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Abstract: The dietary recommendations for individuals with diabetes focus on maintaining a balanced
nutritional intake to manage blood sugar levels. This study suggests a nutritional strategy to improve
glycemic control based on an analysis of a dietary optimization problem. The goal is to minimize the
overall glycemic loads (GLs) of specific foods. Two variations of the particle swarm optimization
(PSO) method, as well as random quantum process optimization (GQPSO), are introduced. The
findings demonstrate that the quantum and random methods are more effective than the traditional
techniques in reducing the glycemic loads of diets and addressing nutritional deficiencies while also
aligning nutrient intake with the recommended levels. The resolution of this diet optimization model,
executed multiple times with adjustments to the parameters of both methods, enables dynamic
exploration and provides a wide range of diverse and effective food choices.

Keywords: nutritional optimization; glycemic load; quantum swarm particles; nutritional specifications;
optimum diet

1. Introduction

Diabetes is a chronic disease that affects millions of people worldwide. It is well
understood that proper dietary management is crucial for diabetic patients to maintain
their health and control their blood glucose levels [1]. To further improve in this area, we
intend to address the complex dietary challenges faced by people with diabetes. This im-
provement involves testing the effectiveness of two optimization methods in a nutritional
optimization model for diabetics: particle swarm optimization (PSO) and its enhanced
variant, Gaussian quantum particle swarm optimization (GQPSO). Particle swarm opti-
mization (PSO) is a heuristic optimization technique inspired by the collective movement
of a swarm of birds. Developed by Kennedy and Eberhart in the 1990s [2], this method is
particularly well able to solve complex non-linear optimization problems. Particle swarm
optimization (PSO) is a non-linear optimization method based on social behavior, using
swarm intelligence algorithms for global optimization on continuous search spaces, where
particles collaborate and share knowledge within a swarm. Particle swarm optimization
(PSO) is based on a set of randomly and homogeneously arranged particles that move
in the research hyper-space, each considered a potential solution. Particles remember
their best solution and can communicate with their environment. By iteratively updating
their positions, particles gradually converge toward an optimal solution. A novel variant,
quantum-behaved particle swarm optimization (QPSO), has recently emerged [3,4]. This
method is based on the principles of quantum mechanics and particle swarm optimization
techniques. The key difference between these two approaches is that the quantum particle
swarm optimization (QPSO) method is inspired by the principles of quantum mechanics
and particle swarm optimization techniques. The QPSO method is based on the concepts
of quantum superposition and interference, allowing particles to jump between different
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potential solutions in a non-deterministic way [4]. On the other hand, by enhancing these
methods with probability distributions [5,6], the behavior of quantum particles in the
search for solutions can be stochastically and randomly modeled. This enables a more
comprehensive and diversified exploration of the solution space.

Particle swarm optimization (PSO) and its variants, such as QPSO and GQPSO, have
shown their versatility and effectiveness in solving a variety of real-world problems. These
optimization techniques have been successfully applied in various fields, including engi-
neering, healthcare, finance, and more. For example, the TrigAC-PSO variant of PSO has
been utilized to optimize the solution for the fuzzy transportation problem [7]. The ef-
ficiency of this method is shown by incorporating trigonometric functions to adjust the
particle velocities, potentially leading to faster convergence and improved exploration
of the search space. Its adaptability to fuzzy data makes it suitable for solving the fuzzy
transportation problem, and its global optimization capabilities are beneficial for finding
near-optimal or optimal solutions. Similarly, in [8], the transportation problem was solved
using the PSO method and its variants. Moreover, in [9], PSO was used to optimize the
solutions for the urban transit routing problem, and the proposed PSO variant outperforms
the existing techniques, providing superior solutions for the UTRP. Another application
explored for PSO is in the field of school timetabling [10]; the results of this study suggest
that PSO can be a valuable tool for optimizing school timetables and providing efficient
and equitable scheduling. Furthermore, an application of PSO lies in the domain of cloud
computing task scheduling [11]. The EECS strategy, utilizing APSO, offers an effective
solution for managing IoT and non-IoT tasks. The strategy’s focus on energy efficiency
and resource optimization is a key advantage. In [12], a proposed hybrid PSO-OSELM
model demonstrated to be an effective indoor temperature forecasting approach. Combin-
ing PSO for optimization and online sequential extreme learning machine (OSELM) for
adaptive learning improve forecast accuracy and generalization performance over other
methods. The successful application of PSO and its variants in diverse fields, ranging
from engineering and finance to healthcare, has demonstrated their effectiveness in solving
complex optimization problems. Given the complexity of finding an optimal diet for dia-
betic patients, which involves balancing multiple factors, such as nutritional needs, caloric
intake, and glycemic control, PSO’s ability to handle complex constraints and search for
near-optimal solutions, coupled with the enhanced capabilities of its variants like QPSO
and GQPSO, make it a promising candidate for addressing this challenge.

The article aims to assess the performance of two variants of particle swarm
optimization—one with quantum and random behavior (GQPSO) and the other a tra-
ditional PSO—in solving an optimization problem aimed at minimizing the total glycemic
loads of diets. The problem of minimizing the glycemic load represents an advanced nutri-
tional optimization model, crucial for managing diabetes or for those looking to cut down
on their carbohydrate intake [13]. Most of these models are constrained by various factors,
like nutrient variability and interactions between macronutrients, making it tricky to solve
these issues [14,15]. This study focuses on tackling these challenges within a quantum and
random framework using a quantum-behaved swarm particle approach that incorporates
Gaussian mutation (GQPSO). Quantum behavior encourages a more efficient exploration
of the search space. Integrating a Gaussian mutation into the method (GQPSO) increases
the likelihood of refining the solutions through iterations, enabling optimal exploitation
and exploration. This helps in selecting safe and diverse diets, which are essential for
both diabetics and others. Solving this model with different parameter values from both
methods enables dynamic exploration, providing a variety of solutions. This makes it
easier to compare the performance of the two methods across several aspects, including
minimizing the glycemic load and nutritional intake.

In the upcoming section, we will provide detailed descriptions of the processes in-
volved in two approaches: traditional particle swarm optimization (PSO) and quantum
random behavior optimization. Following that, in the third section, we will outline the
modeling of our nutritional optimization problem, including the consideration of data sets
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and parameters. Finally, in the last two sections, we will compare the performance of the
PSO and GQPSO methods by analyzing the nutritional results. This will be followed by a
conclusion and a discussion of the future perspectives in this field.

2. Classical and Quantum Random Particle Swarm Approaches
2.1. Standard PSO

The particle swarm optimization method was originally developed by researchers Kennedy
and Eberhart [2]. Particle swarm optimization (PSO) is a method that involves a group of individ-
uals called particles, which are positioned randomly in a search space. Each particle represents
a potential solution and moves throughout the space seeking the best solution. Additionally,
each particle remembers the best solution it has encountered and can communicate with other
particles in its vicinity. In the traditional PSO with M particles, each particle is considered as a
potential solution within a D-dimensional space. The position of an individual particle at the
k-th iteration is represented as xi(k) = [xi1(k), xi2(k), . . . , xiD(k)]. Each particle retains informa-
tion about its previous best position. The velocity of the moving particles is represented
by a D-dimensional vector denoted vi(k) = [vi1(k), vi2(k), . . . , viD(k)]. At the (k + 1)-th
iteration, the velocity and position of particle i are updated by the following equations:

vij(k + 1) = wvij(k) + c1rij(k)
(

Pij(k)− xij(k)
)
+ c2Rij(k)

(
gk

j − xij(k)
)

(1)

xij(k + 1) = xij(k) + vij(k + 1) (2)

where c1 and c2 are two positive constants, called the cognitive and social coefficients, re-
spectively. These constants control the relative influence of cognition and social interaction
in the updating process. rij and Rij are two random numbers uniformly distributed in
the range (0, 1) for the j-th dimension of particle i. Pi(k) = [Pi1(k), Pi2(k), . . . , PiD(k)] is
the vector of the position with the best fitness found so far for the i-th particle, which is
called (pbest). And, vector gk = [gk

1, gk
2, . . . , gk

D] records the best position discovered by the
swarm so far, known as the global best (gbest) position. xij(k), vij(k) and Pij(k) are the j-th
dimensions of the vectors of xi(k),vi(k) and Pi(k), respectively. Parameter w represents the
inertia weight utilized for striking a balance between global and local search abilities [16].
The most common strategy for controlling it is to first set it at 0.9 and then reduce it linearly
to 0.4 [17]. Let f be the objective function we want to minimize. PSO can be described
using the following Algorithm 1.

Algorithm 1 PSO Pseudo-code

1: Input: M : Swarm size
2: D : Problem dimension.
3: T: Maximum iterative number
4: Output: gk : The best solution (position)
5: Start
6: Initialization : Generate an initial population with positions and velocities.
7: for i = 1 to M do
8: if f (xi) < f (Pi) then
9: Pi = xi

10: gk
i = argmin( f (Pi))

11: end if
12: end for
13: while k ≤ T do
14: for i = 1 to D do
15: rik,Rik two independent vectors randomly generated from [0, 1]D

16: Apply Equation (1)
17: Apply Equation (2)
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Algorithm 1 Cont.

18: if f (xi(k)) < f (Pi(k− 1)) then
19: f (Pi)(k)← f (xi(k))
20: end if
21: end for
22: gk

i = argmin( f (Pi))
23: k← k + 1
24: end while

2.2. An Overview of Quantum-Behaved Particle Swarm Optimization

In classical mechanics, any particle is characterized by its position vector x and velocity
vector v, which determine its trajectory. In Newtonian mechanics, a particle follows a
defined trajectory, but, in quantum mechanics, the concept of trajectory is meaningless.
In this case, the notion of trajectory loses its meaning due to the uncertainty principle,
making it impossible to simultaneously determine a particle’s position x and velocity v.
Consequently, if the particles within a PSO system exhibit quantum behavior, this implies
that the PSO algorithm will operate differently.

A new variant of PSO, called quantum particle swarm optimization (QPSO) [4], is a
method inspired by quantum mechanics and particle swarm optimization. For the QPSO
method, the velocity vector does not appear; it only has the position vector and is, there-
fore, simpler than the standard particle swarm optimisation algorithm. Sun and et al. [3]
introduced quantum theory into PSO and proposed the quantum particle swarm optimiza-
tion algorithm (QPSO). This algorithm not only has fewer control parameters than PSO
but is also more efficient, theoretically guaranteeing finding the optimal solution in the
search space.

In the QPSO model, the state of a particle is provided by the wave function Ψ(x, t)
(Schrödinger equation) [18] instead of position and velocity. The probability density
function |Ψ(x, t)|2 provides a means to calculate the likelihood of a particle being found at
a particular location, as determined by the statistical properties of its wave function [19].
The position of the particle can therefore be calculated using the probability density function.
Using the Monte Carlo method, we can obtain the j-th component of position xi of the
particle at iteration k + 1 as [3,19]

xij(k + 1) = pij(k)± β|Mbestj
(k)− xij(k)|.ln(1/uij(k)) (3)

where uij(k) is a random number generated using the uniform probability distribution functions
in the range [0, 1], pi is the local attractor and defined as [20] pi(k) = [pi1(k), pi2(k), . . . , piD(k)] , and

pij(k) =
c1rij(k)Pij(k) + c1Rij(k)gk

j

c1rij(k) + c1Rij(k)

Or,
pij(k) = ϕpij(k) + (1− ϕ)gk

j

where

ϕ =
c1rij(k)

c1rij(k) + c1Rij(k)
.

β is called the contraction–expansion (CE) coefficient, which can be tuned to control
the convergence speed of the algorithm. This coefficient should be controlled when using
QPSO in practical applications. In [21], it has been shown that taking an interval (0.5, 0.8)
provides more interesting results for the majority of benchmark functions. The value of β
can be calculated by

β = β0 + (T − t).(β1 − β0)/T (4)
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where β0 and β1 are the final and initial values of β, respectively, T is the maximum number
of iterations, and t is the current iteration number. Mbest is known as the mean best (mbest)
position defined as the mean of the pbest positions of all particles and is provided by

Mbest(k) = [Mbest1(k), Mbest2(k), . . . , MbestD (k)] (5)

=

[
1
M

M

∑
i=1

Pi1(k),
1
M

M

∑
i=1

Pi2(k), . . . ,
1
M

M

∑
i=1

PiD(k)

]
In general, the PSO algorithm with Equation (3) is called quantum-behaved particle swarm
optimization (QPSO), and it can be described by the following Algorithm 2.

Algorithm 2 QPSO Pseudo Code [3]

1: Start
2: Initialization : Generate an initial population (size = M), with positions and the

dimensions of particles.
3: for k = 1 to T Maximum iteration do
4: Compute the mean best position Mbest by (5)
5: β = β0 + (T − k).(β1 − β0)/T
6: for i = 1 to M do
7: if f (xi) < f (Pi) then
8: Pi = xi
9: end if

10: gk
i = argmin( f (Pi))

11: for j = 1 to D do
12: ϕ = rand(0, 1) , uij = rand(0, 1)
13: pij = ϕ.pij + (1− ϕ)gj
14: if rand(0, 1) > 0.5 then
15: xij = pij + β|Mbestj

− xij|.ln(1/uij)

16: else
17: xij = pij(k)− β|Mbestj

− xij|.ln(1/uij)

18: end if
19: end for
20: end for
21: end for

The illustration in Figure 1 shows how particles move in the PSO and QPSO methods
towards the best global positions (central particles) in the search space. Thanks to Adaptive
Particle Convergence in QPSO, particles that are far from the global position are able to
move towards it. On the other hand, in PSO, a particle that does not find a better position
than the global one no longer influences the others. As a result, QPSO enhances the
contribution of these particles compared to traditional PSO. The arrows in particle swarm
optimization (PSO) and quantum particle swarm optimization (QPSO) algorithms illustrate
the behavior of particles. In the classic PSO algorithm, the red arrows show the direction of
the particles towards the global position, which is determined by their best-known position
(pbest) and the best position of the swarm (gbest) [5]. In contrast, in QPSO, the quantum
behavior enables a position update that takes multiple factors into account, including the
average best position (mbest), enabling the particles to move simultaneously in several
directions. The blue arrows represent these directions, while the large red arrows show the
most likely direction of movement in the QPSO algorithm.
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Figure 1. Illustration of PSO and QPSO methods.

2.3. Quantum Particle Swarm Optimization Using Gaussian Mutation (GQPSO)

In addition to the mechanisms for updating particle positions within QPSO methods
that use a probability distribution (3), Maolong Xi et al. introduce a weighting parameter
in calculating the optimal average position in WQPSO [22], which is determined by the
fitness value of the particles. This approach involves a probabilistic evaluation aimed
at measuring the influence of each particle on the average position. Several mutation
mechanisms using probability distributions are integrated into quantum behavior particle
swarm optimization to enhance the exploration of the search space and maintain diversity
in solutions. In QPSO methods with mutations, the mutation is typically incorporated
when updating the positions of the particles. For a mutation with a general distribution,
the formula takes the following form:

xmut
ij (k + 1) = xij(k + 1) + µ · Distribution (6)

where xmut
ij (k + 1) is the position of the particle after mutation, µ is a controlling factor

determining the intensity of the mutation, and Distribution represents the applied probabil-
ity distribution.

The use of Cauchy-distributed mutations in QPSO algorithms often enables particles
to make “long jumps”, thereby encouraging a more global and diverse exploration of
solutions. In [5], a natural selection mechanism is also applied to enhance the efficiency of
the QPSO-CD algorithm. There is also the integration of Gaussian mutation operators to
enhance Gaussian quantum particle swarm algorithms (GQPSOs) in various engineering
applications [6,23]. In GQPSO, the Gaussian distribution is used to update the positions of
the particles.

Approach 1—GQPSO(1) [6]:

xij(k + 1) =

{
Pi + b · |Mbest(k)− xij(k)| · ln(1/Guij(k)) if k ≥ 0.5
Pi − b · |Mbest(k)− xij(k)| · ln(1/Guij(k)) if k < 0.5

(7)

The expression Gu = |N(0, 1)| represents the absolute value of a standard normal
random variable. The term Pi denotes a point in the search space used to calculate the new
position of particle xij(k + 1) based on the best position found by the population (Mbest)
and the value of Gu . Parameter k affects the way the positions of the particles are updated.

Approach 2—GQPSO(2) [6]:

Pi =
Gu · pi,d + g · pg,d

Gu + g
(8)

where g = |N(0, 1)| . Notations pi,d and pg,d represent the best personal and global positions
of the particles, respectively. This enables probabilistic exploration of the space, taking
quantum effects into account, making the method more efficient and robust. In traditional
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optimization approaches, the mutation operators are applied in a fixed manner, and the
types of distributions remain constant throughout the optimization process. However, this
limits the exploration of the search space. To address these limitations, Ref. [24] introduces
an adaptive mutation in the quantum behavior particle swarm optimization algorithm
(AMQPSO). This algorithm, which is based on the q-Gaussian distribution, dynamically
adjusts the mutation parameters based on the state of the population. The non-extensive
entropy index q is calculated using the formula

q = qmax − t · qmax − qmin

MaxIter
, (9)

where qmax and qmin represent the maximum and minimum values of q, respectively, t is
the current iteration (ranging from 0 to MaxIter), and MaxIter is the maximum number
of iterations.

The study aims to use two techniques, including a traditional PSO and another that
combines quantum and random principles, GQPSO, to enhance the nutritional optimization
problem for individuals with diabetes, specifically in terms of nutrition.

3. Nutritional Optimization Problem Modeling for Diabetics
3.1. Information and Variables Related to Diet Problems

The most crucial element in the prevention and treatment of diabetes is diet, which
requires the creation of an eating plan adapted to various social and economic factors
and its integration into daily life. Foods contain essential nutrients for the body’s proper
functioning, Nutrients can be divided into two categories: positive nutrients, such as
calories, protein, carbohydrates, and various vitamins and minerals, and negative nutrients,
which include saturated fats, sodium, cholesterol, and total fat. In terms of daily nutritional
requirements, we have chosen to follow the nutritional recommendations issued by the
United States Department of Agriculture (USDA). These recommendations are designed to
help individuals maintain a balanced diet to prevent diabetes and promote overall health.
They are designed in Figures 2 and 3.

The variables and data for our diet problems are based on a selection of 177 foods from
various groups (fruits, vegetables, meats, starches, etc.) that are most widely consumed by
the Moroccan community. Nutritional values are calculated for a 100g portion of each food.
Each meal, which is a combination of n foods, is represented by a vector x = (x1, . . . , x177),
where each element (xn)n=1,..,177 corresponds to the quantity of nutrient n in the meal per
100 g unit. The aim is to determine a food choice that provides a variety of nutritious foods
while reducing the overall glycemic load of a meal (optimal diet). This food choice must
also meet specific recommended requirements [14,25].

Here are the various variables and parameters used to model our problem:
GTx: The glycemic load induced by foods included in the diet.
A =

[
aij

]
: The matrix in which aij represents the quantity of beneficial nutrients i per

100 g portion of food j.
E =

[
eij
]
: This is the matrix where eij indicates the amount of potentially harmful

nutrients i per 100g portion of food j.
b: The minimum of positive nutrients required for the body to function properly.
f : Maximum acceptable levels of harmful nutrients can cause health problems if

consumed in excess.
Ac: The vector represents the portion of calories from the positive nutrient.
ci : Vector representing the calories from the nutrients in set {car, p, t f , s f }.
τi: The percentage of total calories of i nutrients from τp = 18%, τcar = 55%, τs f = 7.8%,

and τt f = 29%.
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3.2. Mathematical Representation of Constraints
3.2.1. Requirements for Beneficial Nutrients

The total beneficial nutrients of diet x are expressed by vector A.x, and the require-
ments are represented by b, so it is necessary to impose constraint A.x ≥ b.

The calorie ratio produced by carbohydrates must be determined by inequality cT
carx ≥

0.55
(

AT
c x

)
.

Calories from protein must be consistent with inequality cT
p x ≥ 0.18

(
AT

c x
)
.

3.2.2. Requirements Concerning Harmful Nutrients

Total harmful nutrients in the diet x is Ex, and the needs are recorded in f ; we thus
have Ex ≤ f .

Total calories from saturated fats are regulated by the following condition: cT
t f x ≤ 0.29

(
AT

c x
)
.

Total calories from total fat are regulated by the following inequality: cT
s f x ≤ 0.078

(
AT

c x
)
.

The research focuses on improving nutrition for people with diabetes, modeled as a
linear optimization problem aimed at minimizing the total glycemic loads of diets found.
Glycemic load is considered a more recent tool for better dietary management in the context
of diabetes as it enables a diversified classification of foods according to their impact on
blood glucose, thus facilitating diabetes control. Thus, our nutritional optimization problem
is as follows:

(P) :



Min GTx
Subject to :

A.x ≥ b
E.x ≤ f
cT

i x ≥ τi
(

AT
c x

)
i ∈ {car, p}

cT
i x ≤ τi

(
AT

c x
)

i ∈ {t f , s f }
x ≥ 0

(10)

Similar research addressing this issue has compared the performance of the PSO method
with other intelligent optimization approaches, such as the stochastic fractal (SFS), the fire-
fly optimization algorithm (FA), and the genetic algorithm (GA), which are covered
in [15,26,27]. This problem was also modeled using fuzzy optimization techniques to deal
with the imprecision of the associated parameters, which led to more efficient results and
could be useful in the field of blood glucose management [28–32]. This issue is addressed
through a multi-criteria optimization process that takes into account various factors, such
as the cost of nutrition, and utilizes different methods to improve performance [33–37],
making it possible to confront diabetes control with other criteria. With a view to vague
nutritional recommendations, we have suggested a method based on the optimization
and learning of artificial neural networks to better estimate people’s nutritional dietary
needs [38,39].

3.3. Evaluation of Diet Problem Parameter

We analyzed 177 commonly used foods in Moroccan cuisine to assess their macronu-
trient composition, including vitamins, minerals, lipids, and carbohydrates, as well as
elements such as sugars and fiber. The nutritional values for certain foods are displayed in
nutritional tables per 100g portion (see Tables 1 and 2).

The daily nutrient requirements for positive and potentially harmful nutrients are
those recommended by the US Department of Agriculture [14,40], and these recommen-
dations do not take into account the average amounts of positive and potentially harmful
nutrients; they are Illustrated in Figures 2 and 3.
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Table 1. Contents of vitamins and minerals.

Name of Foods Vitamin A Vitamin C Vitamin E Vitamin B6 Vitamin B12 Calcium (Ca) Phosphorus Magnesium Potassium Iron (Fe) Zinc Calories Protein Carbohydrate
Apricot 0 5.5 0.6 0.1 0 15.6 16.6 8.7 237 0.3 0.1 49 0.9 9

Dried Apricot 0 1 4 0.2 0 61.2 68.3 36.5 1090 4.3 0.3 271 3.1 53
Garlic 0 17 0 1.2 0 17.7 161 20.7 555 1.3 0.8 131 7.9 21.5

Almond 0 0.4 14.6 0.1 0 248 416 232 668 3 3.3 634 25.4 1.5
Pineapple 0 12 0.1 0.1 0 20.3 11 19.8 170 0.2 0.7 53 0.4 11

Canned Pineapple 0 10.4 0.1 0.1 0 14.3 5 13.3 105 0.2 0.1 82 0.4 19.1
Artichoke 0 10.3 0.2 0.1 0 39 49.2 29.5 380 0.7 0.5 44 2.8 4.9
Asparagus 0 16 0 0 0 19.9 51.5 6.3 198 0.7 0.4 30 2.7 3.2
Eggplant 0 1.3 0 0.1 0 20.1 15 15 123 0.3 0.1 35 0.8 6.3
Avocado 0 7.5 2.4 0.2 0 10.8 41.9 27.1 412 0.5 0.5 69 1.8 3.13
Baguette 0 0 0.1 0.1 0.0001 52.4 110 19.7 158 1.5 0.7 286 9.3 56.6
Banana 0 6.5 0.3 0.3 0 4.5 17.5 32.8 411 0.3 0.2 94 1.2 20.5
Beetroot 0 5 0 0 0 18.4 31.1 16.3 266 0.7 0.3 43 2.3 7.2

Cooked Egg White 0 0 0 0 0.00001 6.7 14.7 9.7 147 0.1 0 46 10.3 0.7
Cooked Broccoli 0.4 0.3 0.8 0.3 0.002 0 0 0 0 0 0.7 97 21.5 1.1

Broccoli 0 37.3 1 0.2 0 55.8 56 11.5 148 1 0.3 29 2.1 2.8
Peanut 0 0.7 12.2 0.5 0 4.9 370 70.6 54.2 0 2.8 636 25.9 14.8

Raw Carrot 0 16 0 0 0 19.9 51.5 6.3 198 0.7 0.4 30 2.7 3.2
Peeled, Cooked
Carrot (boiled) 0 4 0.6 0.1 0 26.2 20.4 11.9 243 0.3 0.2 36 0.8 6.6

Celery 0 8 0.2 0.1 0 53.3 27.2 9.2 269 0.3 0.1 16 1.2 1.2
Cooked Celery

Stalk 0 4 0.2 0.1 0 53.3 25 9 284 0.4 0.1 13 0.8 1.6
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Table 2. Sodium, fat, cholesterol, and fatty acid content of foods.

Name of Foods Sodium Total Fat Cholesterol Saturated Fat
Apricot 1.00 0.39 0.100 0.027

Dried Apricot 10.00 0.51 0.195 0.017
Garlic 17.00 0.50 0.000 0.089

Almond 1.61 53.40 1.180 4.040
Pineapple 1.00 0.12 0.000 0.009

Canned Pineapple 0.10 0.10 0.000 0.100
Artichoke 94.00 0.15 0.000 0.036
Asparagus 14.00 0.22 0.000 0.048
Eggplant 1.00 0.23 0.000 0.044
Avocado 7.00 14.66 0.000 2.126
Baguette 711.00 1.30 0.100 0.280
Banana 1.00 0.33 0.100 0.112
Beetroot 0.10 0.20 0.200 0.100

Cooked Egg White 0.20 0.20 0.000 0.000
Cooked Broccoli 41.00 0.41 55.500 0.079

Broccoli 0.30 0.40 0.500 0.100
Peanut 2.10 49.60 0.000 1.000

Raw Carrot 69.00 0.24 0.000 0.037
Peeled, Cooked Carrot (boiled) 0.10 0.10 0.100 0.100

Celery 80.00 0.17 0.430 0.042
Cooked Celery Stalk 91.00 0.16 0.000 0.040

Figure 2. The negative nutrient requirements.

Figure 3. The positive nutrient requirements.

The objective function to be minimized GTx is the glycemic load of food combinations
x (optimal diet) for diabetic patients. It is a linear function whose G vector components
represent the glycemic load content of food per 100 g unit, determined using a nutrition
study. This requires a great deal of time and effort on the part of our research team due to the
large number of foods and the difficulties encountered in estimating the nutritional values
of different foods. They strive to complete this complex task and provide accurate and
relevant information in the field of nutrition. Some of the estimates of glycemic load values
are shown in Table 3. The glycemic load (GL) is a measure of the number of carbohydrates
that can be absorbed by the digestive tract and have an impact on blood sugar levels, based
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on the glycemic index (GI) of food, which measures the speed at which the carbohydrates
in a food are digested, transformed, and end up as glucose in the blood [41]; the glycemic
load of food is obtained by multiplying the glycemic index of the food by the number
of carbohydrates contained in a specific portion of this food, then dividing the result by
100 [25].

Table 3. Glycemic load content.

Name of Foods Glycemic Load (Min) Glycemic Load (Mean) Glycemic Load (Max)
Apricot 5.13 5.13 5.13

Dried Apricot 15.9 18.55 21.2
Garlic 3.225 3.225 3.225

Almond 0.15 0.15 0.15
Pineapple 3.57 3.753 3.936

Canned Pineapple 0 0.313 0.626
Artichoke 0.735 0.735 0.735
Asparagus 0.48 0.48 0.48
Eggplant 0.945 0.945 0.945
Avocado 0.626 0.626 0.626
Baguette 39.62 39.62 39.62
Banana 9.22 10.76 12.3
Beetroot 1.08 2.088 3.096

Cooked Egg White 0 0 0
Cooked Broccoli 0.165 0.165 0.165

Broccoli 0.42 0.42 0.42
Peanut 2.07 2.07 2.07

Raw Carrot 0.48 0.48 0.48
Peeled. Cooked Carrot

(boiled) 3.102 4.356 5.61

Celery 0.18 0.18 0.18
Cooked Celery Stalk 0.24 0.24 0.24

3.4. Discussion

In this section, we will be presenting the results obtained from using the GQPSO and
PSO approaches to address a dietary problem for diabetics. Our objective is to assess the
effectiveness of these methods by comparing their performances and analyzing the nutri-
tional gaps, as well as the positive and negative aspects of each approach. Figures 4 and 5
depict the optimal food choices selected by the GQPSO and PSO methods with varying
values for parameters w1, w2, c1, and c2. Parameters w1 and w2 in the particle swarm al-
gorithms used represent the inertia weights that influence the particles’ behavior during
iterations. In the pseudo-code for the method GQPSO, these parameters are denoted as
(w1 = β0 and w2 = β1). Conversely, for the method PSO, they are represented as (w1 = r
and w2 = R) (Section 2). Adjusting these parameters during optimization by gradually
changing the inertia can affect the algorithm’s effectiveness. Some problems may require
more exploration, which can be achieved by using higher values of w1 at the start, while
others may require quick convergence, which can be obtained by using lower values of
w2 toward the end. This approach enables dynamic exploration and exploitation, thereby
improving overall performance. c1 and c2 are acceleration coefficients that adjust the
impact of the best personal solutions (pbest) and the best global solution (gbest) on the
movement of particles [6]. In GQPSO, these parameters are distributed according to a
Gaussian distribution. While optimizing our model, we adjusted the parameters for each
method, particle swarm optimization (PSO) and quantum particle swarm optimization
(QPSO). This helped us to assess their impact on improving the glycemic load by exploring
a wide range of possibilities and selecting the best food combinations. We kept parameters
c1 and c2 equal during each adjustment to maintain a balance between the cognitive and
social tendencies of the particles. For each method, we calculated the optimal glycemic
load and the positive and negative nutritional deviations associated with each diet. The
yellow highlights indicate the food quantities chosen for the various optimal diet solutions.
It is important to note that the values represent the quantity of each food per 100 g unit.
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Figure 4. Optimal diet choices proven using standard PSO method.

Figure 5. Optimal diet choices proven using the standard GQPSO method.

The analysis of the diets created using the PSO method (see Figure 4) shows that they
contain a variety of essential nutrients. These dietary plans commonly include foundational
foods such as coconut, known for its beneficial fatty acids and dietary fiber; sesame seeds,
which are a good source of protein, fiber, and various minerals; and fennel, a low-calorie
vegetable rich in fiber, vitamins, and minerals. In addition to fruits and vegetables, these
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diets also contain protein-rich foods like raw lamb’s liver, which is high in quality protein,
B vitamins, and essential minerals. Raw whiting is another inclusion that adds protein,
omega-3 fatty acids, as well as a range of vitamins and minerals to the nutritional profile.
Raw lamb liver, selected by PSO, is recommended in small amounts (100 g per diet). While
it is low in carbohydrates (0.16 g/100 g) and high in protein (21 g/100 g), it contains
saturated fats and should be eaten in moderation. It is chosen to diversify meals. To
address the issue of repeatedly recommending certain foods in dietary plans, we have
developed classification algorithms that combine Fuzzy C-means (FCM) and deep neural
networks with auto-encoders. This method enables each food to belong to multiple groups,
each with varying degrees of membership. As a result, we can substitute each food with
coherent alternatives within the same group. This is crucial for ensuring dietary diversity
and optimizing diet management [42–44].

Thus, for the diets provided by the GQPSO method (Figure 5), we can see that they
are characterized by remarkable diversity. These diets significantly include items such
as sesame seeds, spinach, and salad. Sesame seeds provide protein, fiber, and minerals,
while spinach offers essential vitamins, antioxidants, and minerals. The presence of salad
suggests a contribution to vitamins, fiber, and hydration. The combination of these elements
in these diets suggests a balanced and varied approach, promoting a complete and health-
promoting diet.

The results obtained by the two methods are then compared in Figures 6–8. This
comparison involves evaluating the glycemic load reduced by each method and analyzing
the differences between the minimum amounts of beneficial nutrients calculated by the
two methods. Additionally, it includes comparing the negative nutrients calculated and
the acceptable minimum for a diet.

Figure 6. Comparison of improvements in glycemic load demonstrated by PSO and GQPSO methods.

Figure 7. Comparison of positive nutrients gaps of diets generated by PSO and GQPSO techniques.
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Figure 8. Comparison of negative nutrients gaps of diets generated by PSO and GQPSO techniques.

Figure 6 shows the GLs of the diets produced by PSO and GQPSO considering the dif-
ferent cases of study associated with different values of parameters (w1, w2, c1, c2). Except
for the two diets, the diets produced by GQPSO have lower GLs than those provided by
PSO. The fact that the GQPSO method produces diets with a minimal GL quantity com-
pared to the PSO method indicates that GQPSO is more efficient in minimizing GL, and the
improvement from GQSPO to PSO demonstrates an evolution in solving the problem of
GL minimization.

Figure 7 highlights the gap between the quantities of positive nutrients generated
by the PSO and GQPSO techniques considering the different cases of study associated
with different values of parameters (w1, w2, c1, c2). This figure shows that the PSO method
generates quantities of positive nutrients that are considered sufficient, exceeding those
provided by the GQPSO method. In some cases, GQPSO outperforms PSO regarding
positive nutrients. However, in other cases, adjusting the parameters can lead to minimizing
the difference between the quantities generated by the two methods. Although the GQPSO
method remains better at minimizing the glycemic load than the PSO method, it is notable
that the latter can provide diets containing positive nutrients in higher quantities.

Figure 8 highlights the gap between the quantities of negative nutrients generated by
the PSO and GQPSO techniques considering the different cases of study associated with
different values of parameters (w1, w2, c1, c2).. We can see that, by modifying the parameters
specific to each of the two methods, the GQPSO method stands out by generating diets
with smaller deviations from tolerable values for negative nutrients than those produced
by the PSO method. This feature shows the efficiency of the GQPSO method in designing
diets that are more in accordance with the acceptable limits for negative nutrients. This
makes it possible to assess the ability of the algorithms to control negative nutrients within
acceptable limits, thereby contributing to the overall quality of the diet .

4. Conclusions

In addition to medical treatments, diet plays a fundamental role in glycemic control
for diabetic patients, so many studies focus on nutritional optimization problems in this
context, and the use of glycemic load concepts as optimization targets certainly makes
an outstanding contribution in this field. In this work, we carried out a comparative
study of a diet optimization problem in which we compared the performance of two
optimization approaches: a classical swarm particle approach and one with quantum
behavior and Gaussian mutation. Our study demonstrates that combining quantum
physics principles with random processes in GQPSO yields significant improvements in
managing the glycemic load and nutritional deficiencies within dietary patterns. Due to
the variability regarding foods’ nutritional values, it is often difficult to estimate them
accurately; this complicates data collection and decision-making regarding the results. In
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our subsequent work, we will seek to integrate particle swarm optimization principles with
artificial intelligence techniques in these methods to improve their performance.
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