was to extract high-level features from the EEG data.
This approach was particularly well-suited for handling the sequential nature of EEG
signals. The results obtained were impressive, with the model achieving an accuracy of
98% in predicting the chosen action based on EEG signals.

This study introduces several advancements to the model. First, the inclusion of k-fold
cross-validation [12] aims to enhance the model’s generalization and robustness. This
technique partitions the dataset into ‘k’ subsets and iteratively trains the model on ‘k − 1’ of
these subsets while validating on the remaining subset. Second, the integration of Dropout
Regularization was incorporated to prevent overfitting and boost the model’s performance.
This technique randomly sets a fraction of input units to zero during training, helping to
reduce overfitting. Third, the model’s training was optimized using the Adam optimizer,
an adaptive learning rate optimization algorithm well-suited for deep learning. Lastly, to
minimize any dataset’s imbalance, class weights were computed and employed to give
more weight to under-represented classes, thereby enhancing the model’s generalization.
To evaluate the model’s performance, a classification report and confusion matrix were
computed for each fold during the cross-validation process, with the average validation
loss and accuracy printed at the training process’s conclusion.

Building upon these enhancements, this study extends the comparison by incorporat-
ing recurrent neural networks (RNNs), multilayer perceptrons (MLPs), and Transformer
algorithms alongside the CNN-LSTM deep neural network. In addition to the aforemen-
tioned advancements, the primary goal was to implement the model in hardware to test
its practical application. The trained LSTM model was integrated into a hardware setup
to control two servo motors based on predictions. Initially, preprocessed EEG data were
loaded from a validation data folder, and the trained LSTM model was loaded using the
TensorFlow Keras API. A serial connection was then established between the computer and
an Arduino board to facilitate the control of the servo motors. The preloaded validation
data were utilized to predict the movement labels using the LSTM model. A control func-
tion was developed to send commands to the Arduino based on the following predicted
labels: ‘L’ for left arm, ‘R’ for right arm, and ‘N’ for no action. The model’s predictions
were continuously tested in real-time using the preloaded data, with the confusion matrix
and classification report printed for each iteration to evaluate the model’s performance.
Based on the LSTM’s predictions, the Arduino was then instructed to move the servo
motors accordingly.

The subsequent sections of this paper will elucidate the methodology employed, de-
tailing the process of EEG data acquisition, model development, real-time implementation,
and performance evaluation. By elucidating the intricacies of the proposed approach, this
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study seeks to contribute to the burgeoning field of BCI research and foster advancements
in human–machine collaboration.

2. Materials and Methods
2.1. Data Collection

The data collection process involved acquiring EEG recordings from individuals per-
forming motor imagery tasks associated with left hand movement, right hand movement,
and no action scenarios. EEG data were obtained from the publicly available OpenBCI
Community Dataset, specifically targeting recordings collected in February 2021. This
dataset encompasses EEG data from 52 subjects, including 38 validated subjects with
discriminative features (33 males, 19 females, mean age ± SD = 24.8 ± 3.86 years), and
the experiment was approved by the Institutional Review Board of Gwangju Institute of
Science and Technology. Each subject participated in the same experiment, and subject IDs
were denoted and indexed as s1, s2, . . ., s52. Subjects s20 and s33 were both-handed, and
the other 50 subjects were right-handed [13]. When exploring EEG datasets for research
and development in the realm of BCI systems and motor imagery classification, several
datasets are available for consideration in addition to the OpenBCI Community Dataset.
Notable alternatives include the PhysioNet EEG Motor Movement/Imagery Dataset [14]
and the EEG Motor Movement/Imagery Datasets available on Kaggle [15].

In OpenBCI, community participants imagined executing specific motor tasks while
wearing EEG headsets to capture electrical signals from their brain activity. Each par-
ticipant underwent multiple trials for each motor imagery task, creating a diverse and
comprehensive dataset for analysis and model training.

2.1.1. Non-Task-Related States

The dataset includes six types of non-task-related data: eye blinking, eyeball move-
ment up/down, eyeball movement left/right, head movement, jaw clenching, and the
resting state. Each type of noise was recorded twice for 5 s, except the resting state, which
was recorded for 60 s.

2.1.2. Real Hand Movement

Subjects sat in a chair with armrests and watched a monitor. Each trial began with
a black screen displaying a fixation cross for 2 s, followed by a random instruction (“left
hand” or “right hand”) on the screen for 3 s. Subjects moved the appropriate hand based
on the instruction. After the hand movement, a blank screen appeared, providing a break
for 4.1 to 4.8 s. This process was repeated 20 times for one run, with one run performed.

2.1.3. Motor Imagery (MI) Experiment

The MI experiment followed the same setup as the real hand movement experiment.
Subjects imagined the hand movement according to the given instruction. Five or six runs
were performed, with each run consisting of the same sequence as the real hand movement
trials. After each run, classification accuracy was calculated and feedback was provided to
motivate the subject. A maximum 4 min break was given between runs, depending on the
subject’s needs.

The EEG recordings were obtained using 64 Ag/AgCl active electrodes configured in
a 64-channel montage based on the international 10–10 system, ensuring comprehensive
coverage of the scalp to capture neural activity from relevant brain regions. The EEG signals
were recorded at a high sampling rate of 512 Hz, which provides the detailed temporal
resolution necessary for analyzing fast neural dynamics.

Data acquisition was performed using the Biosemi ActiveTwo system [16], known
for its high-quality signal capture and low noise levels. The BCI2000 system 3.0.2 was
utilized not only to collect the EEG data but also to present motor imagery instructions to
participants. This integration ensured synchronized data collection and task presentation.
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Built-in preprocessing features included the simultaneous recording of EMG signals
with the same system and sampling rate to monitor actual hand movements. Two EMG
electrodes were attached to the flexor digitorum profundus and extensor digitorum on each
arm, allowing for the differentiation between imagined and real hand movements.

The EEG datasets from the OpenBCI Community Dataset were meticulously selected
over these other similar datasets based on several pivotal criteria to ensure the quality,
reliability, and relevance of the data for motor imagery (MI)-based brain–computer interface
(BCI) research. Firstly, participants were chosen if they successfully completed all motor
imagery tasks without significant artifacts or disruptions. This criterion aimed to guarantee
the integrity of the EEG recordings, aligning with the general belief among BCI investigators
that a BCI can be achieved through induced neuronal activity from the cortex, rather than
evoked neuronal activity.

Secondly, a strong emphasis was placed on datasets that included comprehensive
metadata, encompassing a psychological and physiological questionnaire, EEG coordinates,
and EEGs for non-task related states. This holistic metadataset provided valuable insights
into the participants’ cognitive and physiological states during the motor imagery tasks,
facilitating a deeper understanding of the variability in BCI performance across different
sessions and subjects.

Additionally, EEG recordings with a low percentage of bad trials were prioritized
to ensure data reliability and consistency. This validation criterion was corroborated by
the study’s approach to validating the EEG datasets using the percentage of bad trials,
event-related desynchronization/synchronization (ERD/ERS) analysis, and classification
analysis. Notably, the selected EEG datasets exhibited clear contralateral ERD and ipsilat-
eral ERS patterns in the somatosensory area, which are well-recognized patterns of MI. This
consistency in EEG patterns reinforced the robustness and reliability of the chosen datasets.

Furthermore, the study’s findings highlighted that 73.08% of the datasets (38 subjects)
included reasonably discriminative information. The inclusion of both well-discriminated
and less-discriminated datasets in the EEG datasets provided researchers with opportunities
to investigate human factors related to MI BCI performance variation and to potentially
achieve subject-to-subject transfer by utilizing the comprehensive metadata.

In summary, the criteria for selecting the EEG datasets from the OpenBCI Community
Dataset were designed to align with the study’s objectives and methodologies, ensuring
that the chosen datasets were of high quality, reliable, and suitable for in-depth analysis
and model training in the context of MI-based BCI research

2.2. The Hardware Setup

The hardware setup, a cornerstone of the experimental framework, meticulously
entailed connecting the Arduino UNO R4 Minima (manufacturer: Arduino, based in Turin,
Italy) [Figure 1] to two Servo (SG90 Micro Servo (manufacturer: Tower Pro, based in
Shenzhen, Guangdong, China) [Figure 2]) using digital pins for control and power. Before
experimentation, meticulous calibration and synchronization of hardware components
were conducted to ensure optimal performance and data integrity. The personal computer
used for the research was an HP ProBook 450 G9 Notebook PC (manufacturer: HP Inc.,
based in Palo Alto, CA, USA). It featured an Intel Core i5-1235U processor (manufacturer:
Intel Corporation, based in Santa Clara, CA, USA) from the 12th generation, which includes
10 cores and 12 logical processors and operates at a base clock speed of approximately
1.3 GHz. This processor is designed to handle multitasking efficiently and is well-suited for
moderate computational workloads. The system was equipped with 16 GB of RAM Double
Data Rate 4, which is adequate for running multiple applications simultaneously and
performing memory-intensive tasks. This amount of memory ensures that the laptop can
handle complex data processing and software applications required for research purposes.
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In the experimental setup, the Arduino UNO R4 Minima microcontroller was central
to the integration with the servo motors.

The Arduino UNO R4 Minima was selected due to its hardware compatibility, en-
hanced performance, and extensive community support, which collectively facilitated the
seamless integration and control of servo motors in our setup. The microcontroller’s form
factor, pinout, and 5 V operating voltage are consistent with its predecessor, the UNO
R3, ensuring compatibility with existing shields and leveraging the extensive ecosystem
already established for the Arduino UNO. This compatibility was essential for integrating
additional hardware components without significant modifications. The UNO R4 Minima
boasts increased memory and a faster clock speed, which are crucial for handling the
complex computations and real-time data processing required in our motor imagery classi-
fication system. The enhanced processing capabilities enable precise calculations, ensuring
the accurate and responsive control of the servo motors based on EEG signal interpretation.

The Arduino was connected to two servo motors, which were powered by an external
4 AA battery supply. The entire assembly, including the Arduino, servo motors, and the
battery, was neatly integrated onto a breadboard for a compact and organized configuration.
For the electrical connections, pins 9 and 8 on the Arduino were utilized. These pins were
specifically chosen to interface with the control inputs of the servo motors, allowing the
Arduino to send precise control signals to the motors [Figure 3].

Integrating with Arduino was crucial to the study’s methodology. This integration
allowed for seamless communication and control of the servo motors. Within this setup,
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Arduino facilitated the precise execution of desired actions by the servo motors, operat-
ing based on commands relayed from the Python script. This real-time implementation
effectively showcased the system’s capability to accurately interpret EEG signals and trans-
late them into actionable commands with minimal latency. As a result, it ensured the
smooth and responsive movement of the servo motors, enhancing the overall efficacy and
performance of the BCI system.
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The process encompassed several key steps, starting from data preprocessing and
feature extraction to model development and real-time implementation.

2.3. Data Preprocessing

In the preprocessing of the EEG data phase, a meticulous approach was adopted to
enhance the quality and reliability by addressing common challenges such as unwanted
noise, artifacts, and baseline drift commonly encountered in EEG recordings. The next
step involved the application of a fourth-order Butterworth bandpass filter with a specific
frequency range set between 1 Hz and 50 Hz. This bandpass filtering was pivotal in
isolating the desired frequency components of the EEG signals while effectively filtering out
unwanted low and high-frequency components that could distort the genuine brainwave
signals. A lower cut-off frequency of 1 Hz was chosen to capture the very low-frequency
components, such as delta waves, providing valuable insights into the brainwave patterns
during motor imagery tasks. Conversely, an upper cut-off frequency of 50 Hz was selected
to remove high-frequency noise and muscle artifacts, enhancing the overall quality and
reliability of the EEG signals.

The choice of the Butterworth filter was driven by several key advantages that make it
particularly suitable for this specific application. The Butterworth filter is characterized
by its maximally flat frequency response within the passband, ensuring minimal signal
distortion. This property is crucial for maintaining the integrity of the EEG signals and
accurately capturing the brainwave patterns associated with motor imagery tasks. Addi-
tionally, the Butterworth filter provides a smooth and gradual transition from the passband
to the stopband, which helps in minimizing signal distortion and effectively attenuating
unwanted noise. The design of the Butterworth filter offers stability and robustness, which
is essential when dealing with the high dimensionality and inherent noise present in EEG
data, ensuring consistent filtering performance across different EEG recordings and subjects.
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Furthermore, the Butterworth filter is relatively straightforward to design and implement
using standard signal processing software libraries. This facilitates reproducibility and
comparability in research, allowing other researchers to replicate the filtering process with
ease. By selecting an appropriate order (fourth-order) and frequency range (1 Hz to 50 Hz),
the Butterworth filter effectively reduces low-frequency drifts and high-frequency muscle
artifacts. This targeted noise reduction is critical for isolating the relevant EEG components
corresponding to motor imagery, thereby improving the accuracy of the subsequent analy-
sis and classification. These advantages make the Butterworth filter particularly well-suited
for EEG signal processing in the context of motor imagery tasks, ensuring that the key
frequency components of interest are preserved while unwanted noise is minimized.

Following the bandpass filtering, fast Fourier transform (FFT) was used to derive
frequency-domain details from EEG signals. This method enabled the conversion of EEG
time-domain data into a frequency-domain format, allowing the recognition of specific
spectral elements. FFT is a mathematical approach employed in this study to transform
the time-domain signal into the frequency domain, providing insights into the number of
active signals at each frequency. The FFT algorithm dissected the time-domain signal into
its constituent frequencies, displaying the amplitude (or power) of each frequency. This
aided in pinpointing the dominant frequencies in the signal and tracking their variations
over time.

FFT is widely used to analyze brainwave signal frequencies. Brainwaves, which are
electrical impulses produced by the brain, can be intricate and encompass signals at various
frequencies. By applying FFT to the brainwave signal in this study, it was feasible to
decompose it into its individual frequencies and evaluate the power at each frequency. In
BCIs, FFT can be employed to extract features from EEG signals associated with specific
mental states or actions, like variations in the power of the alpha frequency range (8–12 Hz)
linked to relaxation or attention. The FFT technique was used to pinpoint and separate noise
and artifact frequencies from the EEG data. By recognizing irregular frequency components
that differed from the standard neural oscillations, these undesirable signals were effectively
reduced. This procedure enhanced the signal quality and reduced potential disturbances
from external factors, thereby improving the accuracy of subsequent analyses. In addition
to the advanced filtering techniques, a specialized artifact removal algorithm was applied
to identify and discard any irregularities or anomalies in the EEG data. These artifacts can
arise from various sources such as muscle movements, eye blinks, or external interferences,
and they can significantly distort the true EEG signals. By effectively removing these
artifacts, the quality and accuracy of the EEG data were further improved. The technique
that was used is the discrete wavelet transform (DWT), which provides a powerful method
for analyzing and processing non-stationary signals like EEG data by offering both time
and frequency localization.

The DWT involves decomposing a signal into a set of basic functions called wavelets.
This decomposition provides both time and frequency localization, making it ideal for
analyzing non-stationary signals like EEGs.

Compared to other methods like Independent Component Analysis (ICA), which
separates EEG signals into independent components for artifact removal but requires
manual identification and assumes statistical independence that might not always hold, or
Principal Component Analysis (PCA), which reduces dimensionality and removes artifacts
through orthogonal components but also requires manual artifact identification and may
not effectively separate overlapping spectral properties, DWT offers superior time and
frequency localization, allowing the precise identification and removal of artifacts without
losing important temporal information. Its multiresolution analysis distinguishes between
artifacts and neural activity effectively. DWT was chosen for its ability to handle non-
stationary EEG signals, providing a detailed time–frequency representation and automated
artifact removal, and preserving relevant neural signals for an accurate analysis.

The combination of bandpass filtering and FFT in the preprocessing steps played a
significant role in ensuring that the EEG data used for subsequent analysis and model
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training were of the highest quality, free from unwanted distortions and interferences. This
comprehensive preprocessing approach significantly enhanced the reliability, validity, and
suitability of the EEG data for further research and analysis.

The selection of cut-off frequencies for the Butterworth bandpass filter was informed by
a thorough examination of the spectral characteristics of EEG signals associated with motor
imagery tasks. The lower cut-off frequency was set at 1 Hz to capture very low-frequency
components, including delta waves, which are crucial for understanding fundamental
brainwave patterns related to motor planning and execution. The upper cut-off frequency
was established at 50 Hz to effectively attenuate high-frequency noise and muscle artifacts,
thereby enhancing the fidelity of the extracted brainwave signals.

These cut-off frequencies were determined based on established practices in EEG signal
processing and prior empirical evidence supporting their efficacy in isolating relevant
neural activity while mitigating the influence of confounding factors. The choice of a
bandpass filter over other filter types was driven by its capacity to selectively target specific
frequency components, aligning with the study’s objective to focus on neural oscillations
relevant to motor imagery tasks.

2.4. Feature Extraction

Following the preprocessing phase, the next critical step was feature extraction, where
relevant information indicative of motor imagery tasks was captured from the preprocessed
EEG signals. To provide a comprehensive understanding of the brain activity during motor
imagery, both time-domain and frequency-domain features were computed.

In the time domain, the power spectral density (PSD) ratio was examined to delve
into the distribution of signal power across different frequency bands. By analyzing the
power distribution, it became possible to discern the dominance of specific frequency
components, shedding light on the prevailing neural oscillatory patterns associated with
different cognitive processes. the PSD ratio was computed by dividing the continuous EEG
recordings into 2 s epochs. For each epoch, the fast Fourier transform (FFT) converted
the time-domain signals into the frequency domain, providing the power spectrum. The
PSD was calculated by squaring the FFT coefficients’ magnitudes and normalizing by the
number of data points, resulting in the power at each frequency. The power was integrated
over specific frequency bands (delta: 1–4 Hz, theta: 4–8 Hz, alpha: 8–13 Hz, beta: 13–30 Hz,
and gamma: 30–50 Hz), and the PSD ratio was obtained by dividing the power in a specific
band by the total power across all bands, such as the alpha/beta ratio. The PSD ratio is
particularly relevant to motor imagery tasks because different frequency bands are linked
to various cognitive and motor functions. The alpha band (8–13 Hz) is associated with
relaxation, while the beta band (13–30 Hz) is linked to active thinking and motor control.
The theta band (4–8 Hz) and gamma band (30–50 Hz) are involved in cognitive processing.

Hjorth parameters provided insights into the EEG signal’s time-domain characteristics,
including its complexity, mobility, and activity. Activity measures the signal power and in-
dicates overall brain activity, with higher activity values during motor imagery suggesting
increased neural engagement. Mobility reflects the mean frequency, indicating the propor-
tion of the standard deviation of the power spectrum, where changes in mobility can show
shifts in the dominant frequency components, correlating with the transition from a resting
state to active motor imagery. Complexity indicates the similarity of the signal shape to a
pure sine wave, reflecting the signal’s complexity, with increased complexity during motor
imagery tasks signifying more intricate neural processing. By quantifying these aspects, the
Hjorth parameters offered a valuable glimpse into the dynamics of cortical excitability and
the overall energy distribution within the brain signals. The Petrosian fractal dimension
served as a measure of signal irregularity, offering a quantification of the EEG waveform’s
complexity at various scales. This feature aided in detecting subtle variations and intricate
patterns that might signify specific cognitive states or signal abnormalities. The Petrosian
fractal dimension is a valuable measure of signal complexity, quantifying the irregularity
and intricacy of EEG waveforms. This measure has been successfully used in previous
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studies. For example, a study by Mohamed and Jusas (2024) [17] demonstrated that fractal
dimensions, including the Petrosian fractal dimension, can effectively classify mental states
from EEG signals, validating their use in distinguishing complex neural activity in motor
imagery and emotion recognition. Another study by Moctezuma and Molinas (2020) [18]
highlighted the efficacy of fractal dimensions in detecting epileptic seizures from EEG
signals, showing high accuracy in identifying seizure states using fractal features. The
Frobenius norm, representing signal variance and amplitude, holds significance in assess-
ing the overall intensity of EEG signals. During motor imagery tasks, different cognitive
states can produce varying levels of neural activity, which are reflected in the amplitude
and variance of EEG signals. The Frobenius norm helps differentiate these conditions by
quantifying the overall signal energy. For instance, higher Frobenius norm values might
indicate increased neural activation associated with active motor imagery, while lower val-
ues could correspond to a resting or less active cognitive state. In this study, the Frobenius
norm was used as one of the features for classifying motor imagery tasks. By analyzing
the Frobenius norm values across different epochs, the study could identify patterns of
signal intensities that correlated with specific motor imagery activities, such as imagining
the movement of the right hand or left hand. By considering the Frobenius norm, the study
tapped into amplitude-based characteristics, which could potentially differentiate diverse
cognitive conditions.

In the frequency domain, spectral power, coherence, and additional features derived
from the fast Fourier transform (FFT) were computed to capture the frequency charac-
teristics of the EEG signals. Spectral power provides information about the intensity or
magnitude of the EEG signals at different frequency bands, offering insights into the domi-
nant brainwave frequencies associated with different motor imagery tasks. Spectral power
was computed following several preprocessing steps. The raw EEG signals were first
subjected to a fourth-order Butterworth bandpass filter with a frequency range of 1 Hz
to 50 Hz, which isolated relevant frequency components and eliminated unwanted low-
frequency drifts and high-frequency noise. DWT then used to remove artifacts, ensuring
that the remaining data reflected pure neural activity related to motor imagery tasks. The
continuous EEG recordings were divided into smaller, manageable epochs, allowing for a
detailed analysis over time.

After preprocessing, the spectral power was computed for each epoch. The fast Fourier
transform (FFT) was applied to each epoch to convert the time-domain EEG signals into
the frequency domain, providing the power spectrum of the signal, which showed how the
signal’s power was distributed across different frequencies. Wavelet transform coefficients
were analyzed to capture transient features of the EEG signals, which refer to brief, non-
stationary events in the signal, such as bursts of oscillatory activity or sudden changes
in amplitude. The wavelet transform coefficients were computed using the Daubechies
wavelet family (specifically, db4), known for its effectiveness in capturing transient features
in non-stationary signals like EEGs. The db4 wavelet was chosen for its ability to provide a
good balance between time and frequency localization. These transient features are crucial
for identifying specific patterns of brain activity that occur during motor imagery tasks, as
they can reflect the initiation and execution phases of motor planning.

Additionally, frequency band ratios were calculated to assess the relative activity of
different brainwave patterns. These ratios were calculated by dividing the spectral power
in one frequency band by the power in another (e.g., alpha: 8–13 Hz, beta: 13–30 Hz, and
theta: 4–8 Hz).

Frequency band ratios are significant in motor imagery tasks because they reveal the
balance of cognitive and motor functions. For instance, the alpha/beta ratio distinguishes
between relaxation and active cognitive processing, where a decrease may indicate a shift
from a relaxed state to active motor planning. The theta/beta ratio provides insights into
attentional and cognitive control processes, with higher ratios often indicating increased
cognitive load and engagement.
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By analyzing these ratios, researchers can identify patterns of brain activity correlating
with motor imagery tasks. For example, an increased theta/beta ratio might indicate higher
cognitive load during complex motor imagery, while a lower alpha/beta ratio suggests
active motor planning and execution. These insights enhance the accuracy of classification
models in brain–computer interface (BCI) systems, providing a deeper understanding of
motor imagery processes.. These frequency-domain features can be correlated with the
speed, direction, and precision of servo motor movements, highlighting the brainwave
frequencies and functional connectivity patterns that are most indicative of successful
motor imagery tasks. A study by Barone and Rossiter (2021) [19] found that higher beta
activity is related to quicker motor responses, suggesting that beta power influences motor
speed. This is particularly relevant for applications requiring rapid and precise motor
control. Additionally, studies have shown that theta and alpha oscillations are involved
in cognitive and motor processes that influence directional decisions. For instance, theta
activity is linked to attention and working memory, which are critical for planning direc-
tional movements (Klimesch, 1999) [20]. Similarly, alpha oscillations, particularly in frontal
regions, are associated with motor imagery and preparation, affecting directional control.
Research by Hidalgo et al. (2017) [21] on CNC servomotor tuning demonstrated that precise
control parameters influenced by frequency-domain features could significantly enhance
contouring accuracy and precision in motor tasks. This study highlights the role of gamma
power in achieving precise movements in applications requiring high accuracy.

The rationale behind choosing these specific features lies in their ability to capture
both the temporal and spectral characteristics of EEG signals, which are critical for accurate
motor imagery classification. Time-domain features provide insights into the overall signal
power, complexity, and temporal variations, while frequency-domain features reveal the
underlying oscillatory patterns and interactions between different frequency bands. By
combining both types of features, the analysis can leverage the strengths of each approach,
leading to a more robust and comprehensive understanding of the neural mechanisms
underlying motor imagery tasks. This dual approach ensures that both spatial and temporal
dynamics of the EEG signals are captured, enhancing the performance of machine learning
models in classifying motor imagery. The segmentation of EEG signals involved dividing
the continuous EEG recordings into smaller, manageable segments or epochs, which was
crucial for analyzing the temporal dynamics of the EEG data associated with motor imagery
tasks. Each EEG recording session was divided into epochs of a fixed duration, specifically
2 s for this study. Each epoch corresponds to a specific motor imagery task (left hand
movement, right hand movement, or no action) and includes all EEG channels recorded
during that period.

Table 1 provides an overview of the number and nature of features extracted from the
EEG signals for each epoch and channel.

Table 1. Summary of features extracted from EEG signals.

Feature Type Feature Number of Features
per Channel

Total Number of Features for
64 Channels

Time-Domain Features

Power Spectral Density (PSD)
Ratio 5 320

Hjorth Parameters 3 192

Petrosian Fractal Dimension 1 64

Frequency-Domain Features

Spectral Power 5 320

Wavelet Transform Coefficients 7 448

Frequency Band Ratios 2 128
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Table 2 provides a concise summary of the total number of features extracted for each
epoch by combining time-domain and frequency-domain features.

Table 2. Summary of total number of features per epoch.

Feature Type Total Features

Time-Domain Features 320 + 192 + 64 = 576

Frequency-Domain Features 320 + 448 + 128 = 896

Grand Total 576 + 896 = 1472

2.5. Model Development

An arsenal of sophisticated software tools, including PySerial, Numpy, Sklearn, Tensor-
Flow, Keras, MNE-Python, PyWavelets, SciPy, and Arduino IDE, served as indispensable
companions throughout the model development, training, and real-time implementation
phases. PySerial was used to establish and manage serial communication between the
Python script and the Arduino board, enabling real-time control of the servo motors.
Numpy was employed for numerical computations and data manipulation, providing
efficient handling of large EEG datasets and facilitating various mathematical operations
required for preprocessing and analysis. The feature extraction process was carried out
using several libraries: MNE-Python was used for EEG data preprocessing, artifact removal,
and segmentation; SciPy facilitated signal processing, particularly for implementing the
FFT to extract spectral power features; PyWavelets was utilized for extracting wavelet
transform coefficients; and Scikit-Learn (Sklearn) was used for feature extraction and model
training, offering a range of machine learning algorithms and tools to process and classify
the EEG data effectively. TensorFlow and Keras were pivotal in building and training the
deep learning models, allowing the creation of sophisticated neural network architectures,
including convolutional and LSTM layers, to accurately capture and interpret the complex
patterns in the EEG signals. These libraries collectively enabled a comprehensive and
efficient approach for processing and analyzing the EEG data, ultimately supporting the
development of robust and accurate deep learning models for real-time implementation.
Additionally, custom-tailored scripts, meticulously crafted in both Python and Arduino pro-
gramming languages, played a pivotal role in expediting data processing, facilitating model
deployment, and seamlessly interfacing with hardware components. Python version 3.9.13
was used.

In the pursuit of the accurate classification of EEG signals, a sophisticated deep neural
network architecture was meticulously crafted. This architecture comprised both convo-
lutional layers and bidirectional LSTM layers, strategically designed to extract intricate
patterns inherent in EEG data. The convolutional layer played a pivotal role in feature ex-
traction by convolving input feature maps with a meticulously crafted filter matrix, thereby
abstracting high-level features essential for classification. Meanwhile, the bidirectional
LSTM layers were enlisted to grapple with the temporal dependencies embedded within
the EEG signals while effectively mitigating the notorious vanishing gradient problem
often encountered in deep learning architectures. The choice of employing convolutional
layers and bidirectional LSTM layers in this neural network model was driven by the
need to effectively capture and interpret the intricate patterns and temporal dependencies
inherent in EEG signals. EEG signals frequently exhibit spatial dependencies and local
patterns essential for precise classification. Convolutional layers excel at capturing these
spatial hierarchies. By convolving input feature maps with a meticulously designed filter
matrix, these layers extract high-level spatial features from the EEG data, making them
particularly apt for EEG signal feature extraction, which can be conceptualized as 2D
signals (electrodes × time).

EEG signals also manifest strong temporal dependencies, where the current state is
influenced by past states. Bidirectional LSTMs are tailored to capture these long-range
dependencies by processing the data in both forward and backward directions. This design
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is especially effective at handling sequential data like EEG signals and at mitigating the van-
ishing gradient problem commonly faced in deep learning architectures. The bidirectional
nature of LSTMs ensures that the model can leverage both past and future information
when making predictions, enabling a comprehensive understanding of the context and
temporal dynamics of EEG signals. Given the complex nature of EEG signals, which contain
both spatial and temporal patterns, the combination of convolutional layers and bidirec-
tional LSTM layers enables the model to effectively capture both the spatial hierarchies
and temporal dependencies present in the EEG data. This renders the architecture well-
suited for interpreting EEG signals for robotic control. It can accurately classify the user’s
intentions based on the EEG patterns and translate them into precise robotic movements.

The culmination of model development and training efforts culminated in a real-time
deployment scenario, orchestrated through a meticulously crafted Python script interfacing
seamlessly with an Arduino board. This script perpetually churned through preprocessed
EEG data, leveraging the trained model to predict imminent actions and thereby orchestrat-
ing precise control of servo motors. The establishment of serial communication between
the Python script and the Arduino board enabled the seamless transmission of commands
dictating the servo motor movements. Additionally, a bespoke Arduino program was metic-
ulously engineered to adeptly receive commands from the Python script, orchestrating
swift and precise responses from the servo motors.

Alongside the primary deep neural network architecture that combines convolutional
layers and bidirectional LSTM layers, this study also rigorously tested and compared
other deep learning methods, including recurrent neural networks (RNNs), multilayer
perceptrons (MLPs), and Transformer models, to classify motor imagery EEG signals. Each
model was meticulously implemented and evaluated to understand its strengths and lim-
itations in handling the complexity of EEG data. These algorithms were selected due to
their suitability for handling BCI data, given their strengths in processing sequential data,
capturing complex patterns, and leveraging advanced attention mechanisms. This diverse
set of models ensures a thorough evaluation, providing a comprehensive assessment of
different deep learning approaches for EEG signal classification and enhancing the under-
standing of their respective capabilities and limitations in the context of brain–computer
interface systems.

2.5.1. Convolutional Neural Network (CNN)–Long Short-Term Memory (LSTM) Approach

For the development of a robust classification model capable of accurately distinguish-
ing between different motor imagery tasks, a specialized deep learning architecture was
devised. The model was constructed with a combination of convolutional and bidirectional
LSTM layers, chosen specifically for their capabilities to capture both spatial and temporal
dependencies within the EEG signals.

The bidirectional LSTM layers were incorporated to capture the temporal dynamics
and dependencies in the EEG data, allowing the model to analyze and learn from both past
and future time steps. The bidirectional nature of the LSTM layers provides a holistic view
of the sequential data, enabling the model to understand the context and temporal patterns
in the EEG signals associated with different motor imagery tasks.

The combination of Conv1D and bidirectional LSTM layers in the model architecture
provides a comprehensive framework for feature representation and classification of the
EEG signals. This architecture was chosen for its capacity to effectively process and interpret
the complex spatial and temporal characteristics of the EEG data, thereby enabling the
robust and accurate classification of motor imagery tasks.

In summary, the devised deep learning model architecture, comprising convolutional
and bidirectional LSTM layers, was meticulously designed to capture the intricate spatial
and temporal dependencies within the EEG signals, enabling the robust and accurate
classification of motor imagery tasks.

In terms of model development, the selection criteria for the architecture components
were based on their ability to effectively capture the spatial and temporal intricacies of the
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EEG signals and their relevance to motor imagery tasks. The integration of both Conv1D
and bidirectional LSTM layers in the model architecture was pivotal. It allowed the model
to comprehensively capture the spatial and temporal intricacies of the EEG signals, thereby
presenting an effective and representative feature set for the classification process. The
choice of Conv1D layers with increasing filter sizes was made to enable the extraction of
hierarchical and complex features from the EEG signals, enhancing the model’s ability to
discriminate between different motor imagery tasks. The bidirectional LSTM layers were
incorporated to capture the temporal dependencies and long-range dependencies in the
EEG data, thereby improving the model’s ability to recognize and classify the sequential
patterns and dynamics associated with different motor imagery tasks. The model comprises
several layers, each with specific configurations. The first layer is a Conv1D layer with
32 filters, a kernel size of 3, and a ReLU activation function. This layer is designed to
capture the initial spatial features of the EEG signals. The second layer is another Conv1D
layer, but with 64 filters and a kernel size of 2, again using the ReLU activation function,
which aims to capture more complex spatial features. This is followed by a MaxPooling1D
layer with a pool size of 2 to reduce the spatial dimensions and highlight the most salient
features. The third convolutional layer is a Conv1D layer with 128 filters and a kernel size
of 2, utilizing the ReLU activation function, to further extract intricate spatial features.

Following the convolutional layers, the model incorporates a bidirectional LSTM layer
with 64 units, configured to return sequences. This layer captures the temporal dependen-
cies from both past and future time steps within the EEG data. After the bidirectional LSTM
layer, a Flatten layer is used to convert the 3D output into a 2D format suitable for the dense
layers. The final layers include a dense layer with 128 units and a ReLU activation function,
which helps in learning complex representations, and the output layer, a dense layer with
3 units and a softmax activation function, which provides the classification output for the
three motor imagery tasks.

2.5.2. Recurrent Neural Network (RNN) Approach

This study implemented and evaluated a recurrent neural network (RNN) [22] for
classifying motor imagery EEG signals. The RNN architecture is well-suited for sequential
data due to its ability to maintain a memory of previous inputs through its recurrent
connections, making it particularly effective for a time-series analysis, such as EEG signals.

The RNN model consisted of two layers of SimpleRNN units with 64 neurons each.
The first SimpleRNN layer was designed to return sequences, allowing the subsequent
layers to process the temporal structure of the data. SimpleRNNs, due to their recurrent
connections, can retain information about the sequence of data, making them ideal for
capturing the temporal dependencies in EEG signals. This ability to remember and utilize
past inputs provides a robust framework for understanding and predicting the patterns in
the EEG data.

Following the SimpleRNN layers, the model included two dense layers. The first
dense layer contained 128 neurons with ReLU activation, which helped in learning complex,
non-linear relationships within the data. The second dense layer had 3 neurons with
softmax activation, and was designed to classify the data into three categories: ‘left’, ‘right’,
and ‘none’.

The RNN’s architecture, with its ability to process and learn from sequential data,
proved effective at handling the temporal dynamics of EEG signals. By retaining informa-
tion from previous time steps, the RNN was able to make more informed predictions about
the current state, capturing the underlying temporal patterns essential for accurate classifi-
cation. The implementation of the RNN model demonstrated its capability in effectively
classifying motor imagery EEG signals. Its architecture is well-suited for tasks involving
sequential data, providing a solid foundation for EEG signal analysis and classification.
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2.5.3. Multilayer Perceptron (MLP) Approach

The study also implemented a multilayer perceptron (MLP) model [23] to classify
motor imagery EEG signals. The MLP model architecture included an initial Flatten layer to
reshape the input EEG data into a 1D array suitable for dense layers. This step is crucial for
converting the 2D EEG data (electrodes × time) into a format that can be processed by the
fully connected layers. Following the Flatten layer, the model comprised two dense layers.
The first dense layer contained 64 neurons with ReLU activation, which helps in learning
non-linear relationships within the data by introducing activation non-linearities. The
second dense layer had 128 neurons, also with ReLU activation, to further capture intricate
patterns. The final dense layer consisted of 3 neurons with softmax activation, providing a
probability distribution over the following three classes: ‘left’, ‘right’, and ‘none’.

The MLP model was trained using the Adam optimizer, which is known for its
efficiency in handling large datasets and its adaptive learning rate capabilities. The loss
function used was sparse categorical cross-entropy, appropriate for multi-class classification
problems. Training was conducted over 10 epochs with a batch size of 512, which balanced
the need for computational efficiency and the model’s ability to learn from the data.

2.5.4. Transformer Model Approach

The Transformer model was implemented to classify motor imagery EEG signals,
leveraging its advanced capabilities in capturing long-range dependencies and complex
patterns within sequential data. The architecture of the Transformer model, originally
designed for natural language processing tasks [24], has been adapted here to process EEG
data, showcasing its versatility and effectiveness in time-series analysis.

The model begins with an input layer that takes the EEG data and projects them into an
embedding dimension suitable for processing by the Transformer layers. Each Transformer
encoder layer consists of a multi-head attention mechanism and a feed-forward neural
network. The multi-head attention mechanism allows the model to focus on different parts
of the input sequence simultaneously, capturing intricate dependencies within the EEG
signals. This mechanism enhances the model’s ability to understand the relationships and
patterns present in the data, which is critical for accurate classification.

In each encoder layer, the multi-head attention output is passed through a dropout
layer for regularization and then added to the original input through a residual connection.
This addition is followed by layer normalization, which helps stabilize and accelerate train-
ing. The output of the layer normalization is fed into a feed-forward network composed of
two dense layers: the first layer with a ReLU activation function to introduce non-linearity,
and the second layer to project back to the embedding dimension. Another dropout layer
is applied, and the result is again added to the input of the feed-forward network through
a residual connection and normalized.

The architecture includes multiple such Transformer encoder layers stacked sequen-
tially, allowing the model to build progressively more complex representations of the EEG
data. After the final Transformer layer, the output is flattened to convert the 2D data into
a 1D vector. This vector is then passed through a dense layer with a softmax activation
function to classify the data into one of three categories: ‘left’, ‘right’, and ‘none’.

The multi-head attention mechanism within the Transformer model enables it to
handle the complexity of EEG signals by capturing dependencies across different time steps,
making it highly effective for this type of sequential data. Additionally, the use of residual
connections and layer normalization ensures that the model can be trained efficiently,
overcoming issues such as vanishing gradients that often plague deep learning models.

2.6. Training and Validation

The training of deep learning models was conducted using a k-fold cross-validation
approach on pre-processed EEG data. This method partitions the dataset into ‘k’ subsets,
where the model is iteratively trained on ‘k − 1’ subsets and validated on the remain-
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ing subset. This process ensures that the models are trained and evaluated on different
combinations of the data, enhancing their generalization and robustness.

K-fold cross-validation is a popular method used in machine learning for model
evaluation to assess the performance of a machine learning algorithm. It is particularly
useful when the dataset is limited in size. In k-fold cross-validation, the original dataset is
divided into ‘k’ subsets. The model is trained ‘k’ times, with each time using a different
subset as the testing set and the remaining subsets as the training set.

The value of ‘k’ is established at 5, leading to the division of the dataset into 5 equally
sized folds. The selection of ‘k’ is crucial as it has a substantial impact on the evaluation
of the model’s performance. The rationale behind opting for ‘k = 5’ is as follows: A larger
‘k’ value would entail a greater number of training and testing iterations, escalating the
computational demands of the cross-validation process. Conversely, a diminished ‘k’ value
could result in heightened variance in the performance estimation. With ‘k = 5’, each
fold encompasses 80% of the data for training and 20% for testing, striking a harmonious
equilibrium between the two. This ensures that the model is adequately trained on a
diverse dataset while also being rigorously tested on novel data. Typically, a ‘k’ value
ranging between 5 to 10 is deemed appropriate for most datasets. By adopting ‘k = 5’,
a balanced trade-off is achieved between the model’s bias and variance, rendering the
performance estimation of the model robust and dependable. The rationale for choosing
k = 5 in k-fold cross-validation is based on empirical evidence and the relevant literature,
which demonstrate that k = 5 offers a practical balance between computational demands
and performance estimation variance. Specifically, research by Nti et al. (2021) [25] suggests
that in some cases, k = 5 offered better accuracy with Bayesian network models, indicating
that k = 5 can provide reliable and slightly optimistic performance estimates. Additionally,
a study by Fushiki (2009) [26] found that the bias of the cross-validation estimate of the
prediction error was greatly reduced when k = 5 was used. These findings support the use
of k = 5 as a common and effective choice in k-fold cross-validation, balancing the need for
computational efficiency with the accuracy of performance estimation.

To further ensure the validity of the training–test split and prevent data leakage,
several key practices were implemented. First, a stratified training–test split was employed
to maintain the class distribution in both training and test sets. This technique ensures that
each class is proportionally represented, providing a balanced evaluation of the model’s
performance across all classes. Stratification is critical in scenarios where class imbalances
exist, as it prevents the model from being biased towards the majority class by ensuring
that minority classes are adequately represented in both training and test sets. In this
study, stratified sampling was employed to ensure the balance of class distribution in
the dataset, which is crucial for maintaining the integrity and reliability of the model’s
training process. The specific dataset used in this study, the OpenBCI Community Dataset,
comprises EEG data from 52 subjects performing motor imagery tasks. The dataset’s class
distribution includes three primary classes: left hand movement, right hand movement,
and no action. The decision to use stratification was influenced by the inherent class
distribution within this dataset. Each participant’s EEG recordings contain multiple trials
for each motor imagery task, creating a varied and comprehensive dataset. However,
without stratification, there was a risk of having an imbalanced training set, which could
lead to a biased model. For instance, if the majority of the data points were from one class
(e.g., right hand movement), the model would become biased towards predicting that class
more frequently, thereby reducing its overall accuracy and effectiveness.

Stratified sampling allowed us to maintain the proportional representation of each
class in both the training and validation sets. This approach ensured that the model was
exposed to a balanced mix of all classes during training, which is critical for learning
the distinguishing features of each class accurately. Consequently, the model could gen-
eralize better when predicting new, unseen data. By preserving the class distribution,
stratified sampling helped to mitigate the risks associated with the class imbalance, such
as overfitting to the majority class or underperforming on minority classes. This method-
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ological choice was pivotal in achieving the high classification accuracy reported in our
study, demonstrating the model’s robustness and its capability to handle real-time control
tasks effectively.

Before splitting the data, they were shuffled to prevent any order-related biases,
ensuring a random and unbiased distribution of samples. Shuffling disrupts any inherent
order that might be present in the data collection process, such as temporal sequences or
batch effects, which could otherwise introduce biases into the model training. This step
is vital for enhancing the randomness and diversity of the training data, which in turn
improves the model’s ability to generalize to unseen data. Additionally, it was ensured that
the training and test sets were completely separate, with no overlap, to avoid data leakage.
Data leakage occurs when information from outside the training dataset is used to create
the model, leading to overly optimistic performance estimates. By strictly partitioning the
data, it is ensured that no test data were inadvertently used during the training process,
thereby preserving the integrity of the evaluation metrics. This separation guarantees that
the model’s performance metrics reflect its true ability to generalize to new, unseen data.

For all models, the data preprocessing and splitting processes were consistent, ensuring
a balanced class distribution and input dimension consistency. Each model was compiled
using the Adam optimizer, known for its adaptive learning rate capabilities and efficiency
in handling sparse gradients. The loss function used was sparse categorical cross-entropy,
suitable for multi-class classification problems where labels are provided as integers. The
Adam optimizer and sparse categorical cross-entropy loss function are justified for the
multi-class classification on EEG data due to their specific alignment with the characteristics
of EEG signals. EEG data are inherently noisy and exhibit high variability, which can
complicate the training process. The Adam optimizer is well-suited for such data because
it combines the advantages of both AdaGrad and RMSProp algorithms, providing an
adaptive learning rate for each parameter. This adaptability helps in managing the noise
and variability in EEG signals, ensuring more stable and efficient convergence during
training. The sparse categorical cross-entropy loss function is appropriate for EEG data,
which often involve multi-class classification tasks such as distinguishing between different
motor imagery states, eliminating the need for one-hot encoding and thus simplifying
the training process. It is particularly effective at handling the multi-class nature of EEG
classification problems, ensuring accurate and computationally efficient model training.

Together, these choices enhance the model’s robustness and performance, effectively
addressing the noisy and complex nature of EEG data and improving the accuracy of
multi-class classification tasks in brain-computer interface (BCI) applications. Accuracy
was chosen as the primary metric to evaluate performance during both training and
validation phases.

The training process involved using the model.fit function, with iterative training
conducted over 10 epochs and a batch size of 512. During each fold of the cross-validation,
the models’ performances were evaluated on the validation data, providing insights into
their generalization capabilities and monitoring potential overfitting or underfitting issues.
Training and validation accuracy histories were recorded for subsequent analysis.

After the training phase, model predictions of the test set were obtained and compared
to true labels. Classification reports were generated, detailing the precision, recall, and
F1-score for each class and providing a comprehensive view of the models’ performances
in accurately classifying instances across the three categories. The neural network models
used several hyperparameters, including a learning rate of 0.001 for the Adam optimizer.
The loss function employed is Sparse Categorical Crossentropy. To find the optimal settings
for these hyperparameters, GridSearchCV was utilized. Grid search systematically explores
a specified parameter grid, evaluating each combination using cross-validation. The
parameter grid included variations in batch size (32, 64, 128, and 512). The batch size
affects the model’s ability to generalize and the efficiency of the training process. Smaller
batches can lead to more robust updates, while larger batches can speed up training. The
number of epochs (10, 20, and 30) determines how many times the learning algorithm
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will work through the entire training dataset. Exploring a range helps balance between
underfitting and overfitting, ensuring the model is trained sufficiently without excessive
training that might lead to overfitting. The learning rate (0.01, 0.001, and 0.0001) controls
the step size during gradient descent. Exploring a range of values helps identify the optimal
learning rate that balances convergence speed and stability. By training the model with
these different combinations and evaluating their performance, GridSearchCV identifies
the best combination of hyperparameters that yields the highest validation accuracy. This
process ensures that the selected hyperparameters are well-suited for the specific dataset
and model architecture, leading to improved model performance.

In practice, this involved wrapping the model creation function in a KerasClassifier
to be compatible with GridSearchCV, defining the parameter grid, and running the grid
search to determine the best settings. The final model was then trained using these op-
timized hyperparameters, leading to better overall performance and robustness in the
model’s predictions.

Confusion matrices were computed to visually represent classification results, indi-
cating the number of true positives, false positives, true negatives, and false negatives for
each class. These were visualized using the plot confusion matrix function, facilitating a
clear understanding of the models’ strengths and weaknesses in distinguishing between
classes. Sensitivity (recall) and specificity were calculated from the confusion matrices, and
these metrics were plotted to assess performance across different categories.

While the preprocessing, training, and evaluation processes were consistent across all
methods, the architectural differences highlighted the unique strengths of each approach.
Maintaining consistency across all methods in data preprocessing, training, and evaluation
was critical for ensuring fair, reliable, and scientifically valid comparisons between models.
Standardization controls extraneous variables, allowing the isolation of the effect of the
model architecture on performance. This uniformity ensures that each model is evaluated
on the same data points, avoiding biases and enabling fair comparisons of strengths
and weaknesses. By minimizing the risk of introducing bias, standardizing parameters
ensures that performance differences are due to the model architecture rather than training
regime discrepancies.

2.7. Real-Time Implementation

Upon successful training and validation, the trained deep learning models were
deployed in real-time using Python scripts that interfaced with an Arduino board. An
Arduino program was developed to facilitate the interaction between the Python script
and the physical hardware, specifically the servo motors. A serial communication link
was established between the Python environment and the Arduino board to transmit real-
time EEG predictions from the model. This enabled the precise control of servo motors,
facilitating the translation of EEG signals into actionable commands to control the system.

The implementation process involved continuously receiving EEG data in real-time,
preprocessing the incoming data to remove noise and artifacts, and feeding them into the
trained model for prediction. The model then classified the motor imagery tasks based
on the extracted features and sent the corresponding commands to the Arduino board.
The Arduino board, in turn, controlled the servo motors to execute the desired actions
corresponding to the EEG predictions.

This real-time implementation demonstrated the practical application of the trained
deep learning model in controlling the system based on the individual’s motor imagery
tasks. The integration of the model with the Arduino board and servo motors showcased
the feasibility and effectiveness of using EEG signals to enable the precise and responsive
control of external devices, highlighting the potential of BCIs in various applications.

2.8. Performance Evaluation

The performance of the developed deep learning models was rigorously evaluated
using test datasets to gauge its efficacy in classifying motor imagery tasks. Metrics including
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accuracy, precision, recall, and the F1-score were computed to provide a comprehensive
assessment of the model’s classification capabilities. Additionally, confusion matrices
and classification reports were generated to further analyze and understand the model’s
performance across different classes of motor imagery tasks.

The obtained results demonstrated the model’s ability to accurately classify and
differentiate between left hand movement, right hand movement, and no action scenarios
based on EEG signals. High accuracy, precision, and recall values indicated the model’s
robustness and effectiveness at capturing the intricate patterns and features present in EEG
data associated with various motor imagery tasks.

This evaluation process validated the efficacy of the proposed deep learning-based BCI
systems in facilitating seamless human–machine interaction. By leveraging EEG signals and
advanced deep learning techniques, the developed BCI systems showcased their potential
in controlling servo motors with high precision and reliability. The successful integration
of EEG data processing, feature extraction, and deep learning-based classification in a
real-time setup demonstrated a promising step towards the advancement and practical
application of BCIs in various domains.

3. Results

The results of this study substantiate the successful development and real-time imple-
mentation of a BCI system tailored for controlling servo motors based on EEG signals. The
principal findings can be encapsulated below.

The study’s outcomes underscore the immense potential of BCI technology in facilitat-
ing intuitive and efficient human–machine interactions, especially in the domain of robotic
control. The seamless integration of the BCI system with hardware platforms like Arduino
not only validates its effectiveness but also paves the way for innovative advancements
and future research in the realm of BCIs and assistive technology.

Moreover, the movement of the servo motors exhibited commendable performance,
with minor adjustments made to the delay to achieve smoother and more precise move-
ments. This fine-tuning ensured that the servo responded accurately to the EEG predictions,
enhancing the overall functionality and reliability of the system.

3.1. Evaluation Metrics

This section provides a comparative analysis of the performance metrics for the RNN,
MLP, Transformer, and CNN-LSTM models. Table 3 summarizes precision, recall, F1-
score, and support for each class, as well as the overall accuracy, macro average, and
weighted average.

The CNN-LSTM model achieves the highest overall accuracy at 98%, outperforming
the RNN and MLP models, which have accuracies of 95% and 94%, respectively. The
Transformer model, however, records the lowest accuracy at 78%.

In terms of class-specific performance, the CNN-LSTM model consistently excels. For
Class 0, it outperforms all other models, while the Transformer model exhibits the lowest
metrics. Similarly, in Class 1, the CNN-LSTM maintains superior performance. Although
the MLP model demonstrates high precision, its lower recall results in a slightly diminished
F1-score, with the Transformer model again ranking lowest. For Class 2, both the RNN and
CNN-LSTM models show robust performance, with the latter achieving the highest scores.
The MLP model has high recall but slightly reduced precision, and the Transformer model
remains the weakest.

When examining macro and weighted averages, the CNN-LSTM model stands out
with the highest performance across all metrics and classes, followed by the RNN model.
While the MLP model shows commendable performance, it is slightly lower than the
RNN and CNN-LSTM models. The Transformer model, despite being effective for certain
tasks, exhibits the lowest overall performance. Future work could focus on optimizing the
Transformer model to enhance its accuracy and consistency across different classes.
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Table 3. Performance metric summary for different models.

Model Class Precision Recall F1-Score Support

RNN

0 0.94 0.96 0.95 44,118

1 0.94 0.94 0.94 44,136

2 0.97 0.96 0.96 44,121

Accuracy 0.95 132,375

Macro Avg. 0.95 0.95 0.95 132,375

Weighted Avg. 0.95 0.95 0.95 132,375

MLP

0 0.93 0.94 0.93 43,996

1 0.96 0.88 0.92 44,066

2 0.92 0.99 0.95 44,313

Accuracy 0.94 132,375

Macro Avg. 0.94 0.94 0.93 132,375

Weighted Avg. 0.94 0.94 0.93 132,375

Transformer

0 0.74 0.78 0.76 43,984

1 0.73 0.77 0.75 44,183

2 0.89 0.80 0.84 44,208

Accuracy 0.78 132,375

Macro Avg. 0.79 0.78 0.78 132,375

Weighted Avg. 0.79 0.78 0.78 132,375

CNN-LSTM

0 0.97 0.99 0.98 44,288

1 0.98 0.98 0.98 44,234

2 0.99 0.98 0.98 43,853

Accuracy 0.98 132,375

Macro Avg. 0.98 0.98 0.98 132,375

Weighted Avg. 0.98 0.98 0.98 132,375

3.2. Statistical Analysis

ANOVA
The ANOVA is used to determine if there are statistically significant differences

between the means of three or more independent groups. In this case, we applied the
ANOVA to compare the precision scores of four different models: RNN, MLP, Transformer,
and CNN-LSTM.

Here are the detailed results and their implications.
F-statistic: 10.095
The F-statistic is a ratio of the variance between the group means to the variance

within the groups. A higher F-statistic indicates a greater degree of separation between the
group means relative to the within-group variability.

In this context, an F-statistic of 10.095 suggests that there is a considerable variation in
precision scores among the different models compared to the variation within the models.

p-value: 0.0043
The p-value measures the probability that the observed differences in precision scores

occurred by chance under the null hypothesis (which states that there are no differences
in means).

A p-value of 0.0043 is much lower than the common significance level of 0.05, indicat-
ing strong evidence against the null hypothesis.
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This low p-value suggests that the differences in precision scores among the models
are statistically significant.

The ANOVA results indicate that at least one model’s precision score is significantly
different from the others. Since the p-value is less than 0.05, we can conclude that not all
models have the same precision performance.

Model Comparisons
RNN: Precision scores for the RNN model across classes are 0.94, 0.94, and 0.97.
MLP: Precision scores for the MLP model are 0.93, 0.96, and 0.92.
Transformer: Precision scores for the Transformer model are 0.74, 0.73, and 0.89.
CNN-LSTM: Precision scores for the CNN-LSTM model are 0.97, 0.98, and 0.99.
Transformer: This model has the lowest precision scores, indicating it performs worse

compared to the other models in terms of precision.
CNN-LSTM: This model has the highest precision scores, suggesting it performs best

in terms of precision.
RNN and MLP: Both models have high precision scores, with MLP showing slightly

better performance in some classes than the RNN.
Tukey’s HSD Post Hoc Analysis Results
The Tukey’s HSD (Honestly Significant Difference) test was conducted to determine

which specific pairs of models have significant differences in their precision scores. Table 4
shows the results.

Table 4. Tukey’s HSD test.

Group 1 Group 2 Mean Difference p-Value Lower Bound Upper Bound Reject Null Hypothesis

CNN-LSTM MLP 0.0533 0.3497 −0.0492 0.1559 No

CNN-LSTM RNN 0.04 0.5202 −0.0625 0.1426 No

CNN-LSTM Transformer 0.2233 0.0019 0.1207 0.3258 Yes

MLP RNN −0.0133 0.9596 −0.1159 0.0892 No

MLP Transformer 0.17 0.0101 0.0674 0.2726 Yes

RNN Transformer 0.1833 0.0049 0.0807 0.2859 Yes

CNN-LSTM vs. Transformer: The difference in precision is 0.2233, and the p-value is
0.0019, indicating a significant difference. This suggests that CNN-LSTM has significantly
higher precision than the Transformer model.

MLP vs. Transformer: The difference in precision is 0.17, and the p-value is 0.0101,
indicating a significant difference. This suggests that MLP has significantly higher precision
than the Transformer model.

RNN vs. Transformer: The difference in precision is 0.1833, and the p-value is 0.0049,
indicating a significant difference. This suggests that RNN has significantly higher precision
than the Transformer model.

Non-significant Differences:
CNN-LSTM vs. MLP: The difference in precision is 0.0533, and the p-value is 0.3497,

indicating no significant difference.
CNN-LSTM vs. RNN: The difference in precision is 0.04, and the p-value is 0.5202,

indicating no significant difference.
MLP vs. RNN: The difference in precision is −0.0133, and the p-value is 0.9596,

indicating no significant difference.
The post hoc analysis reveals that the Transformer model has significantly lower

precision compared to the other models (CNN-LSTM, MLP, and RNN). However, there are
no significant differences in precision between CNN-LSTM, MLP, and RNN. This further
emphasizes the relatively poor performance of the Transformer model in terms of precision.
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Friedman Test

As a non-parametric alternative to ANOVA, the Friedman test is suitable for comparing
more than two related groups. In this case, it was applied to the precision scores across
the classes for each model. The test determines if there are significant differences in the
precision scores among the models, accounting for the related nature of the data (precision
scores for the same classes). Table 5 shows the results.

Table 5. Friedman test results.

Statistic Value

Test Statistic (χ2) 8.20

p-value 0.0421
Since the p-value (0.0421) is less than the common significance level of 0.05, we reject the null hypothesis. This
indicates that there are significant differences in the precision scores among the models. This reinforces the
findings from the ANOVA and Tukey’s HSD test.

4. Discussion

In this study, various deep learning architectures were evaluated for their ability to
classify motor imagery tasks from EEG signals, including RNN, MLP, Transformer, and
CNN-LSTM models. Despite Transformer’s known proficiency in capturing long-range
dependencies and handling sequential data, its performance was inferior in this context.
This can be attributed to the relatively small EEG dataset, which is insufficient for training
Transformer effectively, and the inherent noise and high dimensionality of EEG signals.
Transformer demands substantial computational resources and large, diverse datasets to
fully leverage its potential.

The RNN model, although proficient in handling sequential data, exhibited lower
accuracy than the CNN-LSTM model. The vanishing gradient problem hampers the RNN’s
ability to learn long-term dependencies, which are critical for capturing extended temporal
dynamics in EEG signals. Additionally, the RNN’s sensitivity to noise and variations in
EEG data, along with its high computational demands, contribute to its lower performance
in this study. MLP model, while capable of capturing complex patterns through dense
layers, demonstrated lower accuracy compared to CNN-LSTM. MLPs’ limitations lie in
their inability to exploit the sequential nature of EEG data, as they are designed for tabular
data processing and lack mechanisms to capture temporal dependencies. This shortcoming
makes them less effective at handling the high dimensionality and noise of EEG signals
without advanced preprocessing and feature extraction techniques.

The CNN-LSTM model was chosen for its superior ability to capture both spatial and
temporal features of EEG signals, making it particularly effective for the motor imagery
classification. CNN layers excel at extracting spatial features and identifying local patterns
and hierarchies within the EEG signals. These spatial features are then passed to LSTM
layers, which capture temporal dependencies and sequential patterns. This hybrid ap-
proach leverages the strengths of both the CNN and LSTM, providing a comprehensive
understanding of the data. The CNN layers reduce data dimensionality and highlight
relevant features, enabling the LSTM layers to learn temporal dynamics without being
overwhelmed by noise. This dual-layered approach improves the prediction accuracy and
contributes to the reliability and responsiveness of the BCI system, ensuring the precise
control of robotic devices based on user intentions.

The evaluation metrics presented in Figures 4 and 5, along with the confusion matrices
in Figure 6, validate the efficacy and reliability of the proposed deep learning-based BCI
system in accurately classifying and controlling robotic devices using EEG signals. High
accuracy, precision, and recall values, along with minor adjustments to the servo motors,
affirm the system’s potential and pave the way for its practical application in various
domains, fostering a seamless human–machine interaction.
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Figure 5. The figure presents bar charts comparing sensitivity (blue) and specificity (orange) across
the following different classes: ‘left’, ‘right’, and ‘none’.

A fourth-order Butterworth bandpass filter was applied with a frequency range of
1 Hz to 50 Hz to the raw EEG signals to isolate the desired frequency components while
eliminating unwanted low and high-frequency noise. Following this, we utilized the fast
Fourier transform (FFT) to convert the time-domain EEG signals into the frequency domain,
allowing us to analyze the spectral components more effectively. Figure 7 illustrates the
frequency spectra of the EEG signals both before and after the application of the Butterworth
bandpass filter.
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This visualization effectively demonstrates the impact of the preprocessing steps,
showing how the Butterworth bandpass filter isolates the desired EEG components and
eliminates noise. The frequency spectrum after FFT closely follows the filtered signal, with
a significant attenuation of frequencies above 50 Hz, providing a clear representation of the
EEG signal’s primary frequency components.

In research focused on comparing the performance of various machine learning mod-
els, it is essential to employ robust statistical methods to identify significant differences in
model metrics. This analysis evaluates four models, RNN, MLP, Transformer, and CNN-
LSTM, with the primary metric of interest being precision, measured across three distinct
classes for each model.

To determine if there are significant differences in the precision scores among these
models, several statistical tests were utilized. Analysis of variance (ANOVA) was chosen
first because it is designed to compare the means of three or more independent groups. In
this context, ANOVA was employed to evaluate whether there are statistically significant
differences in the precision scores of the four models. This test helps in understanding if
any model performs differently in terms of precision compared to the others, providing a
global view of the differences across all models.

Following a significant result from the ANOVA test, Tukey’s honestly significant
difference (HSD) post hoc test was used to conduct pairwise comparisons between the
models. Tukey’s HSD test was selected because it is effective at identifying which specific
models’ precision scores differ significantly from each other after establishing that there
are overall differences. It provides detailed insights into the relative performance of each
model against the others, helping to pinpoint where the significant differences lie, as shown
in Table 2.

Additionally, the Friedman test was conducted as a non-parametric alternative to
ANOVA. This test is suitable for comparing more than two related groups, which is
particularly relevant for this analysis as the precision scores for each class can be considered
related. The Friedman test was applied to the precision scores across the classes for each
model, as the results in Table 3 show, to determine if there are significant differences among
the models while accounting for the related nature of the data (precision scores for the
same classes).

The results of these statistical tests suggest that the CNN-LSTM model has the highest
precision, indicating it as the best-performing model among those evaluated. The Friedman
test results highlight that the significant differences between the models are primarily due to
the poor performance of the Transformer model in terms of precision. This comprehensive
analysis guides further efforts in model selection and improvement, ensuring that the
chosen models offer the best performance based on the precision metric.

The study’s findings underscore the potential of BCI technology in enabling an intu-
itive and efficient human–machine interaction, particularly in robotic control applications.
The successful implementation of the BCI system and its integration with hardware plat-
forms such as Arduino demonstrate promising avenues for future research and develop-
ment in BCIs and assistive technology. The robust performance of the CNN-LSTM model
in accurately predicting motor imagery tasks highlights its effectiveness in capturing and
interpreting complex brainwave patterns associated with motor actions that are crucial for
reliable robotic control based on user intentions. Seamless integration with an Arduino
board enables the real-time control of servo motors, demonstrating the feasibility of trans-
lating EEG predictions into actionable commands. The Python script effectively interfaces
with Arduino, ensuring the precise execution of the desired actions, which is essential
for applications requiring rapid and accurate responses, such as assistive technology and
neurorehabilitation. The replication of this work is facilitated by the detailed specifications
provided, including comprehensive descriptions of data preprocessing, model training,
and real-time control, along with specifications of the hardware setup. This ensures that
other researchers can easily replicate the experiments and build upon these findings.
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This study significantly advances BCIs by developing accurate methods for predicting
actions from EEG signals. Potential applications include assistive technology, prosthet-
ics, and neurorehabilitation, enhancing the autonomy and quality of life for individuals
with disabilities. The integration of BCI systems with hardware platforms like Arduino
showcases the practical feasibility of such technologies.

However, several limitations must be acknowledged. The study considered a specific
range of motor imagery tasks, and the use of a relatively small EEG dataset is a common
practice to ensure the feasibility of initial research efforts. The use of publicly available
datasets, while ensuring reproducibility and comparability, does come with certain con-
straints. These datasets may not encompass the full variability observed in real-world
applications, which can impact the model’s generalizability. While this study did not
include testing of unseen out-of-distribution data, which is a valuable step for validating
BCI systems, it lays a solid foundation for future research that can address this aspect.

The use of 5-fold cross-validation, while standard, was employed to ensure robustness
and reliability. This approach provides a balanced evaluation and ensures that the model’s
performance is robust across different data splits, but to further enhance the model’s
robustness, future studies should incorporate more extensive validation techniques.

Despite these limitations, the research remains promising, suggesting that future
evaluations of commercial BCI headsets, incorporating advancements in deep learning and
robotics, will be conducted. EEG signal variability among individuals can pose challenges
in real-world deployment. Future research should explore a broader range of motor imagery
tasks to enhance the system’s applicability, incorporate larger and more representative
datasets to improve model training, and develop personalized calibration procedures and
adaptive algorithms to enhance the system robustness and user experience. Integrating
advanced machine learning techniques and neuroimaging methods could further improve
the spatial and temporal resolution of EEG signals.

5. Conclusions

In conclusion, this study showcases the promising potential of a BCI system designed
to control servo motors through EEG signals. The successful fusion of advanced machine
learning algorithms with hardware platforms represents a significant step forward in the
realm of human–machine interaction. The application of BCI technology has immense
implications for enhancing the quality of life of individuals with motor impairments. By
enabling direct communication between the brain and external devices, BCIs can offer a
newfound sense of accessibility and autonomy to those with limited mobility. This not
only empowers individuals to interact with their environment more effectively but also
promotes a greater degree of independence and self-sufficiency.

Moreover, the findings of this research underscore the transformative potential of BCI
technology in the field of assistive technology. As technology continues to advance and
as we gain a deeper understanding of the intricacies of brain signals, we can anticipate
further breakthroughs in BCI systems. These advancements hold the promise to reshape
the landscape of human–machine collaboration, paving the way for more intuitive and
seamless interactions between humans and machines.

The novelty of this paper lies in its comprehensive comparative analysis and the
implementation of an advanced model in real-time hardware testing. Unlike previous
studies that primarily focus on either enhancing classification accuracy or feature extraction,
this research uniquely integrates and evaluates a variety of neural network architectures,
including RNNs, MLPs, Transformer models, and CNN-LSTM networks. This extensive
comparison highlights the superior performance of the CNN-LSTM model in effectively
capturing both spatial and temporal features from EEG signals. While earlier works
have successfully implemented the real-time control of devices, this paper distinguishes
itself by not only achieving a high classification accuracy but also rigorously validating
the model’s performance in a real-time setting. By continuously testing and providing
immediate feedback through detailed performance metrics, the study underscores its
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practical applicability and potential for real-world BCI applications. This dual focus on
theoretical advancements and practical implementation significantly contributes to the
field, offering a resilient framework for future human–machine interaction technologies.

In essence, this study not only validates the current capabilities of BCI systems but
also points towards a future where assistive technology is more sophisticated, inclusive,
and capable of enhancing the overall quality of life for individuals with disabilities.
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