eng

Article

Advanced Cotton Boll Segmentation, Detection, and Counting
Using Multi-Level Thresholding Optimized with an Anchor-Free
Compact Central Attention Network Model

Arathi Bairi '* and Uma N. Dulhare 2

check for
updates

Citation: Bairi, A.; Dulhare, U.N.
Advanced Cotton Boll Segmentation,
Detection, and Counting Using
Multi-Level Thresholding Optimized
with an Anchor-Free Compact Central
Attention Network Model. Eng 2024,
5,2839-2861. https://doi.org/
10.3390/eng5040148

Academic Editors: Juvenal
Rodriguez-Resendiz, Akos Odry, José
Manuel Alvarez-Alvarado and Marco

Antonio Aceves-Fernandez

Received: 12 August 2024
Revised: 27 October 2024
Accepted: 28 October 2024
Published: 1 November 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Department of Computer Science and Engineering, Kamala Institute of Technology and Science, Jawaharlal
Nehru Technological University, Huzurabad, Karimnagar 505468, India

Department of Computer Science & Artificial Intelligence, Muffakham Jah College of Engineering &
Technology, Hyderabad 500034, India; prof.umadulhare@gmail.com

*  Correspondence: artibairi@gmail.com

Abstract: Nowadays, cotton boll detection techniques are becoming essential for weaving and textile
industries based on the production of cotton. There are limited techniques developed to segment,
detect, and count cotton bolls precisely. This analysis identified several limitations and issues with
these techniques, including their complex structure, low performance, time complexity, poor quality
data, and so on. A proposed technique was developed to overcome these issues and enhance the
performance of the detection and counting of cotton bolls. Initially, data were gathered from the
dataset, and a pre-processing stage was performed to enhance image quality. An adaptive Gaussian—
Wiener filter (AGWF) was utilized to remove noise from the acquired images. Then, an improved
Harris Hawks arithmetic optimization algorithm (IH2AOA) was used for segmentation. Finally, an
anchor-free compact central attention cotton boll detection network (A-frC2AcbdN) was utilized for
cotton boll detection and counting. The proposed technique utilized an annotated dataset extracted
from weakly supervised cotton boll detection and counting, aiming to enhance the accuracy and
efficiency in identifying and quantifying cotton bolls in the agricultural domain. The accuracy of the
proposed technique was 94%, which is higher than that of other related techniques. Similarly, the
precision, recall, Fl-score, and specificity of the proposed technique were 93.8%, 92.99%, 93.48%, and
92.99%, respectively.

Keywords: cotton boll detection; segmentation; Wiener filter; Gaussian filter; Harris Hawks optimiza-
tion; anchor-free compact attention

1. Introduction

Nowadays, cotton, often called “white gold”, ranks among the most widely grown
and important cash crops globally [1]. Its fiber value and quality are crucial to the textile
industry [2]. It accounts for nearly 35% of the world’s total fiber production, with China
being one of the largest harvesters [3]. From 2022 to 2023, India was the second largest
cotton producer, contributing 5.84 million metric tons, which is approximately 23.83% of
the world’s total cotton production [4]. Measuring cotton traits accurately is essential to
improve fiber yield and quality, and cotton bolls have a significant impact on yield and
quality [5]. Agrofield operations, such as fertilization and insect control, directly affect
yield and quality, and accurate cotton boll counting is vital for smart agriculture, informing
management decisions to improve quality and productivity [6,7].

Book counting is the earliest conventional cotton boll counting method. However,
manually counting cotton bolls in the field is a time-consuming and complex task that
necessitates a large investment of labor, time, and equipment [8]. This technique is time-
consuming and prone to human error, making precise results practically unattainable,
particularly when dealing with a large number of facilities [9]. Furthermore, manual
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calculations are typically limited to small-scale studies and are inferior in large-scale
commercial agriculture. Inefficient and inaccurate boll counts impede the ability to make
informed decisions, improve crop management, and boost yields [10]. To address this issue,
new methodologies are required to expand the possibility of cotton boll phenotyping.

Furthermore, computer vision is being used extensively in agriculture due to growing
interest in the automated intelligent assessment of agriculture. The rising energy consump-
tion to address complicated problems and falling equipment costs are the main drivers of
this growth. Finding information on cotton growth has historically been a labor-intensive,
hand-crafted procedure requiring skill and attention to detail [11]. While cotton can be
effectively managed with computer vision, integrating artificial intelligence (AI) and image
processing for boll detection can enhance efficiency and reduce errors associated with
manual inspection [12]. Improving crop forecasts and disease detection using computer
vision is a promising approach. However, it is crucial to address the limitations of computer
vision when analyzing large amounts of data: while it can provide high accuracy with
limited data, its performance may degrade when processing large datasets [13].

Cotton boll detection uses traditional machine learning approaches such as support
vector machine (SVM), random forest (RF), naive Bayes (NB), decision tree (DT), and
k-nearest neighbors (KNN) [14]. For example, open boll candidates were identified via
binary classification using automatic and morphological filters based on the features of
each development zone [15]. A segmentation technique to identify cotton in the YCbCr
color space image was also derived [16]. Other methods include creating regions with
noise applications based on the Wasserstein distance using simple linear iterative clustering
(SLIC) and density-based spatial clustering of applications with noise (DBSCAN) [17].
Each region is analyzed to extract histogram-based color and texture features, which
are then used for output prediction through a random forest model [18]. It is generally
designed for simple images that typically have a single purpose and uniform background,
making them easier to analyze. In contrast, real-world scenes contain a variety of objects,
occlusions, lighting effects, and reflections, which introduce significant complexity [19].
These conditions can reduce the accuracy and power of cotton boll detection when using
conventional imaging techniques.

Nowadays, the application of deep learning models has revolutionized cotton boll de-
tection [20], with notable architectures such as multi-column convolutional neural networks
(MCNNs) [21], dilated convolutional neural networks (CSRNets) [22], scale aggregation
networks (SANets) [23], VGG16, InceptionV3, ResNet34 [24], and Faster R-CNN Inception-
V2 [25] demonstrating promising results. These models use a variety of techniques to
enhance detection accuracy, including capturing features at different sizes, enhancing
contextual understanding, and better identifying complex shapes under changing environ-
mental conditions. However, they also face several limitations, including data variability,
high computational demands, challenges in generalization, and difficulties with the pre-
cise localization of bolls, particularly in crowded and uneven fields. Furthermore, their
black-box design causes latency issues and interpretability concerns, which hinder their
real-time application. To overcome these limitations, a new model must be developed
that improves the robustness, efficiency, and applicability of optimal cotton boll detection
solutions. To motivate, this study proposes creating cotton boll segmentation, detection,
and computing methods that combine multi-level thresholding and optimization with an
anchor-free compact central attention network model, resulting in accurate and effective
instant cotton boll detection. The goal is to provide accurate and effective instant cotton boll
detection, thereby improving the overall efficiency of the detection process. This research
contributes to the field of cotton boll segmentation, detection, and counting in several
key ways:

(i) Toidentify cotton boll segmentation, detection, and counting, multi-level thresholding
optimized with an anchor-free compact central attention network model is introduced;

(ii) To remove noise and improve data quality using an adaptive Gaussian—Wiener filter
(AGWE);
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(iii) To segment cotton boll regions using a multi-thresholding-based hybrid Harris Hawks
arithmetic optimization (Mul-TH3AO);

(iv) To propose a novel model for cotton boll detecting and counting using an anchor-
free compact central attention cotton boll detection network (A-frC?AcbdN), which
distinguishes cotton bolls from non-cotton objects and accurately counts the bolls.

The remaining content of this paper is organized in the following manner. Section 2
includes a related survey of the various techniques of cotton boll segmentation, detection,
and counting. Section 3 describes the details and process of the overall proposed method
with images. The results and discussion of the proposed methodology are briefly explained
with graphs in Section 4. Finally, Section 5 describes the overall conclusion of the paper.

2. Related Works

This section reviews and analyzes the various techniques related to cotton boll seg-
mentation, detection, and counting, which are described as follows.

Yu Jiang et al. [26] developed a DL-based approach named DeepFlower to detect and
count individual emerging blooms on plants using a dataset. This approach processes each
image to count the blooms of individual plants over a flowering period. The root mean
square error (RMSE) of this technique was found to be 0.79 for detecting and counting
emerging blooms on cotton plants. It is important to note that this technique is specifically
designed to detect blooms on cotton plants.

Nasseb Singh et al. [27] developed an image-processing algorithm for in-field cotton
boll detection under natural lighting conditions. The image quality was enhanced using
color difference, the YCbCr method, band ratio, and chromatic algorithms to enable real-
time cotton boll segmentation under natural outdoor light conditions. This technique
achieved a higher identification rate of 91.05%, with false-positive and false-negative rates
of 6.99% and 4.88%, respectively.

Mengli Zhang et al. [28] developed a method based on the YOLO v8 framework for
transfer learning called YOLO small-scale pyramid depth-aware detection (SSPD). This
method combines space-to-depth and non-strided convolution (SPD-Conv), and a small
target detector head integrates a parameter-free attentional mechanism (SimAM) to enhance
target boll detection accuracy. This technique achieves a 12.38 RMSE, and the performance
of this technique resulted in a higher loss rate.

RuiXu et al. [29] developed a CNN that is trained to detect cotton blooms in raw
images. Here in this work, a dense point cloud contrasted from an aerial image with the
structure from motion method was utilized to evaluate the 3D location of a cotton bloom. A
constrained clustering algorithm was developed to register the same bloom detected from
various images based on the 3D location of the bloom. The precision of this technique was
90%, and limited datasets were utilized in this model. The survey of existing techniques is
described in Table 1.

Table 1. Survey of related techniques with their performance and limitations for cotton boll detection.

Author Name and Reference

Technique Used Performance Limitation

Yu Jiang et al. [26]

This technique is only utilized
DeepFlower RMSE—0.79 to detect the blooms on
cotton plants.

Nasseb Singh et al. [27]

YCbCr method, band ratio, Unable to separate

Identification rate—91.05%

and chromatic algorithm overlapped cotton bolls.
Mengli Zhang et al. [28] YOLO SSPD 12.38 RMSE Higher loss rate.
RuiXu et al. [29] CNN 90% Precision Limited datasets were utilized

in this model.

The existing methods for cotton boll segmentation, detection, and counting, as de-
scribed in [26-29], have several limitations that hinder their accuracy and effectiveness.
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These limitations include a limited applicability to detect blooms on cotton plants, insuffi-
cient features considered, inability to separate overlapped cotton bolls, higher loss rate, and
limited datasets. To overcome these limitations, a new model is required that can improve
applicability, incorporate more features, separate overlapped cotton bolls, reduce loss rate,
and utilize a larger and more diverse dataset. By addressing these limitations, a new
model can be developed that provides more accurate and reliable cotton boll segmentation,
detection, and counting.

3. Materials and Methods

Nowadays, cotton boll segmentation, detection, and counting are important for esti-
mating crop yield, monitoring crop health, and making informed decisions in precision
farming and automation. The proposed approach for cotton boll counting and segmenta-
tion involves the integration of advanced multi-thresholding and an anchor-free compact
central attention network. This combination of techniques aims to overcome the limitations
of the existing methods [26-29]. The proposed model enhances the quality and yield of
cotton production, ultimately benefiting the industry and meeting the growing market
demand. Figure 1 displays the graphical representation of the proposed method.

Pre-processed

N ot image ;
Pre-processing Segmentation
Input
—_— of

‘ AGWF Mul-TH3*AO

Segmented image

Detection and Counting

A-frC2AchdN

Figure 1. Graphical representation of the proposed method.

Here, the proposed method involves several key phases, such as image acquisition,
pre-processing, segmentation, detection, and counting. Initially, the cotton plant images
are collected from publicly available annotated datasets mainly designed for cotton boll
detection and counting. Then, the collected images are fed into the pre-processing step
using an adaptive Gaussian—-Wiener filter (AGWF) to remove noise and improve the input
image quality. Next, the pre-processed images are fed into the segmentation process using
multi-thresholding-based hybrid Harris Hawks arithmetic optimization (Mul-TH>AO) to
segment the cotton boll regions. Finally, the segmented images are input into the anchor—
free compact central attention cotton boll detection network (A-frC2AcbdN) model to
effectively detect and count the cotton bolls. The above-mentioned methods are described
in detail in the following sections.

3.1. Image Acquisition

This study utilized an annotated dataset for weakly supervised cotton boll detection
and counting, which is publicly available for download at Figshare (https://figshare.com/
articles/dataset/ Annotated_dataset_for_weakly_supervisedCotton_boll_detection_and_co
unting /19665096?1ile=34923654 (13 April 2024)). The dataset comprises RGB images of cot-
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ton plants captured in various environments, including both potted (indoor and outdoor)
and in-field settings, showcasing a range of plant conditions and backgrounds. The images
were taken using a hand-held consumer-grade camera.

To ensure quality, a pre-screening process was implemented to select high-quality
images, resulting in a total of 350 images, each with a resolution of 500 x 500 pixels. These
images were subsequently resized to 256 x 256 pixels for processing. The dataset was
divided into two subsets: 300 images for training (total size: 33.0 MB) and 50 images for
testing (total size: 4.45 MB).

For the task of cotton boll detection and counting, Python was employed as the
programming language, utilizing prominent libraries such as os, cv2, numpy, tensorflow,
matplotlib, scipy, and pandas. These libraries were selected for their established reliability,
widespread use, and efficiency in handling specific tasks, facilitating the development and
testing of the model.

The dataset accommodates diverse data collection methods, making it adaptable for
various applications. It includes in-field, indoor, proximal, aerial, RGB, and multispectral
collection methods, which capture images in different settings and resolutions. These
methodologies allow researchers to ensure the reproducibility and comparability of their
findings, resulting in more accurate machine learning models for cotton boll detection
and counting. Figure 2 depicts some sample images of the annotated dataset for weakly
supervised cotton boll detection and counting.

(a) b) ©

Figure 2. Sample images of the annotated dataset for cotton boll detection and counting: (a) in-field
plants; (b) outdoor potted plants; and (c) indoor potted plants.

3.2. Image Pre-Processing

This study proposed an AGWEF for filtering noise within the input cotton plant images.
Specifically, the combination of Wiener and Gaussian filters was explored.

The Gaussian filter is employed to enhance the efficiency of image smoothing [30]. The
initial stage of the Gaussian filter involves the detection of noise, which is not particularly
successful in removing salt-and-pepper noise. The analysis was conducted using the



Gaussian distribution. The Gaussian distribution’s probability density function (G(a)) is
described in the below equation:

G(a) = Tjwze_(“_”)z/(&fz) (1)

Here, the gray-level image is denoted as a, the mean value is represented as y, and
the standard deviation is represented as ¢. The amount of smoothing is determined by the
standard deviation (o). Then, the Gaussian filter output is fed to the Wiener filter.

The Wiener filter [31] is a linear filter designed to reduce the mean square error
between the original and filtered signal. It is intended to improve photos that have been
corrupted by additive noise. The Wiener filter balances noise reduction and image detail
retention through parameter adjustments. The Wiener filter equation is illustrated in the
following equations:

K(x,y) = G(x,y)A(x,y) (2)
S* (x,y)Fm(x,y)
Glx,y) = ©3)
D 5% (0, 9) PRu(x ) + Fnlx,)
S % (x,y)
G(x,y) = " @)
S % () + 25

Here, F,,;(x,y) represents the power spectrum of the signal process, and F,(x,y) de-
notes the spectrum of the noise process. Equation (4) can be obtained by dividing through
F; in Equation (3). Finally, the AGWF method reduces noise and improves the quality of
the original cotton plant image. Figure 3 displays the flow chart of the AGWF method.
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Figure 3. Flowchart of the adaptive Gaussian-Wiener filter method.
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3.3. Segmentation Using the Mul-TH>AO Algorithm

The Mul-TH?>AO algorithm segments cotton boll regions using a combination of a
fitness function and Harris Hawks optimization (H?>O) [32] and arithmetic optimization
(AO) [33] algorithms. These algorithms start with a set of random solutions, which are
iteratively evaluated and improved using a fitness function.

3.3.1. Fitness Function

The fitness function helps determine the optimal threshold vector for classifying
image pixels, similar to the Otsu thresholding [34] method. The method uses the im-
age’s histogram to accurately define its boundaries. The fitness function is based on the
following equation:

-

The average image density of an image p; is represented as X in Ry = 0and R, = A
(X'in Ry = 0 and Ry = A). The number of searched thresholds is represented as Y. y,
denotes the average density of class F; in R; and R, — 1, and the probabilities are denoted
as SUM,:

Y
ZSUMH((Y+1)W Y}il) + (pta —1)° (5)

a=0

suM, =y, G, )

Ra+1*A Gb

Ha = a
v, | SUM,

where Gy, = z(b)/NUMg (7)

Here, the gray-level b probability is denoted as Gy, the gray-level b frequency is de-
noted as z(b), and the total number of pixels in an image is denoted as NUM. This ensures
a high chance of obtaining the best optimal global solution for cotton boll segmentation.

The segmentation process is divided into two main phases, the exploration phase and
the exploitation phase, carried out over 100 iterations. The AO algorithm is responsible for
the first 50 iterations, focusing on wide-scale exploration of the solution space. Subsequently,
the H2O algorithm performs the remaining 50 iterations, refining the solutions by focusing
on exploitation to optimize the threshold values for better segmentation accuracy.

3.3.2. Exploration Phase

In the exploration phase, AO [33] is used to explore the image histogram and identify
the best threshold vector, which segments the image into relevant regions (cotton bolls and
background). The AO algorithm operates by evaluating the image histogram, treating each
solution as a vector that corresponds to various pixel brightness levels.

The pixel brightness values from the image histogram are mapped onto solution

—
vectors, where each vector (K,) contains the threshold values representing pixel intensities:

N
Ko = (kg1 kap,-..... kay), 0<kyi koo, ...... Koy <T 8)

Here, k,,,; denotes each threshold of the vector, and T denotes the maximum brightness
of the pixels in the images. The AO algorithm uses a fitness function (Otsu thresholding) to
assess the quality of each solution vector by calculating the difference between foreground
(cotton boll) and background pixel intensities. To improve the exploration phase, AO
is described in [33]. The AO updates the solution vectors across iterations using the
following equations:

kup(Firer +1) = 4 065 (ky) = (Mop +€) x ((ODy — CDy) x p+CDy) 22 <05 g
b\ HHer 5T best (k) x MOP x ((ODy — CDy) X i+ CDy)  otherwise
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1

K(r+1)

_el

Here, the solution of another iteration is denoted by k, ; (Fer + 1), which corresponds
to the threshold vector in the segmentation problem. In a subsequent iteration k; j, (Frer ), the
solution for the bth candidate in the ath dimension is represented as such, while the best
solution ever achieved is denoted as the best bth solution. The upper limit of the bth solution
is represented by ODy,, and the lower limit values of the bth solution are represented by CDj,.
This process continues until the 50th iteration, at which point the exploration phase ends.

3.3.3. Exploitation Phase

In the exploitation phase, the H?O [32] algorithm runs for the next 50 iterations (from
iteration 51 to 100) to further refine the solutions produced by the AO algorithm. The
main goal here is to improve the threshold vector for cotton boll segmentation. The H2O
algorithm mimics the hunting strategy of Harris Hawks, where the prey represents the
optimal threshold vector in the segmentation process.

During this phase, the H?O algorithm fine-tunes the threshold vectors by minimizing
the fitness function, which improves the clarity of the cotton bolls in the image. Each
solution is a vector of pixel brightness values that distinguishes different levels of cotton
boll visibility in the segmentation.

Every solution is denoted as a vector according to the MOA function in the AO
algorithm [34]. The solutions are updated as mathematically expressed in Equation (10):

—

5
Kyana(r) — 262K (r)|,j = 0.5(Kyappit (r) = Ku(r)) — e3(CD +¢4(OD = CD)),j < 0.5 (10)

—
Here, the (r + 1)th iteration next-solution vector is denoted as K(r + 1). The rth
iteration bait positions are denoted as K,y (), and the rth iteration vector current solution

S

is denoted as K(r). The variables ey, e, €3, €4, and j are random numbers in the range (0,1)

that are updated in each iteration. OD and CD denote the upper and lower limits for

variables in the multi-thresholding segmentation problem, corresponding to the image’s
—

pixels’ maximum and lowest brightness levels. K,,,;(r) is used to represent the solution
vector that was chosen at random from the current population, and K, (r) denotes the
current population average of the solutions.

The escape energy (W) of the cotton boll (bait) influences the movement of the hawks
(solutions) in H?O algorithms. The hawks decide whether to approach the cotton boll ag-
gressively or cautiously based on this energy, which is modeled by the following equation:

W =2Wy(1—r/R) (11)

Here, escape energy is denoted as Wy, and R denotes the maximum repetitions. The
value of Wy changes randomly in every iteration, ranging from —1 to 1. When W decreases
(ranging from 0 to —1), the cotton boll’s ability to escape diminishes, leading to a “soft
besiege”, where the hawks move cautiously. Conversely, when Wy increases toward 1,
this triggers a “hard besiege”, where the hawks make an aggressive move to the prey
(cotton boll).

As the iterations progress, W gradually decreases. When |W| < 1, the H?O algorithm
enters the exploitation phase. During this phase, if ¥ > 0.5 and 0.5 > |W|, the hawks apply
a soft besiege, where they update the threshold vector in the cotton boll segmentation
process gradually, represented by the following equations:

K(r +1) = AK(r) — W/ BK, e (1) — K(7) (12)

Here, AK(r) represents the difference between the bait position (the cotton boll thresh-
old vector) and the current solution in the rth iteration. Additionally, e5 is a random
number between 0 and 1, representing the unpredictable nature of the cotton boll’s escape.
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B represents the strength of the unpredictable nature of the cotton bolls at all stages of
escape. Each time, the value of B is altered randomly to replicate the erratic behaviors of
cotton boll movements.

When r > 0.5 and 0.5 < |W|, the hawks initiate a hard besiege and move aggres-
sively toward the optimal threshold vector. This aggressive movement is mathematically
expressed by the following equation:

N

K(r + 1) = Krabbit(r) - W|AK(7’)| (13)

When r < 0.5 and 0.5 > |W|, the bait accumulates sufficient energy, and the timing
is right, and a soft besiege with progressive rapid dives is executed before the cotton boll
attempts an unexpected escape. The hawks continue to their positions during this phase by
following the soft besiege equations.

S [Q i Z(Q) < Z(K(r)
Kr+1)= {o, if 2(0) < Z(K(n) a4

When r < 0.5 and 0.5 < |W|, before the unexpected leap, the bait lacks the energy to
break free (hard besiege) with progressive rapid dives. The solutions attempt to reduce the
distance between their current positions and the escaped cotton boll threshold.

P _[Q if Z(Q) < Z(K(r))
K{r+1) = {o, if Z(0) < Z(K(r)) (15)

As a result, until the stop condition is satisfied, this procedure is repeated. The
optimal threshold vector that is obtained is then represented by the algorithm’s output.
The Mul-TH3AO algorithm’s diagram for determining the threshold vector in the cotton
boll segmentation is displayed in Figure 4 and Algorithm 1.

Image L) Initialize for
histogram AO algorithm

Apply the division | Yes Calculate the
operator fitness
Apply the multiplication N
ot C_lter++
4 A
Sort the fitness | Calculate
thus update it T Xw
r<05and po
IW| > 0.5
Update K Update K Update K
using  f€— Caam(l)ate using [« NG using r>=05
Equation (15) . Equation (14) 2 Equation (12) wando 5
> 0.

. Update K
Evaluate the | P :
° PODINENCD Equation (13)

No

Figure 4. Mul-TH3AO segmentation algorithm flowchart.
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Algorithm 1. Pseudo-code of the Mul-TH?>AQ algorithm

Input: Image I, Maximum Iterations Max_Iter
Output: Optimal Threshold Vector K*
Initialize random solutions (threshold vectors)
Define parameters for AO and H?O algorithms
Initialize iteration counter Iter = 1
/[Fitness Function Definition
Function Fitness (X, T)
Calculate the histogram of an image X
Compute average image density and class densities
Compute probabilities and frequencies of gray levels
Calculate fitness value using Equation (5)
Return fitness value
/[Exploration Phase (AO Algorithm)
While Iter < 50 [F_Iter < H_Iter] do
Find the best solution (determined best so far)
Update the MOA value
Update the MOP value
For (a = 1 to solution ) do
if Z1 > MOA then
if Z) <05
Update the a'’ solutions’ positions using the division operation in Equation (9)
Else
Update the a'’* solutions’ positions using the multiplication operation in Equation (9)
End if
End if
End For
End While
Il Exploitation Phase (H?O Algorithm)
While Iter < 100 do

For each solution vector ?g in the solutions
IF |[W| < 1 then
Assign a random number from [0, 1] to r
If r > 0.5 and |W| < 0.5 then soft besiege
Update the location vector using Equation (12)

Else If r > 0.5 and |W| > 0.5 then execute hard besiege
Update the location vector using Equation (13)

Else If r < 0.5 and |W| < 0.5 then execute soft besiege
with progressive rapid dives
Update the location vector using Equation (14)

Else If r < 0.5 and |W| > 0.5 then execute hard besiege
with progressive rapid dives
Update the location vector using Equation (15)
End if
End if
End for
End While
/[Output the best solution
K* =best solution found
Return K*

3.4. Cotton Boll Detection and Counting Using the A-frC>AcbdN Model

In this study, a novel A-frC2AcbdN model is developed specifically for cotton boll de-
tection and counting. Figure 5 illustrates the proposed A-frC2AcbdN model’s architecture.
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Here, the A-frC2AcbdN model is built on the fully convolutional one-stage (FCOS)
framework, which incorporates MobileNetV3 into a feature pyramid network (FPN) to
improve feature extraction. The detecting heads are optimized to minimize the overall
model parameters while increasing detection speed during inference. In addition, a tiny
object improvement module is developed, which will use a single-stage headless (SSH)
face detector to target small objects. This is followed by a scale-invariant network topol-
ogy that enhances small object recognition performance. To design the loss function, a
unique label assignment strategy is developed, which addresses the anchor bounding box
matching requirement while enhancing the flexibility of bag-of-center building. Finally,
a center correction method is used in the post-processing stage to modify the predicted
bounding boxes, resulting in increased accuracy. The A~frC>AcbdN model is explained in
detail below.

3.4.1. Compact Weight Backbone Network

The FCOS model avoids complex anchor calculations, significantly reducing overhead
and improving detection performance compared to anchor-based detectors. To further
streamline the network, MobileNetV3 [35] replaces the original ResNet [36] backbone.
MobileNetV3’s lightweight structure enhances inference efficiency, making it a better
choice for the FCOS backbone.

In this approach, the residual block of ResNet has been substituted with the Bneck
structure from MobileNetV3 to serve as the FPN input. Various strategies are implemented
to accommodate different backbone versions:

(i) If using the large version, the backbone and the 17th Bneck are inputs to the FPN.
(if) If using the small version, the 11th, 12th, and 13th Bneck are inputs to the FPN.

This compact weight backbone network improves detector performance for small
objects by addressing information loss during small object detection.

3.4.2. Small Object Enhancement Module

A new small object optimization module has been created to improve small object
detection. This model takes advantage of single-stage headless (SSH) [37] face detection,
which can work well on different products and expand the understanding of the model.
This module improves the model’s ability to detect small objects by integrating SSH.
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In the module, the feature pyramid network extracts features at different scales and
then focuses them on a unified output feature vector. The feature vector is then input
into a small target detection module, which includes a detection module and a context
module. The detection module includes classifiers and regressors to detect and localize
small objects, while the identification module uses large filters to increase the size of the
window around the object. Since the difference between the parameters will not affect the
detection accuracy, only anchor poles with a ratio of 1 are stored during detection. Finally,
the resulting anchors are combined and filtered through the anchor processing stage and
further refined using the target mapping scheme described in the next section.

3.4.3. Label Assignment Strategy

A label assignment strategy has been proposed to select the optimal anchor point
for each item, inspired by the label assignment technique introduced in FreeAnchor [38].
FreeAnchor employs a self-learning object identification method to align the anchor box
with each object. Its objective is to remove manually created anchor divisions while optimiz-
ing three crucial visual object detection metrics. To obtain high recall, the detector must first
make sure that each object has at least one correct anchor box prediction. Second, correctly
identifying the anchor box with the least regression error should attain high accuracy.
Third, the anchor box’s prediction must comply with non-maximum suppression; other-
wise, precise-positioned predictions with low classification scores might be suppressed.
FreeAnchor’s loss function is defined by

P(6) = —w1 ) log(Mean — max(My)) + waLF(R{t, € T—}(1 - RY)(6)) (16)

My = { R (O)RE (0)|1y € Tul} (17)

Here, 0 denotes the network parameter, and the balance factor is denoted by w; and
wy. The mean-max method is used to select the best anchor box for each object from a given
set of anchor boxes. At the start of training, most anchor boxes are used. However, as the
training advances and the network becomes fully trained, the confidence in specific anchor
boxes grows. The likelihood set of the anchor bag T, is denoted by My, the focal loss is
denoted by LF, Ty denotes the x'" anchor box set, T_ € T denotes the negative sample set,
R{t, € T_} represents the probability that the t, of an anchor does not match with any
object, uv denotes the background, Rfc{“yss (0) denotes the classification confidence, R”(6)
denotes the background confidence, and R{t, — wy } "’ represents the probability that ,
accurately predicts wy.

However, the current method of using anchor tags for a free-anchor search is not
effective. The accuracy of detection is improved by optimizing the assignment of the
free-anchor label. This is achieved by using the mean-maximum function to calculate the
IoU of each anchor point and determine the best anchor point for each object. The following
sections will provide a detailed explanation of these two steps.

P-IoU Calculation

The bounding box R is considered the ground truth, and the anchor point Z is located
on the feature map. i, jr, kg, and Ig represent the distance from a point R to the top,
bottom, left, and right of the ground truth bounding box R, respectively. In the artificial
setup, the point Z is treated as the center, and a hypothetical bounding box S is created
around it with the same shape S as the truth box. is, js, ks, and I represent the distance
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from a point R to the left and right of the hypothetical bounding box S. First, the ig, jr, kg,
Ir, is, js, ks, Is, Qr, and Qg are calculated as follows:

is = js = (ir +jr)/2
ks =1s = (kg +1r)/2
Qr=(ir +jr) * (kg +IRr)
Qs = (is +js) * (ks +1s)

(18)

Next, the quadrangular coordinates i*, j*, k*, I* of the intersection box are determined
using the minimum operation of the respective distances. The pseudo intersection over
union (P-IoU) is then calculated between the pseudo bounding box and the real boxes

as follows: R Y
(k" +17) * (" + 7))
|Qr + Qs — (k* +1I*) * (i + )|

P—IoU = (19)

Optimal Anchor Point Selection

In the process described, a bag of centers is constructed from each anchor point Ry
that falls within the boundaries of the ground truth box Z. The P-IoU of the pseudo
bounding box Sy-formed Ry in the bag-of-centers is then computed, and the P-IoU values
are subsequently sorted in descending order. Following this, the anchor point with the
highest confidence level is chosen as a positive sample, while the remaining locations are
designated as negative samples. It is important to note that the loss term at the angle level
has been adjusted to reduce the impact of negative angles on the overall iteration process.

The tilt angles of the ground truth center, denoted by R and H, are computed and
incorporated into the loss function. The loss function for the angle value is mathematically
expressed as follows:

Pang = d(arg cos(0)w; + argsin(6)wy) (20)

Here, d denotes as the distance between two points (R and H), and 6 denotes the angle
between the horizontal direction. Additionally, w; and w, denote the super parameters.
The optimized loss function can be formulated as follows:

Pl(()) =P(0) + Pang (21)

The label assignment approach is utilized for optimal anchor point selection for every
object using this process.

3.4.4. Center Correction Mechanism

To address potential difficulties with the proposed label assignment method, a center
correction mechanism is used to reduce the influence of extreme outliers. This approach
makes use of center attention [39] to refine the identified anchor point using a specific
parameter. The attention parameter is calculated by normalizing the distance between the
pseudo bounding box’s anchor and the four sides of the ground truth bounding box.

The center attention changes the center position based on the distance between the
centers. Pixels in the center are allocated an initial value, which is then changed based on
the overlap of the pseudo and ground truth bounding boxes.

In order to update and address this parameter, this study was assessed using a pixel-
based sampling method. Specifically, the center point radius is set to 1, and the virtual box
center should fall within a 3 x 3 pixel neighborhood. Then, the HeatMap Loss function
is used to compute the deviation of the center of the pseudo bounding box, where E, }, .
indicates the distance weight (a, b) from the positive target center location. The closer this

E, ;. value is to one, the stronger the corrective effect. E, j, . indicates a higher likelihood
that (a, b) accurately predicts the target’s center. Additionally, C reflects the identified target
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category. Assuming C = 1, the HeatMap Loss function can be mathematically represented
as follows:

Pp = 1 log (tabc)(litm) if Sape =1 (22)
b= R 1 1— (1=54pc)“ (tape)” Otherwise
abc \ 108 ( tabe)

After collecting the parameters of the 9-square grid, the pseudo bounding box i, j, k, [
is adjusted using these parameters to move the center of the actual bounding box. Finally,
the proposed A-frC?AcbdN model is successful in detecting and counting cotton bolls.
The efficiency of the A-frC?AcbdN technique is evaluated based on various performance
metrics, which include accuracy, precision, F1-score, recall, specificity, MAE, and RMSE.

4. Results and Discussion

The performance of the proposed technique was analyzed using various related
techniques to determine its efficiency based on several performance metrics. The sys-
tem configuration and hyperparameter details of the proposed technique are outlined in
Tables 2 and 3, respectively.

Table 2. System configuration.

System Configuration
Processor Intel (R) Core (TM) i5-9500 COU @ 3.00 GHz.
Installed RAM 16.0 GB (15.8 GB usable)
System type 64-bit operating system, x 64-based processor
Pen and touch No pen or touch input is available for this display

Table 3. Hyperparameter details of the proposed technique.

Process Activation Function
Center_prediction Sigmoid
Box_prediction Linear
Class SoftMax
Epoch 300

4.1. Performance Analysis

The efficiency of the proposed technique was analyzed with various related techniques
to determine its performance. The comparison of accuracy and precision is presented in
Figure 6.

The accuracy of the proposed technique is 94%, which is higher compared with
other related techniques such as Mobilenet_v2 (91%), Attention_ResNet50 (89%), deep
convolutional neural network (DCNN) (86%), and convolutional neural network (CNN)
(84%). Similarly, the precision of the proposed technique is 93.8%, which is higher than
that of the other related techniques, highlighting its efficient performance. The existing
models have less performance value because they have fewer feature learning capabilities,
a high computation time, and erroneous detection and counting. While the A-frC2AcbdN
model for the compact weight backbone network enables the model to extract more features
from high learning rates, the small object enhancement model detects cotton bolls more
accurately. Finally, the proposed model overcomes the existing models’ issues, which
results in more accurate and precise cotton boll counting and detection. The comparison of
recall, F1-score, and specificity are presented in Figure 7.
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Figure 6. Comparison of the (a) accuracy and (b) precision of the proposed model (A-frC2AcbdN)
with the existing models (Mobilenet_v2, Attention_ResNet50, deep convolutional neural network
(DCNN), convolutional neural network (CNN)).

The recall of the proposed technique is 92.99%, which is higher than the other related
techniques of Mobilenet_v2 (88.9%), Attention_ResNet50 (86.9%), DCNN (83.9%), and CNN
(81.9%). Similarly, the F1-score and specificity of the proposed technique are 93.4% and
92.99%, respectively, which are higher than the other existing models, again highlighting
its efficient performance. The proposed algorithm uses Mul-TH3AO to select the optimal
threshold vector to segment cotton bolls. This is achieved through the A-frC2AcbdN model,
resulting in a high performance in cotton boll detection and counting. The comparison of
error metrics such as MAE and RMSE are presented in Figure 8.

In Figure 8, the proposed model can be analyzed through two error metrics, MAE
and RMSE, with values of 0.061 and 0.244, respectively. The results demonstrate that the
proposed model surpasses the existing cotton boll detection and counting strategies in
performance, as the existing method achieves superior error values. The proposed model
removes noise from the images via an AGWF. Pre-processing the image allows the model
to focus on learning relevant features rather than being distracted by irrelevant information.
The center correction system adjusts the anchor point using the pseudo bounding box and
the ground truth bounding box, reducing overall error and enhancing accuracy. Figure 9
displays the time complexity of the proposed and existing models.

The proposed A-frC2AcbdN model significantly decreases data processing time by
combining three key features. The AGWF will eliminate the noise in images, simplify the
data, and improve processing speed. Additionally, the Mul-TH>AO algorithm is employed
to select the optimal threshold for data segmentation, ensuring accurate labeling and fast
execution. Finally, the model includes a clever technique to check labels using P-loU
calculations, ensuring that labeling is both fast and precise. As a result, the A-frC?AcbdN
model reduces training time complexity by 35 min and testing time complexity by 15 s when
compared to previous models, resulting in significant performance gains while minimizing
processing time, making it a more efficient and effective solution. The accuracy and loss
analysis of both the proposed and related techniques are presented in Figure 10.



Eng 2024, 5 2854
100
95 1
90
X 851
=
é«ﬂ 80
75 A
70
05 - '
A-frC2 MobileNet Attention DCNN CNN
AcbdN V2 ResNetS0
(a)
100 100
95 95 1
90 - - 90
T 851 z 851
@ 80 'g 801
= -3
75 A a5
70 1 70 -
65"

AcbdN

65" T
A-frC2  MobileNet Attention DCNN CNN

V2

A-frC2  MobileNet Attention DCNN  CNN
ResNet50 AcbdN V2 ResNet50

(b) (c)

Figure 7. Comparison of the (a) recall (b) Fl-score, and (c) specificity of the proposed model
(AfrCzAcbdN) with the existing models (Mobilenet_v2, Attention_ResNet50, deep convolutional
neural network (DCNN), and convolutional neural network (CNN)).

The accuracy and loss of both training and testing are analyzed to determine the
efficient performance of the proposed technique compared to other related techniques.
Usually, the data are divided based on an 80:20 ratio for training and testing. Thus here, 80%
of the data are utilized for training the model, and 20% are used for testing. The accuracy
of both training and testing is slightly improved compared to the related techniques. The
loss of both training and testing slightly reduced its error compared to the other existing
models. The overall performance of the proposed and related techniques is described in
Table 4.
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Figure 9. Analysis of the time complexity of the (a) training and (b) testing of the proposed model
(AfrC?AcbdN) compared with the existing models (Mobilenet_v2, Attention_ResNet50, deep convo-
lutional neural network (DCNN), and convolutional neural network (CNN)).

The proposed technique achieves a 94.97% accuracy, 93.82% precision, 92.99% recall,
93.48% F1-score, 92.99% specificity, 0.06 MAE, and 0.24 RMSE. The output of the proposed
technique for each stage is described in Table 5.
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Figure 10. Performance analysis of the (a) training accuracy, (b) training loss, (c) testing accuracy,
and (d) testing loss of the proposed model (AfrC2AcbdN) compared with the existing models
(Mobilenet_v2, Attention_ResNet50, deep convolutional neural network (DCNN), and convolutional
neural network (CNN)).

Table 4. Performance analysis of both the proposed and related techniques.

Techniques Used
Performance CNN DCNN Attention_ResNet50  Mobilenet_v2 Proposed

Accuracy (%) 84.23 86.00 89.00 91.00 94.97
Precision (%) 86.10 87.32 88.75 92.31 93.82
Recall (%) 81.91 83.94 86.98 88.91 92.99
F1-score (%) 83.96 85.52 87.85 90.63 93.48
Specificity (%) 83.24 85.11 87.69 89.98 92.99
MAE 0.107 0.101 0.095 0.091 0.06
RMSE 0.349 0.334 0.315 0.301 0.24

Coﬁ;re‘gi;‘fm) 45 4 50 40 35

Test Time 27 24 30 18 15

complexity (s)
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Table 5. The outcome of the proposed technique.
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4.2. Ablation Study

The proposed research work includes the stages of pre-processing, segmentation, and
cotton boll detection and counting. The ablation study analyzes the performance deviation
resulting from the elimination of the techniques used. Table 6 indicates the performance
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outcomes of conducting an ablation study on the annotated dataset for weakly supervised
cotton boll detection and counting.

Table 6. Ablation study analysis.

Performance (%)

Module Technique Used
Accuracy Precision Recall

Without pre-processing +
Module 1 without segmentation + with 80 79 78
detection and counting model

Without segmentation + with
Module 2 pre-processing + with detection 86 85 85
and counting model

Without pre-processing + with
Module 3 segmentation + with detection 90 89 89
and counting model

With pre-processing + with
Module 4 segmentation + with detection 94 93 93
and counting model

Module 4 is the proposed model, which incorporates both pre-processing and seg-
mentation, leading to better performance. In comparison, the other modules demonstrate
significantly lower accuracy: Module 1 utilizes the A-frC?AcbdN model without any
pre-processing or segmentation, resulting in poor performance; Module 2 includes pre-
processing but omits segmentation, resulting in a similar low accuracy; and Module 3
includes segmentation but without pre-processing, resulting in decreased performance.
The analysis demonstrated in Module 4 with the combination of pre-processing and seg-
mentation is essential for optimal accuracy, as the absence of either component, as seen in
Modules 1, 2, and 3, results in a significant decrease in the model’s efficacy.

4.3. Discussion

This section presents a comparative analysis of the proposed technique against several
related methods, summarized in Table 7.

Table 7. Comparative analysis.

Author Name and Reference Technique Used Performance

Yu Jiang et al. [26] DeepFlower RMSE—0.79
. YCbCr method, band ratio,
Nasseb Singh et al. [27] and chromatic algorithm
Mengli Zhang et al. [28] YOLO SSPD 12.38 RMSE
RuiXu et al. [29] CNN 90% Precision

94.97% Accuracy, Precision
_frC2 Yy,
Proposed AAfrCAcbdN 93.82%, RMSE 0.24%

Identification rate—91.05%

The proposed A-frC?AcbdN model achieves an accuracy of 94%, surpassing the exist-
ing models, which suffer from limitations such as a high time consumption, high model
complexity, requirement for larger datasets, overfitting problems, higher loss rate, insuffi-
cient features considered, and inability to separate overlapped cotton bolls. The proposed
technique’s superior performance can be attributed to several key factors, including the
effective use of an annotated dataset from weakly supervised cotton boll detection and
counting, which provides high-quality images of cotton bolls, as well as the noise elimina-
tion process that employs the AGWF algorithm, which reduces error and improves overall
accuracy. Furthermore, the segmentation algorithm combines AO and Harris Hawks opti-
mization to accurately identify and separate cotton bolls from the background, reducing
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computational complexity. At the same time, the compact weight backbone network al-
lows the model to extract more features from high learning rates, improving accuracy.
Furthermore, the small object enhancement module and label assignment strategy allow
the model to detect and count cotton bolls with high precision, reducing loss through the
P-IoU calculation. At the same time, the center correction mechanism updates the anchor
point based on the pseudo bounding box and ground truth bounding box, reducing overall
error and improving accuracy. Overall, the proposed technique performs well in cotton
boll detection and counting, making it a potential solution for the agricultural industry. It
allows farmers and researchers to better understand and manage cotton crops.

5. Conclusions

An efficient cotton boll detection and counting method is developed to achieve an
efficient performance and overcome the complexity of time. Initially, pre-processing is
performed using the data extracted from the dataset to increase the quality of the images.
An AGWF is used to eliminate noise from the acquired pictures, whereas TH?AOA is
employed for segmentation. Finally, cotton boll detection and counting were performed
using the A-frC2AcbdN model. From weakly supervised cotton boll detection and counting,
the proposed approach made use of an annotated dataset. The proposed method yielded
an accuracy of 94%, outperforming that of the other related techniques. Additionally, the
results for the precision, recall, F1-score, and specificity of the suggested technique were
93.82%, 92.99%, 93.48%, and 92.99%, respectively. The MAE and RMSE of the proposed
technique were 0.06 and 0.24, respectively, which are lower than the other related techniques.
In the future, the performance of the proposed technique can be improved by utilizing an
advanced YOLO model for more efficient cotton boll counting.
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