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Abstract: Proton exchange membrane fuel cells (PEMFCs), as a clean energy technology,
show remarkable potential for a wide range of applications. However, high altitude regions
pose significant challenges for PEMFC system operation due to thin air and low oxygen
partial pressure. Existing logic judgement-based controls exhibit defects such as poor
robustness and poor adaptability, which seriously restrict PEMFC system operation. In
order to address this issue, this paper puts forth an intelligent control of a PEMFC system
air compressor (AC) and back pressure valve (BPV) using an asynchronous advantage
actor-critic (A3C) algorithm and systematically compares it with the logic judgement-
based control. The application of an A3C-based control under three distinct high altitude
test conditions demonstrated a notable enhancement in dynamic responsiveness, with
an improvement of up to 40% compared to the results for the logic judgement-based
control. Additionally, an improvement of 5.8% in electrical efficiency was observed. The
results demonstrate that the A3C-based control displays significant robustness and control
precision in response to altitude alterations.

Keywords: proton exchange membrane fuel cells; air compressor; back pressure valve;
high altitude regions; deep reinforcement learning

1. Introduction
As a clean energy technology, PEMFCs display a broad application prospect [1,2].

However, due to the thin air and low oxygen partial pressure in high altitude regions,
the operation of PEMFCs is greatly challenged, and air path control is one of the crucial
aspects of this scenario [3]. If not properly controlled, it may lead to the oxygen starvation
phenomenon, a decrease in oxygen transfer rate, a decrease in cell efficiency, etc., and
even seriously affect the normal operation of the PEMFC system. Therefore, real-time and
precise control of the air path is a key factor to ensure normal operation of the PEMFCs,
which is essential to enhance the adaptability and reliability of the PEMFC system in high
altitude regions [4,5].

To date, a considerable number of studies have been conducted on the control of
the PEMFCs air path in high altitude regions [6–8]. Zhao et al. [9] proposed a dynamic
decoupling strategy for peroxide ratio and pressure control based on fuzzy logic. This
strategy allows for the expeditious adjustment of the oxygen evolution reaction (OER),
which effectively enhances the output power of PEMFCs. Wang et al. [10] proposed a

Eng 2025, 6, 19 https://doi.org/10.3390/eng6010019

https://doi.org/10.3390/eng6010019
https://doi.org/10.3390/eng6010019
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/eng
https://www.mdpi.com
https://doi.org/10.3390/eng6010019
https://www.mdpi.com/article/10.3390/eng6010019?type=check_update&version=1


Eng 2025, 6, 19 2 of 12

synergistic optimal allocation scheme based on the maximum efficiency range of multi-
stacked PEMFCs to achieve the best power allocation for various types of PEMFCs therein.
The results show that the scheme can effectively improve the efficiency of PEMFCs in high
altitude regions. Li et al. [11] proposed an extreme value search strategy for optimizing
OER. By incorporating a model-referenced adaptive control based on compact dynamic
linearization, the method is able to track the optimal OER in real time, thus improving the
output power of the PEMFCs in high altitude regions. Chen et al. [12] designed a regulation
method combining a particle swarm optimization feed-forward algorithm and a regimen
observation algorithm aimed at optimizing the voltage of the air compressor. The strategy
enhances the real-time power optimization capability of the PEMFCs and effectively adapts
to the effects present in high altitude regions.

The above research results show that logic judgement-based controls and pole-based
search strategies have achieved specific results in regards to PEMFCs’ air path control in
high altitude regions, but there are still some defects. A long calculation time is needed to
optimize the parameters, which affects the real-time performance of the system, unable
to respond to environmental changes in a timely manner, which may lead to a decline in
the system performance or even failures [13–15]. Sensitive to the initial parameter settings,
if the initial parameters are not properly selected, the algorithm may get stuck in a local
optimum, preventing the system from achieving the best performance and negatively
impacting the power output and efficiency of the PEMFCs [16].

In recent years, an increasing number of scholars have applied artificial intelligence
algorithms to PEMFCs’ air path control, but there is no precedent for intelligent control of
the air path in high altitude regions. Artificial intelligence algorithms with stronger adaptive
and intelligent features can more accurately capture the complex dynamic characteristics
of the PEMFCs and achieve fine adjustment of the air path control. Its high efficiency and
real-time performance enable faster responses to changes in high-altitude environments,
ensuring the smooth operation of the PEMFCs. The main innovations of this study include
the following:

(1) An intelligent control of PEMFC system’s AC and BPV based on A3C is proposed
to solve the drawbacks of the weak generalization ability of AI algorithms under high
altitude conditions by using A3C parallelized training and the efficient use of multi-core
CPUs to achieve the smooth operation of the PEMFCs.

(2) In high altitude regions, the focus is on enhancing the efficiency of PEMFCs. This
paper also considers the potential for improving the dynamic response of PEMFCs.

The rest of the paper is comprised of the following: Section 2 introduces an intelligent
control strategy for PEMFC system’s AC and BPV using the A3C algorithm and analyzes
the training results. Section 3 provides a comparative analysis of the control outcomes,
while Section 4 presents the main conclusions.

2. Methods
2.1. Intelligent Control Framework

Reinforcement learning adjusts the control in real time by interacting with the envi-
ronment and learning optimal decision paths [17–19]. In this study, an intelligent control
strategy for PEMFC system’s AC and BPV based on the A3C algorithm is proposed, as
shown in Figure 1. The A3C algorithm, leveraging its parallel computing capability, trains
multiple agents asynchronously to accelerate learning, maintain policy diversity, and
optimize control behavior. By progressively refining its policy, the intelligent body pro-
vides optimal control instructions for the PEMFC system, ensuring robust handling of
high-dimensional tasks [20–23].
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Figure 1. Intelligent control of PEMFCs AC and BPV based on A3C.

2.1.1. Intelligent Body

The key to the A3C algorithm is the dominance function A (st, at), which is used
to measure the advantages and disadvantages of the current action relative to the other
actions, helping the intelligent body to better choose the action in the learning process [24].
Its expression is as follows:

A(st, at) =
n−1

∑
i=0

γiRt + γnV(st+n; θv)−V(sn; θv) (1)

where Rt denotes the immediate reward; γ denotes the discount factor; γ ∈ [0, 1] is used to
assess the significance of future rewards within the total reward. When n = 1, it denotes
the single-step reward dominance function, in which the function focuses more on the
next reward and favors short-term gains; when n = k, it is a multi-step reward dominance
function, in which more emphasis is placed on long-term cumulative rewards [25,26].

The loss function expression for the algorithm’s strategy network is as follows:

Lπ(θπ) = ∇θπ
ln π(at|st; θπ)A(st, at) (2)

The value network loss function of this algorithm can be expressed as follows:

Lv(θv) =
a(R−V(st, θv))

2

aθv
(3)

where R denotes the reward outcome in the current state; V(st, θv) refers to the value
function in that state.
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In the A3C algorithm, multiple threads run in parallel, with each agent following
the same algorithmic structure and interacting independently with the environment. The
agents retrieve parameters from the global network and update their own networks. Once a
terminal state is reached or the iteration limit is exceeded, the agents transmit their updated
parameters back to the global network [27,28].

In order to prevent the algorithm from falling into local optimal solutions, the A3C
algorithm introduces a policy cross-entropy term in the loss function. This mechanism
allows the algorithm to explore the policy space more comprehensively, which enhances
the search for globally optimal solutions.

Lπ(θπ) = ∇θπ
ln π(at|st; θπ)(Q(s, t)−V(st, θv)) + β∇θ′π H(π(st, θπ)) (4)

where H(π(st, θπ)) denotes the strategy cross-entropy, and β denotes the entropy coefficient
of the control entropy regularization strength.

The actor network uses a gradient ascent method of the dominance function to update
the parameter θπ . The dominance function is used to assess the degree of dominance an
action has over the average. By updating the parameters of the actor network along the
positive gradient direction of the dominance function, the aim is to increase the value of
the dominance function and thus enhance the performance of the strategy [29].

θπ ← θπ + κ∑
n
∇θπ

log π(an|sn; θπ)A(st, at) + φH(π(an|sn; θπ)) (5)

where κ denotes the actor network update step.
The critic network uses the temporal difference (TD)-based gradient descent method [30]

to update the parameter θv. The parameters of the critic network are tuned towards the
negative gradient of the TD error, gradually allowing the error to be reduced in the process.
In this way, the accuracy of the estimation of the dominance function can be improved, and
the optimal solution can be slowly approached.

θv ← θv − ξ∑
n
∇θv

(
Rn + γγVπ(θπ)(sn+1; θv)−Vπ(θπ)

γ (sn; θv)
)

(6)

where ξ denotes the update step of the critic network; Rn + γγVπ(θπ)(sn+1; θv) −
Vγ

π(θπ)(sn; θv) denotes the TD error.
To scale the A3C algorithm for the real and sub-systems of the PEMFC stack, en-

tropy regularization was employed to balance exploration and exploitation. By penaliz-
ing overly deterministic policies, entropy loss encourages the algorithm to explore more
diverse actions, which is crucial for handling the dynamic and nonlinear behavior of
PEMFC sub-systems. Additionally, the policy loss was optimized by minimizing the
advantage-weighted log probabilities of the actions, ensuring that the algorithm effectively
prioritizes high-reward actions while adapting to real-world uncertainties. This combi-
nation of entropy and policy loss adjustments allowed the A3C algorithm to improve its
convergence speed, maintain policy stability, and adapt to the specific requirements of
PEMFC subsystems.

2.1.2. State and Action Space

In a PEMFC system, the initial stage is the reception of load commands. The system
regulates the air path in accordance with the aforementioned commands, thereby ensuring
that the requisite air mass flow and pressure are provided to the stack for the generation of
the optimal power. The state quantity, designated as st, is expressed as follows:

st =
{

Pact, Preal , Wsm, Wcp, psm, pcp
}

(7)
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where Pact denotes the demanded power of the PEMFC, Preal denotes the actual power of
the PEMFC, Wsm represents the air mass flow of the inlet pipe, Wcp represents the inlet air
mass flow of the air compressor, psm denotes the inlet pipe pressure, and pcp denotes the
inlet pressure of the air compressor.

The action at is described as a two-dimensional vector, as follows:

at =
{

ωcp, φBPV
}

(8)

where ωcp denotes air compressor speed; φBPV denotes back pressure valve opening.

2.1.3. Bonus Function Setting

The reward function is of paramount importance in reinforcement learning, as it
directly influences the efficacy of the training process and the ultimate performance of the
model. The reward function R is as follows:

R = −
{

χ(Pact(t)− preal(t))
2 + δ(1− η)2 − εMt

}
(9)

where χ, δ, and ε are the weighting coefficients; η is the efficiency of the PEMFC; Mt is
the penalty term, which is Mt = 1 when the peroxide ratio is 0.5 < λO2 < 1, Mt = 2 when
λO2 < 0.5, and Mt = 0 otherwise.

2.2. Training Result Analysis

In this paper, the high altitude portion of the southern section of the G318 Sichuan–
Tibet Highway is selected to generate 300 s of driving conditions as the pre-training data
for the A3C algorithm. This driving condition covers a variety of actual driving situations
to ensure that the A3C algorithms are effectively trained in diverse processes. The relevant
training parameter settings are shown in Table 1.

Table 1. Table of training parameter settings.

Parametric Numerical Value

Network optimizer Adam
Learning rate 0.001

Experience pools 1,000,000
Discount factors 0.99

Actor network update step 0.01
Critic network update step 0.001

The A3C algorithm was implemented using Python (Matlab 2022b) on a workstation
with an Intel Core i7-10750H CPU, 64 GB DDR4 RAM, and an NVIDIA GeForce GTX 1660 Ti
GPU (Lenovo Rescuer, Beijing, China). Training for 1000 episodes took approximately
48 h. The asynchronous parallel mechanism of A3C enhanced computational efficiency by
reducing the load compared to that of traditional single-threaded reinforcement learning
algorithms, effectively handling high-dimensional tasks. Figure 2 illustrates the average
cumulative reward trend during training. Initially, in the first 400 rounds, large fluctuations
occur as the algorithm explores. After 400 rounds, the fluctuations decrease, and the average
reward stabilizes after the 600th round, indicating that the A3C algorithm’s parameter
settings and network structure are well-suited to support the learning process.
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3. Results and Discussion
This paper selects the G318 Sichuan–Tibet Highway, including the Chengdu–Ya’an,

Kangding–Keduo Pass, and Ranwu–Bomi sections as the test conditions, as shown in
Figure 3. The environmental conditions in this section are diverse and challenging, making
them very suitable for evaluating the PEMFC system at high altitudes and under dynamic
workloads. Table 2 provides a comparison of the air pressure, oxygen partial pressure, and
altitude of these areas.
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Table 2. Altitude, air pressure, and oxygen partial pressure of three locations.

Region Altitude (m) Air Pressure (kPa) Oxygen Partial
Pressure (kPa)

Chengdu–Yaan 500–700 86–92 18–19
Kangding–Keduo Pass 2500–4300 62–79 13–16

Ranwu–Bomi 3850–2700 64–73 13–15

In test condition 1, which comprises a gradually ascending road segment from
Chengdu to Yaan at an altitude of 500–700 m, the velocity of the PEMFC vehicle exhibits
minimal fluctuations. For the majority of the time, it is in a medium-high speed operational
state, with a relatively stable demand for power. However, towards the latter portion of the
condition, there is a notable instance of high power operation. In test condition 2, which
comprises the section of the route between Kangding and Xuedo Pass at altitudes ranging
from 2500 to 4300 m, the speed of the PEMFC vehicle is maintained at approximately 40 km
per hour. Furthermore, the power demand of the PEMFC system continues to increase,
and the vehicle operates under a full load for an extended period. Test condition 3 is the
Ranwu–Bomi section, with an altitude of 3850 m–2700 m above sea level. The speed of the
PEMFC vehicle exhibits significant fluctuations, resulting in a rapid change in the fuel cell’s
demanded power. Consequently, the PEMFC system operates in a state of a continuous
variable load.

In accordance with test condition 1, the status of the air compressor and the back
pressure valve, in addition to the dynamic response and efficiency of the PEMFC system
under A3C-based control, are obtained and compared with those under logic judgement-
based control. As illustrated in Figure 4, the A3C-based control exhibits a high degree of
correlation between the PEMFC system’s power demand and the actual power, thereby
effectively maintaining the stable operation of the PEMFC system. As can be observed in
the enlarged figure, an increase in altitude results in the logic judgement-based control
exhibiting a tendency to overshoot in terms of both the air compressor speed and the
back pressure valve opening. In contrast, the A3C-based control is capable of generating
commands for the air compressor speed and the back pressure valve opening in a relatively
prompt manner, thereby facilitating a smooth and steady-state transition. Additionally,
the air compressor power also increases rapidly, which ultimately leads to a reduction
in the PEMFC system’s electrical efficiency. As the elevation is increased from 560 m to
600 m, the logic judgement-based control requires 1.3 s to reach a steady state, at which
point the electrical efficiency of the PEMFC ssytem is 80.3%. In contrast, the A3C-based
control reaches a steady state in a mere 0.8 s, with the electrical efficiency increasing to
83.8%. By comparing the two control methods, it can be observed that the A3C-based
control significantly improves the dynamic response by 38.4%; in addition, its electrical
efficiency is improved by 4.3%.

Logic judgement-based control relies on pre-defined rules and models, which are less
adaptable and less likely to cope with complex and dynamically changing high altitude
regions. Comparatively, the A3C algorithm is able to dynamically adjust the control
parameters by learning and optimizing the strategy to better adapt to load changes.

Figure 5 illustrates the comparative analysis of the impact of the A3C-based control
and the logic judgement-based control on the state of the air compressor and the back
pressure valve, the dynamic response of the PEMFC system, and the system efficiency
under test condition 2. With the A3C-based control, there is a gradual decrease in the fit
between the demanded power and the actual power of the PEMFC system with increasing
altitude. As the altitude increases rapidly, the logic judgement-based control results in
a gradual increase in the volatility of the air compressor speed, the back pressure valve
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opening and the PEMFC system’s electrical efficiency, which in turn causes instability. In
contrast, the A3C-based control is capable of effectively achieving a smooth transition. In
particular, the logic judgement-based control requires 1.5 s to reach a steady state when
the elevation is rapidly increased from 2600 m to 2840 m. During this period, the electrical
efficiency of the PEMFC is 73.8%. In contrast, the A3C-based control requires only 0.9 s
to achieve a steady state, with the electrical efficiency of the PEMFC system increasing
to 78.1% under these conditions. A comparison of the two control methods reveals that
the A3C-based control significantly enhances the dynamic response by 40%, while also
improving its electrical efficiency by 5.8%.
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Logic judgement-based control fails to consider the holistic nature of the system and
the local optimal solution problem, while the A3C algorithm achieves effective decision
making through global optimization. Therefore, the A3C algorithm is able to significantly
improve the control effect through effective exploration and utilization in high altitude
regions, thus becoming a better choice.

Figure 6 presents a comparative analysis of the A3C-based control and the logic
judgement-based control in terms of the states of the air compressor and back pressure
valve, the dynamic response of the PEMFC system, and the system efficiency under test
condition 3. It is evident that the two control methods exhibit disparate performance in
various indices, with the A3C-based control exhibiting a pronounced superiority over the
logic judgement-based control in terms of dynamic response speed and system efficiency.
As the altitude decreases rapidly, the fluctuations in compressor speed, back pressure valve
opening, and PEMFC system electrical efficiency under logic judgement-based control
become smaller; however, the control effect remains inferior to that of the A3C-based
control. During the rapid elevation increase from 3800 m to 3650 m, it takes 1.6 s for the
logic judgement-based control to reach the steady state, during which time the electrical
efficiency of the PEMFC system is 69.7%. In contrast, the A3C-based control reaches a
steady state in a mere 0.9 s, with the electrical efficiency of the PEMFC system increasing
to 73.3%. A comparison of the two control methods reveals that the A3C-based control
significantly enhances the dynamic response by 43.7%, while also improving its electrical
efficiency by 5.1%.
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The A3C algorithm is capable of autonomously learning and optimizing the control
using a substantial quantity of training data, employing multiple threads for parallel
updating, which enables the model to converge rapidly and enhances its generalization
capacity. In the error analysis, normalization was applied to standardize the data for more
consistent evaluation. From the error values of the two control methods, the performance
of the PEMFC A3C-based control is more stable with increasing altitude compared to the
logic judgment-based control. These findings suggest that the A3C-based control exhibits
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superior performance in terms of dynamic response and efficiency when compared to the
logic judgment-based control.

However, driver variability was not explicitly considered in the current tests, as the re-
search focused on evaluating the PEMFC system’s performance under controlled conditions
to minimize external influences. Future studies will incorporate different driving patterns
to simulate real-world variability and further validate the robustness of the proposed
control strategy.

4. Conclusions
In order to achieve the smooth operation of PEMFC vehicles in high altitude regions,

this paper constructs an intelligent control of PEMFC AC and BPV, based on A3C. The
specific research conclusions are as follows:

(1) As the altitude increased, the air mass flow and pressure could be increased to
maintain smooth PEMFC operation by increasing the air compressor speed and decreasing
the back pressure valve opening. The rapid increase in altitude from 2600 to 2840 m
resulted in an increase in compressor power of 5.8 kw, with a corresponding 40% increase
in dynamic response, but a 6.9% decrease in electrical efficiency.

(2) In this paper, an intelligent control of PEMFC AC and BPV based on A3C is
proposed. The method enables the PEMFC system to reach a stable output quickly in
high altitude regions. Under three high-altitude test conditions, the A3C-based control
reaches a steady state within a maximum of 0.9 s and improves the electrical efficiency up to
78.1%. The A3C-based control significantly improves the dynamic response by 40% and the
electrical efficiency by 5.8% compared to the results for the logic judgement-based control.
These results show that the proposed optimization strategy offers obvious advantages in
significantly improving the operational performance of the PEMFC system.
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Glossary

st immediate state
at immediate action
Rt immediate reward
γ reward weight
θπ actor network parameters
θv critic network parameters
β entropy coefficient
κ the actor network update step
ξ the critic network update step



Eng 2025, 6, 19 11 of 12

A(st,at) advantage function
π(at|st; θπ) current strategy
V(st, θv) the value function in that state
H(π(st, θπ)) the strategy cross-entropy
Rn + γγVπ(θπ)(sn+1; θv)−Vγ

π(θπ)(sn; θv) the TD error
Pact the demanded power of the PEMFC system
Preal the actual power of the PEMFC system
Wsm the air mass flow of the inlet pipe
Wcp the inlet air mass flow of the air compressor
psm the inlet pipe pressure
pcp the inlet pressure of the air compressor
ωcp the air compressor speed
φBPV the back pressure valve opening
χ, δ, ε the weighting coefficients
η the efficiency of the PEMFC system
Mt the penalty term
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