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Abstract: Despite their significant environmental benefits, solar photovoltaic (PV) systems
are susceptible to malfunctions and performance degradation. This paper addresses de-
tecting and diagnosing faults from a dataset representing a 250 kW PV power plant with
three types of faults. A comprehensive dataset analysis is conducted to improve the dataset
quality and uncover intricate relationships between features and the target variable. By
introducing novel feature importance averaging techniques, a two-phase fault detection
and diagnosis framework employing tree-based models is proposed to identify faults
from normal cases and diagnose the fault type. An ensemble of six tree-based classifiers,
including decision trees, random forest, Stochastic Gradient Boosting, LightGBM, CatBoost,
and Extra Trees, is trained in both phases. The results show 100% accuracy in the first
phase, particularly with the Extra Trees classifier. In the second phase, Extra Trees, XGBoost,
LightGBM, and CatBoost achieve similar accuracy, with Extra Trees demonstrating supe-
rior training and convergence speed. This study then incorporates Explainable Artificial
Intelligence (XAI), utilizing LIME and SHAP analyzers to validate the research findings.
The results highlight the superiority of the proposed approach over others, solidifying
its position as an innovative and effective solution for fault detection and diagnosis in
PV systems.

Keywords: fault detection; fault diagnosis; binary classification; multi-class classification;
tree-based classifiers; feature importance; explainable Al

1. Introduction

Solar PV technology plays a crucial role in achieving a global low-carbon energy
system and progressing toward carbon neutrality. Over the past decade, advancements in
the PV industry have reduced the Levelized Cost of Electricity (LCoE) for PV energy by
85%, making it one of the most cost-effective sources of electricity worldwide. For instance,
in Saudi Arabia, the cost of PV-generated electricity reached as low as USD 0.0104 per kWh
in April 2021 [1]. The growing interest in renewable energy, particularly solar PV systems,
stems from the need to reduce the environmental impact and market dependence on fossil
fuels, which are both non-renewable and polluting [2]. In contrast, PV systems rely on solar
irradiance, providing a sustainable and long-lasting energy solution.

Like all industrial assets and power systems, solar PV systems are prone to faults
at various stages of operation. These faults, whether related to maximum power point
tracking, environmental conditions, or component malfunctions, can lead to power gen-
eration losses, supply disruptions, or even complete system shutdowns. A 2010 study
estimated that faults contribute to at least an 18.9% reduction in annual energy output
from PV systems [3]. Therefore, effective fault detection and diagnosis are essential to
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ensure reliable operation, especially in industries that rely heavily on PV systems for power
stability and safety.

Traditional fault detection methods in PV arrays, such as GFDI fuses, residual current
measurement, isolation resistance measurement, and reflectometry, require specialized do-
main knowledge. However, the rise of artificial intelligence, particularly machine learning,
has transformed fault detection and diagnosis in the energy sector. By utilizing data gener-
ated from system operations, machine learning models can provide deeper insights into
the behavior of energy systems, improving parameter estimation, anomaly detection, and
fault diagnosis in complex environments [4-8]. This emerging approach offers a powerful,
data-driven solution for identifying and addressing faults in PV systems.

This paper contributes to both sustainability goals and advancements in renewable
energy by improving fault detection and diagnosis in solar PV systems. By reducing the
environmental footprint of energy production and enhancing the efficiency of these systems,
this work supports the transition to cleaner energy sources. The main contributions of this
paper are as follows:

e  Innovative Framework: Introducing an innovative tree-based two-phase framework
for fault detection and diagnosis, achieving an unprecedented 100% accuracy.

e  Novel Feature Importance Technique: Developing a novel technique of feature impor-
tance averaging employing tree-based algorithms and demonstrating high reliability
and alignment with the final results.

e  Optimization of Data Dimensions: Proposing a distinctive technique for optimiz-
ing data dimensions and feature contributions through an incremental approach,
contributing to enhanced efficiency.

° Explainable Artificial Intelligence: Using two XAI techniques, ensuring high trans-
parency and establishing the validity of findings in fault detection and diagnosis.

The remainder of this paper is structured as follows. Section 2 discusses various PV
fault types and their impacts on the system’s performance. Section 3 presents a compre-
hensive literature review, examining the diverse landscape of machine learning models
within PV systems. In Section 4, the proposed framework is described, detailing its key
components and methodology. The results and discussions are introduced in Section 5,
which also presents a detailed analysis of the framework’s performance, providing valuable
insights. Finally, Section 6 concludes with a summary of key findings, contributions, and
directions for future research in the dynamic intersection of PV systems and machine
learning applications.

2. Photovoltaic Fault Types

A comprehensive understanding of PV systems requires a solid grasp of the various
fault types affecting their performance. By examining these fault types in detail, one
can better understand their potential impacts on PV module efficiency and reliability.
This knowledge underscores the importance of effective fault detection and diagnosis,
essential for maintaining optimal system operation. This section provides an overview of
the different fault types, laying the groundwork for later discussions on advanced detection
methodologies and innovative approaches within PV systems. PV system faults can occur
for a variety of reasons and can have a substantial impact on the system’s performance and
dependability. Below is an overview of the faults typically seen in PV systems:

e  Partial Shading: Partial shading occurs when specific portions of a PV module or array
receive less sunlight due to objects blocking sunlight, such as trees and buildings. As
a result, the power generation may become imbalanced, resulting in a lower overall
system performance [9].



Eng 2025, 6, 20

30f25

Hotspots: Hotspots are isolated areas of high temperature in PV modules. Cell abnor-
malities, non-uniform soiling, or shadowing can cause them. If not treated, hotspots
can cause cell degradation, lower module efficiency, and can lead to permanent
damage [10].

Cell Cracks: Mechanical stress, temperature variations, and external factors can all
cause cracks in PV cells. Cell cracks lower the electrical output of the affected cells
and can spread over time, affecting the module or array’s overall performance [10].
Degradation and Aging: PV modules are subject to gradual degradation and aging
over time. Factors such as exposure to sunlight, temperature variations, and envi-
ronmental conditions can decrease module efficiency and power output. Common
degradation mechanisms include light-induced degradation (LID), potential-induced
degradation (PID), and moisture ingress [11,12].

Open and Short Circuits: Open circuits arise when an electrical route is broken,
blocking current flow. Short circuits, on the other hand, occur when two points are
unintentionally connected, resulting in excessive current flow. Open and short circuits
can cause power outages in the affected areas of the PV system [13].

Among the different faults, the following three are considered catastrophic for PV

systems according to [14]:

Ground Faults: Ground faults occur when an unintentional electrical connection is
made between the PV system and the ground. This can lead to safety risks, inefficien-
cies in the system, and potential damage to the PV equipment.

Line-to-Line Faults: Line-to-line faults in PV systems are electrical faults that occur
when two conductors in the system are directly shorted. These faults often include
a direct connection between two of the three phases of the PV system’s alternating
current output, known as a three-phase fault.

Arc Faults: PV arc faults refer to electrical arcs in PV systems. An electrical arc
is a high-energy discharge of electricity that flows through the air or across a gap
between conductive materials. In PV systems, arc faults can arise from various
causes, including insulation breakdown, loose connections, damaged wiring, or
component failures.

Table 1 lists different types of PV faults and gives their descriptions.

Table 1. Types of PV system faults.

Fault Type

Description

Variation in Irradiance

Fluctuations in sunlight intensity throughout the day

Soiling

Accumulation of bird droppings and dirt on the surface of PV modules

Environmental Effects (Snow Covering and Hotspots)

Extreme temperature variations based on geographical location and
weather conditions

Earth Fault (Upper Ground Fault)

Unintended grounding with zero fault impedance between the last two
modules in a PV string

Earth Fault (Lower Ground Fault)

Unintended grounding with zero fault impedance between the second and
third modules in a PV string, often associated with high back-feed current

Arc Faults (Series and Parallel)

Arcing caused by disruptions in current-carrying conductors due to solder
disjunction, cell damage, connector corrosion, rodent interference, or abrasion

Bypass Diode Faults Short circuits resulting from incorrect diode connections
Sy Low-resistance connections between points of different potential within a
Bridging Faults . .
string of modules or cabling
Maximum Power Point Tracking (MPPT) Faults Malfunctions in MPPT charge controllers

Cabling Faults

Issues related to cable connections
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The dataset used in this work includes the following three faults: string faults, string-
to-ground faults, and string-to-string faults. More details are given in Section 4.2.

3. Machine Learning Models in Photovoltaic Systems

Machine learning has become a crucial tool in solar PV systems, with applications
spanning fault detection and diagnosis, performance optimization, and predictive mainte-
nance. A summary of the most widely used machine learning algorithms in the literature
for fault detection and diagnosis is provided in Figure 1. By analyzing historical data,
weather patterns, and system parameters, machine learning algorithms can also predict
optimal operating conditions, thereby maximizing energy output. Another essential appli-
cation of machine learning in PV systems is predictive maintenance. By evaluating sensor
data and historical performance records, machine learning algorithms can forecast potential
equipment failures, enabling predictive maintenance actions. This predictive capability
reduces system downtime and enhances the overall reliability and lifespan of PV compo-
nents. Indeed, integrating machine learning into PV systems enhances the sustainability
and efficiency of solar energy by enabling intelligent, data-driven solutions. A summary of
ML applications in PV systems is presented in Table 2.

e Elastic Net Regression (ENR)
p—— Support Vector Machine (SVM)

e Decision Tree (DTR_C)

Random Forest (RF)

p X GBoo0st (XGB)

e LightGBM (LGBM)
Non Deep Learning s
= CatBoost (CB)

Logistic Regression (LogR)

Naive Bayes (NB)

p |inear Discriminant Analysis (LDA)

Quadratic Discriminant Analysis (QDA)

Classification Models
e Extra Trees

Convolutional Neural Networks (CNNs)

Recurrent Neural Networks (RNNs)

Long Short-Term Memory (LSTM)
p— Transformers

= (Gated Recurrent Unit (GRU)

Deep Learning

Deep Belief Networks (DBNs)

Capsule Networks

Deep Residual Networks (ResNet)

DenseNet

e Autoencoders

Figure 1. Machine learning models.
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Table 2. Applications of machine learning in PV systems.

Domain of Use Reference Description

ML models examine historical data, weather conditions, and other
Performance Prediction [15] pertinent aspects to predict the electricity production of PV systems.
They aid in energy forecasting, system planning, and grid integration.

By evaluating real-time data from sensors, monitoring devices, and
historical records, ML algorithms detect and diagnose defects in PV
systems. They detect irregularities, allowing for timely repair and
reducing downtime.

Fault Detection and Diagnosis [16]

ML techniques optimize energy production by considering weather
conditions, load demand, and grid requirements. They dynamically
adjust the system parameters to maximize energy capture and
improve the system’s overall efficiency.

Energy Optimization [17]

ML algorithms examine sensor data and weather patterns to identify
the accumulation of dust, dirt, or other debris in PV modules. They
recommend appropriate cleaning schedules and tactics to keep
system performance high.

Soiling Detection and Cleaning Strategies [18]

ML forecasts the degradation of PV modules over time. ML models
estimate the remaining usable life of modules by assessing previous
performance data, environmental variables, and material qualities,
assisting in asset management and maintenance planning.

Lifetime Assessment and Degradation Modeling [19]

ML algorithms forecast energy demand by analyzing historical load
data and external factors (e.g., weather, time of day). This information
helps grid operators and utilities manage energy supply and demand,
allowing the optimal integration of PV systems into the grid.

Load Forecasting and Demand Response [20]

In PV systems, ML approaches enable data-driven decision-making.
ML models may detect trends, correlations, and improvement

Data Analytics and Decision Support [21] possibilities by processing and analyzing massive amounts of data,
making system monitoring, performance evaluation, and
maintenance scheduling easier.

3.1. Tree-Based Models

The tree-based algorithms in this work, namely, decision trees, random forest, Stochas-
tic Gradient Boosting, LightGBM, CatBoost, and Extra Trees, have shown remarkable
effectiveness in detecting and diagnosing faults in various applications. These algorithms
are based on decision trees (illustrated in Algorithm 1) as their core component and offer
high accuracy in identifying and classifying faults, as demonstrated in this study.

Algorithm 1 Decision tree algorithm

1: procedure DECISIONTRESS(Instances, Target_feature, Features)

2: if all instances at the current node belong to the same category then
3: Create a leaf node of the corresponding class

4: else

5: Find the feature A that maximizes the goodness measure

6: Make A the decision feature for the current node

7: for each possible value v of A do

8: Add a new branch below node testing for A = v

9: Instances, < subset of Instances with A = v

10: if Instances, is empty then

11: Add a leaf with the most common value of Target_feature in Instances
12: else

13: Below the new branch, add a subtree

14: DECISIONTRESS( Instances,, Target_feature, Features — {A})
15: end if

16: end for

17: end if

18:  end procedure
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A detailed overview of these models is presented below.

e  Decision Trees: Decision trees provide a tree-like model of decisions and their po-
tential outcomes. They divide the data into several classes based on different at-
tributes and features. Decision trees can handle both category and numerical data
and are interpretable.

¢  Random Forest: Random forest is an ensemble learning technique that makes predic-
tions by combining numerous decision trees. It generates a set of decision trees and
aggregates their outputs to obtain a final forecast. Random forests are well known for
their robustness and capacity to handle large amounts of data.

e  Extra Trees: Like random forest, the Extra Trees classifier builds multiple decision
trees but introduces additional randomness during node splitting, leading to a more
diverse ensemble.

e  XGBoost (Extreme Gradient Boosting): XGBoost is a gradient boosting framework
optimized to solve machine learning issues quickly and accurately. It employs a
scalable and adaptable tree-boosting approach. XGBoost is a popular choice for data
scientists and practitioners due to its sophisticated features, such as regularization,
parallelization, and handling of missing inputs. It can handle classification and
regression tasks and is widely used in competitions and real-world applications.

o  LightGBM (Light Gradient Boosting Machine): LightGBM is an efficient and scalable
gradient boosting system. It employs a unique technique known as Gradient-based
One-Side Sampling (GOSS) to accelerate training while consuming less memory and
retaining good prediction accuracy. LightGBM is well known for its quick training
speed and ability to handle big datasets. It can handle various tasks, such as binary
classification, multi-class classification, and regression. LightGBM also includes
sophisticated features, including categorical feature support, parallel learning, and
customized loss algorithms.

e  CatBoost: It is a gradient boosting system that focuses on adequately managing
categorical features. It employs cutting-edge approaches such as Ordered Boosting,
which optimizes the learning process by considering the natural ordering of categories.
CatBoost automatically handles category features by translating them into numerical
representations, removing the need for manual feature engineering. It contains built-
in capabilities, such as effective handling of missing values and the ability to train on
GPU, and gives excellent accuracy on a wide range of tasks. CatBoost is user-friendly
and integrates well with common programming languages.

3.2. Evaluation Metrics

Classification is a fundamental activity in machine learning and data analysis, which
categorizes or classifies incoming data examples such as this case. It involves creating
models to learn from labeled training data and predict new unlabeled data. Classification
metrics are used to assess the effectiveness and performance of classification models.
These metrics provide quantifiable measures of the model’s predictions, such as accuracy,
precision, recall, etc. Insights into the model’s strengths and limitations can be obtained
by studying these indicators and making informed decisions about its performance. The
classification problem’s specific goals and constraints determine the metrics used. Different
metrics highlight certain aspects of the model’s performance and may be more meaningful
in particular scenarios. Table 3 shows the metrics used in this paper.
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Table 3. Metrics and formulas.

Metric

Description

Formula

False Positive

False positive rate measures the proportion of actual
negatives incorrectly identified as positive

False Positives
False Positives + True Negatives

False negative rate measures the proportion of actual

False Negative - ° ; e ' Falge Negatives
& positives incorrectly identified as negative False Negatives + True Positives
Accurac Measures the overall correctness of the True Positives + True Negatives
y model’s predictions True Positives + True Negatives + False Positives + False Negatives
Precision Measures the proportion of true positives among all True Positives
positive predictions True Positives + False Positives
Recall Measures the proportion of true positives identified True Positives A
correctly among all actual positives True Positives + False Negatives
F1 Score Combines precision and recall into a single metric, thus 2 » Drecision x Recall

balancing both measures Precision + Recall

3.3. Related Work on Fault Detection and Diagnosis in PV Systems

Researchers have investigated machine learning and deep learning approaches for
fault detection in PV systems over the years. These methods use the power of data-driven
algorithms to evaluate the complex patterns and correlations found in the data from the
PV system, allowing for the diagnosis of faults and irregularities that may affect the per-
formance and dependability of the system. In [22], an SVM-based model was developed
to detect three types of faults: short circuit, open circuit, and lack of irradiation. An opti-
mization procedure was performed to achieve a test accuracy of 97% and a generalization
ability superior to prior methods. In [23], and using a MATLAB Simulink dataset, the
random forest, Ada-Boost, CN2, logistic regression, and naive Bayes algorithms were built
for fault identification in PV farms. In total, 30 features were employed, including plant
current, distributed current measurements, temperature, and radiation. The Ada-Boost
classifier performed the best with a precision of 0.95. In [24], a newly developed fault
detection framework—based on deep residual models and a deep learning algorithm that
adapts moment estimates—was used to extract features from essential parameters such as
temperature and current voltage and improve performance with a deeper network. The
model was tested using Simulink MATLAB simulation data from a PV farm, and it gave
improved results in terms of precision, dependability, generalization, and training effi-
ciency. In [25], autonomous feature extraction was developed for LSTM and BiLSTM DNN
and used for fault classification in PV systems. The suggested framework demonstrated
excellent performance in applying to a grid-connected PV system, achieving 100% in fault
classification for the BILSTM. In [26], deep belief networks and genetic algorithms were
coupled to address the fault diagnosis problem, and the new method was compared to
the classical DBN, SVM, and back-propagating network with GA, demonstrating a high
degree of generalization and recognition of PV array faults. In [27], an ML structure for
fault detection and diagnosis was proposed to address multiple fault types such as arc
faults, line-to-line faults, maximum power point tracking unit failure, and open-circuit
faults. Cubic SVM and GRB kernels performed the best in terms of accuracy. In [28], a
probabilistic neural network was used to detect faults in the DC portion of the PV array.
Four operational scenarios were examined in a 9.54 kWp grid-connected PV system: a
healthy system, three modules short-circuited in one string, ten modules short-circuited
in one string, and a string unplugged from the array in a healthy system. The proposed
method was highly effective in detecting DC-side anomalies.
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4. Proposed Framework

The proposed framework for this application starts with the refinement of the dataset,
which involves eliminating redundant samples and transforming categorical features,
encompassing fault types and normal cases. The framework proceeds with various ex-
ploratory data analysis and preprocessing stages to attain the optimal dataset. This refined
dataset is then fed into the first-phase tree-based classifier, segregating faulty samples from
normal ones. The identified faulty samples proceed to the second phase for fault diagnosis,
classifying them into one of the three existing fault types (F1, F2, or F3). The models are
then examined for performance and convergence time. A post-processing step follows,
focusing on feature number reduction based on optimal results and explainability. Figure 2
illustrates the proposed framework.
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Figure 2. The proposed two-phase framework.

4.1. Simulink Model

Figure 3 represents a 250 kW grid-connected PV power system developed in MAT-
LAB/Simulink (Version R2018a). The system integrates a PV array comprising 88 parallel
strings, each containing seven series-connected modules (SunPower SPR-415E-WHT-D).
Each module consists of 128 cells with a maximum power of 414.801 W, an open-circuit volt-
age of 85.3 V, a short-circuit current of 6.09 A, and an operating voltage of 72.9 V at 5.69 A.
The PV system is connected to the grid through a three-level IGBT inverter operating under
PWM control and implementing maximum power point tracking using the perturb and
observe method. The power from the PV array is stepped up by a three-phase 0.25/250 kV
transformer to interconnect with the grid. The model features two transmission lines: a
14 km feeder leading to a 120 kV power equivalent grid and an 8 km feeder supplying a
static load. The model includes detailed measurements, filtering, and control to simulate
dynamic grid-tied operations under varying environmental conditions, ensuring efficient
energy transfer and grid stability.
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Eng 2025, 6, 20 10 of 25

4.2. Dataset Description

The simulated faults represent string faults in string 1 (F1), string-to-ground faults
in string 1 (F2), and string-to-string faults between strings 1 and 2 (F3), as illustrated in
Figure 4. Table 4 provides the normal and faulty cases in both training and testing datasets,
whereas Table 5 provides the list of features and their descriptions in the dataset. As
can be seen from Table 5, these features represent the electric current average, maximum,
minimum, and variance from the affected strings, namely, strings 1, 2, and 3, where each
string is equipped with two ammeters to measure the current at its top and bottom during
the simulation, as can be seen from Figure 3. In addition, the total average DC power, total
current, total average DC voltage, solar irradiance, and temperature are also included as
features. Currents, voltages, and power are used for fault detection and diagnosis in PV
systems since deviations from standard I-V and P-V curves indicate anomalies such as
shading, open circuits, or short circuits. As for environmental features, solar irradiance
normalizes electrical performance and allows fault detection by comparing expected against
observed output, while ambient temperature impacts performance and helps differentiate
between environmental effects and actual faults.
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&
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% - + A Bypass Diode
& Sl
‘2\0
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& °
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Figure 4. String (F1), string-to-ground (F2), and string-to-string (F3) faults.
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Table 4. Dataset of normal and faulty cases.
Dataset Case Number of Samples
Normal 100
- F1 153
Training Data o 149
F3 198
Normal 25
. F1 25
Testing Data m 25
F3 25
Total - 700

Table 5. The dataset features and their description.

Feature Description

In Average of the current at the top of string 1

12 Average of the current at the bottom of string 1
T max Maximum of the current at the top of string 1
Iin Minimum of the current at the top of string 1
ITyar Variance of the current at the top of string 1

12 max Maximum of the current at the bottom of string 1
12 min Minimum of the current at the bottom of string 1
12yar Variance of the current at the bottom of string 1
13 Average of the current at the top of string 2

14 Average of the current at the bottom of string 2
IBmax Maximum of the current at the top of string 2
1Bmin Minimum of the current at the top of string 2
IByar Variance of the current at the top of string 2
T4max Maximum of the current at the bottom of string 2
141min Minimum of the current at the bottom of string 2
I5 Average of the current at the top of string 3

16 Average of the current at the bottom of string 3
Tiotan Average of the total current of the PV power plant
Ltotalmax1 Maximum of the total current

Tiotalmin1 Minimum of the total current

Vdemeant Average of the total DC voltage

Vdemaxt Maximum of the total DC voltage

V demint Minimum of the total DC voltage

Pdcmeant Average of the total DC Power

IR Solar irradiance ranging from 100 to 1000 W/m?
T Temperature ranging from 10 to 35 °C

Rangel I max—11min

Range2 12max—12min

Range3 n-12

Range4 13-14

Clas% Normal: 0, F1: 1, F2: 2, F3: 3

4.3. Data Preprocessing

Data preprocessing refers to the actions and techniques performed on raw data before
they are fed into a machine learning model. It entails converting, cleansing, and organizing
data so that it may be analyzed and modeled. Preprocessing is critical to the success of a
machine learning project. In the following lines, the preprocessing steps are formulated in
the form of inquiries to be answered:

e  How well are the dataset classes balanced? The initial analysis focused on assessing
the balance within the dataset, primarily addressing the two key phases of the system.
The first phase involves the fault detection system with two classes (No-Fault and
Fault), while the second phase, dedicated to fault diagnosis, encompasses three
classes (F1, F2, and F3). Maintaining balance among these classes is crucial for specific
machine learning models to overcome biases towards the more prevalent class. In this
study, the primary classifiers employed were tree-based. Initially, the dataset was not
balanced, but a decision was made to consider balancing as a post-processing option
if the results proved insufficiently accurate. This approach explored the possibility
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of improving the outcomes through balancing measures. It can be seen in Figure 5
that the classes within the first detection system exhibit an imbalance, with a higher
prevalence of faulty samples. Conversely, the second phase is characterized by a
balanced distribution among the three fault types, with a slight prevalence of 7% for
F3. This balanced distribution in the second phase contributes to a more uniform
consideration of the different types of faults during diagnosis.

What are the key features influencing the models? An averaging technique based
on the average importance of the tree-based classifier was used to identify the most
impactful features in the model’s decisions. Figure 6 presents the findings of this study
using the average feature importance technique for both the first-phase fault detection
system and the second-phase fault diagnosis system, as well as a combined analysis
of both systems in a naive solution. Regardless of the system under consideration,
the features range 4, range 3, range 2, Vacminl, I3var, IR, I1yar, and T consistently
emerge as the most influential. Notably, one of the range i features is slightly superior
in each phase. These consistent observations across all phases suggest a potential
hidden pattern within these series, potentially linked to faults. Consequently, based
on the results obtained through this technique, the dataset was refined to include the
top eight most influential features. These selected features are the starting point for
feeding the dataset into the classifiers, aiming to optimize the model’s performance
by focusing on the most significant contributors to decision-making.

Are there any outliers? Analyzing and handling outliers is a pivotal step in the
complete preprocessing pipeline. Outliers, defined as values outside the range of
a given series, can considerably influence a model. These values can potentially
degrade the model’s performance if not handled correctly. Interestingly, in certain
cases, outliers can provide valuable insights, aiding in identifying hidden anomalies
associated with existing fault types. The outlier analysis, illustrated in Figure 7,
indicates the potential presence of points aligning with this perspective. Nevertheless,
on the whole, the series appears to be predominantly clean, suggesting that outliers,
while possible, may not be pervasive throughout the dataset.

What are the possible existing correlations? Both the full and the fault datasets un-
derwent a correlation analysis of the selected eight features. Mutual correlations
exceeding 90% were systematically eliminated, indicating analogous behavior be-
tween the series. The results of this analysis are presented in Figure 8, where the
series class is the target. Notably, no substantial mutual correlations were detected,
with the upper threshold set at 72% in the full dataset and 71% in the fault dataset.
Furthermore, the feature exhibiting the highest correlation with the target in both
datasets is range 4, with percentages of 36% and 38% for the full dataset and the fault
dataset, respectively.
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Figure 5. Pie charts of the (a) faulty and normal cases and (b) fault types.
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Average Feature Importance from Tree-Based Models
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Figure 6. Averaging feature importance results: (a) fault detection phase, (b) fault diagnosis phase,
and (c) naive solution.
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Figure 7. Outlier detection using boxplot.
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Figure 8. Correlation analysis: (a) full dataset and (b) fault dataset.

5. Results and Discussion

After completing the preprocessing steps, the dataset consisted of 700 rows and
8 columns. It was then split into training and testing sets, with 80% allocated for training
and 20% for testing. The six machine learning tree-based classifiers (decision trees, random
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forest, Extra Trees, XGBoost, CatBoost, and LightGBM) were trained using Google Colab,
a free platform for Python 3.10code development, machine learning, and data analysis
provided by Google. The results of the experiments are categorized as follows:

° Fault detection results;

e  Fault diagnosis results;

o  Comparison with previous works;
o  eXplainability through XAIL

5.1. Binary Classification Results

The clean data were fed into the first classification stage (binary classification), which
included six classifiers. This first stage enabled determining a superior classifier, which can
be further improved using hyperparameter tuning or optimizing the number of features.
The results of the binary classification, as showcased in Table 6, demonstrate the remarkable
effectiveness of the Extra Trees classifier in distinguishing between faulty and normal sam-
ples, surpassing both the random forest and XGBoost classifiers. The outstanding accuracy
of 100% attests to its exceptional performance. Additionally, the model’s effectiveness is
verified by examining the normalized confusion matrix. For the remaining classifiers, their
overall accuracy exceeded 95%, except for the CatBoost classifier. A 5-fold cross-validation
method was employed to provide an unbiased evaluation of the proposed models. The
dataset was divided into five equal parts, with four parts (80% of the data) used for training
and the remaining part (20% of the data) used for testing in each iteration. To ensure
fairness, each fold preserved the class distribution of the dataset. The final cross-validation
accuracy, designated by Accuracy-CV in Table 6, was determined by averaging the results
across all five folds. Except for CatBoost, the difference between the cross-validation accu-
racy and test accuracy is small for all models, indicating that the models generalize well.
A comparative analysis of the classifiers’” performance is visually presented as a barplot
in Figure 9a, offering a comprehensive performance overview. The performance of the
ExtraTree classifier was monitored through its learning curve, as depicted in Figure 9b.
The initial stages of the model’s training exhibit some fluctuations, suggesting a learning
curve characterized by a degree of struggle. However, the model ultimately converges to
its optimal state after analyzing approximately 350 samples. Notably, this indicates rapid
convergence, even though it occurs later. It is crucial to consider the relatively small size
of the datasets, especially after partitioning into training and testing sets. Furthermore,
the training time for the ExtraTree classifier was found to be 0.5218 s, highlighting its
remarkably fast training capability.

Table 6. Evaluation metrics for the binary classification models trained by using only 6 features
(range 2, range 3, [1VAR, Vdcminl, range 4, T).

Model Accuracy-CV Accuracy Precision Recall F1 Score Normalized Confusion Matrix
ExtraTrees 0.998214 1.000000 1.000000 1.000000 1.000000 B:g (1):8}
RandomPForest 1.000000 0.978571 0.946429 0.986957 0.965090 _0.022608 06 0979030 |
XGBoost 1.000000 0.964286 0.916667 0.978261 0.943434 00 s 095017 |
DecisionTree 1.000000 0.964286 0.916667 0.978261 0.943434 00 s 095t |
LightGBM 0.998214 0.950000 0.890625 0.969565 0.922901 OEmosT 093915043
CatBoost 1.000000 0.828571 0.706767 0.566957 0.576613 _0.0206(1)2 06 09ma0 1
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Figure 9. First-phase results: (a) barplots (barplot for the first-phase results) and (b) learning curve of
the Extra Trees classifier.

Fault Detection Optimization

Optimization typically involves fine-tuning hyperparameters to achieve optimal and
improved metric values for a model. However, in the context of the fault detection prob-
lem (first phase), the focus of the optimization process was directed at determining the
optimal number of features that yield the highest observed accuracy. The chosen model
for this phase is the ExtraTree classifier, which is identified as the most effective in fault
detection, as highlighted in the previous section. The objective was to streamline the model
by simultaneously reducing complexity and training time, providing a more reliable and
lightweight solution. The approach involved initiating the process with the most important
features identified through the averaging importance technique. Subsequently, the Extra-
Tree classifier was trained in a loop with increasing features until the optimal values were
reached. Figure 10 illustrates the outcomes of this optimization process.

1.00 —=— Accuracy
—+— F1 Score — 1
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R (é\o” &
& & & & &

Number of Features

Figure 10. Binary fault detection: performance versus cumulative important features.

The observation from Figure 11 reveals that the Extra Trees classifier initiates its
convergence toward the optimal result at an early stage. Notably, the accuracy experiences
a significant increase immediately after adding the second feature, range 3. However, the
model does not attain its full performance until the inclusion of the sixth feature, which
is the temperature T. In summary, the model achieves its highest performance in the fault
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1.

o

0

detection phase with six essential features: range 2, range 3, [IVAR, Vdcminl, range 4, and
T. These features play a crucial role in enhancing the model’s accuracy and effectiveness in
detecting faults.
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Figure 11. Fault diagnosis phase: result analysis. (a) Barplot for the six classifiers. (b) Learning curve
for the Extra Trees classifier.
5.2. Multi-Class Classification Results
The second-phase fault diagnosis system classifies fault types into three main cate-
gories: F1, F2, and F3. The system’s performance, employing the six tree-based classifiers,
is outlined in Table 7 and broken to barplots in Figure 11a. Several classifiers demonstrate
exceptional results, achieving 100% accuracy, precision, recall, and F1 scores for each fault
type. Specifically, classifiers such as Extra Trees, XGBoost, LightGBM, and CatBoost per-
form equally. Moreover, the 5-fold cross-validation reveals little to no difference between
validation and testing accuracies, suggesting that the models generalize well to unseen data.
However, there are variations in convergence speed among these classifiers. A comparative
analysis of the training and testing times for Extra Trees and XGBoost reveals that XGBoost
takes 0.9509 s for the entire process, while Extra Trees completes it in 0.4204 s. Figure 11b
depicts the learning curve of the Extra Trees classifier, showing that it attains its peak value
after analyzing approximately 240 samples. This represents less than 50% of the complete
dataset, indicating superior generalization and rapid convergence toward optimal results.
Table 7. Performance of the multi-class classification trained by using only 2 features: range 3 and
range 4.
Model Accuracy-CV Accuracy Precision Recall F1 Score Normalized Confusion Matrix
[1.0 00 00]
ExtraTrees 1.000000 1.000000 1.000000 1.000000 1.000000 00 1.0 00
00 00 1.0
10 00 00
XGBoost 1.000000 1.000000 1.000000 1.000000 1.000000 00 10 00
00 00 1.0
10 00 00
LightGBM 1.000000 1.000000 1.000000 1.000000 1.000000 00 1.0 00
00 00 1.0
1.0 00 00
CatBoost 1.000000 1.000000 1.000000 1.000000 1.000000 00 10 00
00 00 1.0]
1.0 0.0 0.0
RandomForest 1.000000 0.947826 0.935484 0.969231 0.948157 0.09230769 090769231 0.0
0.0 0.0 1.0
1.0 0.0 0.0
DecisionTree 1.000000 0.947826 0.935484 0.969231 0.948157 0.00230769 090769231 0.0

0.0 0.0 1.0
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Fault Diagnosis Optimization

A similar strategy was employed for the fault diagnosis system in a manner akin to
the approach taken for the fault detection system. Given achieving optimal results with
100% accuracy among four classifiers, the focus shifted to determining the optimal number
of features required for the model to converge efficiently and accurately. To conduct this
analysis, the process was initiated with the most influential feature identified through the
feature importance averaging technique, as illustrated in Figure 6b. Subsequently, the
number of features was iteratively increased until reaching 100% accuracy. The results
of this investigation are presented in Figure 12a. Remarkably, the results reveal that the
second-phase system can attain optimal performance with just two features, specifically
the range 4 and range 3 features. Beyond this point, the model stabilizes at 100% accuracy,
suggesting that a reduction in complexity and dimensionality is achievable. Furthermore,
upon visualizing the scatter plots of these two features in the presence of the three fault
types, as depicted in Figure 12b, it becomes apparent that these features exhibit higher
separation between the faults. This implies that they can serve as effective indicators for
each fault type and may be utilized independently for fault identification.
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Figure 12. (a) Performance variation versus cumulative important feature number and (b) scatter
plot between the range 4 and range 3 features colored by fault type.

5.3. Comparison with Previous Works

To validate the superiority of the proposed methodology, a comparative analysis
was conducted with previous works. This comparison focused on three aspects. First, a
contrast was drawn with a naive solution encompassing fault detection and diagnosis in
a single layer. In this approach, normal and faulty samples were collectively considered
in a multi-class classification (four classes). The same classifiers were employed to ensure
fairness, and the results are presented in Table 8. This table shows that none of the
classifiers achieved 100% accuracy in any considered metric. The best accuracy of 96.4%
was obtained by CatBoost, which falls short of the proposed framework. Further insight
from the confusion matrix of CatBoost reveals that only two fault types, F2 and F3, were
classified with 100% accuracy, while significant classification errors occurred for the F1
fault and non-faulty samples. The results, illustrated in barplots in Figure 13a, expose
the diminished performance of classifiers when employing the naive solution. These
findings underscore that the two-phase proposed solution is more adept at addressing
the problem. Additionally, the performance was tracked by increasing the number of
features, and Figure 13b indicates that it takes four features to achieve the highest accuracy
of 96.4%. The proposed solution surpasses the naive one in terms of accuracy and the
number of features required for convergence. Notably, the complexity of the naive solution
is higher, as it involves classification among four classes. In contrast, despite requiring
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two phases, the proposed solution reduces the complexity of each phase to two classes
in the first and three classes in the second. The models that were used are the subject of
the second comparison. All the trained classifiers are tree-based, meaning they do not
require complicated building patterns. Moreover, the only methodology that achieved
100% high-performance results in the literature was described in [25], which employed an
autonomous feature extraction for LSTM and BiLSTM. Deep learning was mainly used
to achieve these outcomes. However, because tree-based algorithms are solely used in
this work, the proposed methodology does not require as much computing complexity,
which shows that it is superior in model selection. The two new approaches of averaging
importance and increasing feature iteratively, leading to optimal dimensionality, were used
to make the final comparison. The current work, which has only six features in the initial
phases of fault detection and two in fault diagnosis, outperforms all previous works in
terms of accuracy and speed of convergence. Training and testing of the algorithms can
be completed in less time, as evidenced by the proposed framework’s total time of 0.48 s.
The proposed solution stands out among all the earlier studies on the topic due to these
comparisons and the innovative nature of the suggested methodology.

Table 8. Performance of the one-phase naive classification model (all classes).

Model Accuracy-CV Accuracy Precision Recall F1 Score Normalized Confusion Matrix
[0.960 0.040 0.000 0.0007

0.160 0.840 0.000 0.000

CatBoost 1.000 0.964 0.953 0.950 0.950 0000 0000 1000 0.000
10.000  0.000 0.000 1.000]

[1.000 0.000 0.000 0.0007

0.240 0.760 0.000 0.000

RandomForest 1.000 0.907 0.887 0.913 0.895 0031 0077 0892 0.000
10.000  0.000 0.000 1.000]

[1.000 0.000 0.000 0.0007

0.280 0.720 0.000  0.000

ExtraTrees 1.000 0.864 0.845 0.884 0.857 0015 0169 0815 0.000
10.000  0.000 0.000 1.000]

[1.000 0.000 0.000 0.0007

. 0.280 0.720 0.000  0.000
DecisionTree 1.000 0.800 0.805 0.849 0.809 0031 0292 0677 0.000
10.000  0.000 0.000 1.000]

[0.960 0.040 0.000 0.0007

0.360  0.640 0.000 0.000

XGBoost 0.993 0.736 0.775 0.796 0.750 0292 0123 0585 0.000
10.000  0.000 0.000 1.000]

[0.040 0.960 0.000 0.0007

. 0.360  0.640 0.000 0.000
LightGBM 1.000 0.707 0.608 0.639 0.607 0000 0123 0877 0.000
10.000  0.000 0.000 1.000]
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Figure 13. Performance analysis of the naive solution: (a) barplot of the obtained results (barplot of
naive solution) and (b) the variation of accuracy and F1 score versus cumulative important feature
numbers (performance versus the cumulative important features).
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5.4. ML Explainability

Explainable machine learning solutions offer insights into how the models make
decisions, the most influential attributes, and why certain predictions are made to provide
human-machine decision comprehension. These solutions are critical in fault detection
because they increase the confidence and transparency of the models, allowing users to
validate the judgments taken. In this study, XAl is employed by two distinct tools. The first
tool is the SHAP explainer, also known as Shapley Additive exPlanations, which is utilized
to discern the influence of features on the model’s outputs. This is achieved by calculating
the Shapley values for each feature, representing the average contribution of a particular
feature across all conceivable feature permutations. The second tool is the LIME analyzer,
which is applied to assess two specified samples and the corresponding decisions made
by the models. LIME works by approximating the decision boundary of a complex model
in the vicinity of a specific instance or data point. It generates a simpler, interpretable
model that approximates the behavior of the complex model for that particular instance.
This simpler model is often more understandable, allowing users to gain insights into how
individual predictions are influenced by different features.

Figure 14a illustrates that the binary Extra Trees classifier necessitates the utilization of
six features for optimal decision-making. The magnitudes of importance and their impacts
on performance vary. Specifically, the range i features emerge as primary contributors
to the Extra Trees decisions, exhibiting a balanced influence on the detection of both
faulty and non-faulty samples. In the fault diagnosis phase, as presented in Figure 14b,
it is observed that the range 4 and range 3 features alone are adequate for the model to
formulate decisions. Notably, range 4 appears more directed towards detecting F3 faults,
while range 3 significantly impacts identifying F1 and F2 faults. Nevertheless, both features
contribute to the diagnosis of each fault type to some extent. This analysis highlights
individual features” differential contributions and influences on the binary Extra Trees
classifier’s decision-making process.

range 3
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ILVAR

T

mm Fault
B No-Fault

Vdcminl

0.00 0.05 0.10 0.15 0.20 0.25
mean(|SHAP value|) (average impact on model output magnitude)
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0.

o

Figure 14. SHAP explainability of the model’s output: (a) fault detection (first phase—first-phase fault
detection: feature impact on the model’s output) and (b) fault diagnosis (second phase—second-phase
fault diagnosis: feature impact on the model’s output).

Two samples were examined for the first phase and two for the second phase. The
decision-making process of the model was observed at the sample level, and the features it
relies on were identified using the LIME analyzer. Analyzing the LIME results in Table 9, it
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becomes apparent that, for these specific samples in the binary classification first-phase
problem, the key contributors to the model’s decision in the first sample are range 1,3 with
significant impact, while I5, Itotalminl, and Vdcmax1 contribute to a lesser extent. The
same pattern is observed in the second sample, with varying degrees of contribution for
each feature. Transitioning to the second phase of multi-class classification, the analysis
indicates that the range 3, 4 features are predominant in detecting the fault class among the
three provided. These findings align with those of the SHAP analyzer, which provides an
aggregation of contributors across the entire dataset. The SHAP analyzer suggests a total of
six contributors in the first fault detection phase and two in the second phase. The obtained
results and explanations by SHAP were also reviewed using the t-distributed Stochastic
Neighbor Embedding (t-SNE) perplexity projection in a 2D space in Figure 15. The use of
the range features as components of the t-SNE projection aids in the separation of normal
and faulty cases, which aids the model in predicting each one. This projection also helps in
recognizing and categorizing fault cases based on their types (normal, F1, F2, or F3).

Dataset T-SNE projection Dataset T-SNE projection

% Fault
40 5
>l ® Normal 20

30 o

10

comp-2
comp-2

Figure 15. t-SNE projection of (a) faulty and normal cases in binary classification (binary classification)
and (b) faulty cases in multi-class classification (faulty multi-class classification). (1,2, and 3 represent
the first, second, and third faults, respectively).

Table 9. Explainability analysis results.

e s Samples
Classification
Sample 1 Sample 2
Prediction probabilities 0 Prediction probabilities 0
o I 0.9 0
1 Wi 1 ] 1.00
<Pdcmean] <=
8 < Itotalmin] <= Vdcmean] <=.
:,; ax] <= 501.97 1.98 < I3min <= 3.4 ‘
VAR > 00“ 5
Jvar > 000 348.00 <IR <= 60
o 426.80 < Itotalmi
199 <16 <=
8 < Itotall <=4
45733 <lmu].m1\l‘ -
87.54 <Pdcmeanl
[511.92 < Vacmaxt <=
ninl <= 490.33
>0.00 0 < range 4 <= 0.00
0.00 <I3var <=0.00
HMAX <=3.46
range 456.97 < Itotalmax1
Binary 1.95 <14 <= 329 "l w0 < canem 2 <08
Explanations In this particular instance, focusing on binary classification, the This decision to consider the sample faulty was supported by two
model exhibits a high level of confidence (99%) in categorizing features, “range 1” and “range 3”, each by 33%. In total, a 66%
the case as a normal (0) operation of a PV panel. This contribution is made. While no significant contribution to the
determination is strongly supported by two features, namely opposing decision is observed (0.02c), the model is 100% certain

range 1 and range 3, while three other features exhibit a negative  that it is a Faulty sample.
correlation with this classification. At least five features play a

significant role in fine-tuning the model’s decisions toward

achieving an optimal result.
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Table 9. Cont.

Samples
Classification
Sample 1 Sample 2
Prediction probabilities ( Prediction probabilities
4<=0.00 4<=0.00

0 s o [ 053 range 4 <= 001
1 [ 0.99 0.1 1 -oz,':mgesci?_%
2 2 44313 <Ttoall <=4

Multi-Class

001
1.44 <IIMIN <= 226 0.06 < range 2 <=0.12

&

IIMAX <=235 I 57.41 < Itotalmax1
oo 001}

0.00 < Bvar <= 0.00)

5>

IIVAR <=0.

327.50 <IR <= 522.04 3.05 < Bmax <= 4.70

57.41 < Itotalmax1 49590 < Vdemeanl

427.32 <Itotalminl

DBmin>4.

3.05<HMMAX <=4

[Vdcmin] <= 477.38

T >26.50
1.88 <I5<=3.01 11>4.14
oco Jooo

range 1 <=0.20)

Vdcmean] <= 4 IIMIN>3

[3max <=235 120.75 <Pdcmeant <.

1.52 <11 <=2.68| R> EOQ}JO

Explanations

In this situation, just two features have a choice about the type of  In this situation, just two features have a choice regarding the
fault; range 4 believes (91% of the time) that it is the second fault  type of fault; range 4 believes it is the First Fault type by 91%,
type, whereas range 2 believes (11% of the time) that it is not; the ~ while range 2 believes it is not by 11%; the model chooses the
model favors the certainty of the range 4 feature in this decision.  certainty of the range 4 feature toward this decision.

6. Conclusions

This research focused on detecting and diagnosing faults in PV array systems. This
study utilized a dataset generated from the MATLAB Simulink tool, simulating a 250 kW
PV power plant. The dataset comprised 700 samples, encompassing three fault types and
normal cases. Initially, a comprehensive dataset analysis was conducted to improve its qual-
ity and understand the relationships between its features and the target variable. A novel
feature importance averaging technique was then employed to identify the most influential
features on the decisions of tree-based models. This technique effectively reduced the
number of features to nine. The research employed a two-phase system for fault detection
and diagnosis. The first phase focused on detecting faults from normal cases, while the
second phase involved diagnosing the exact fault type (F1, F2, or F3) in faulty samples. An
ensemble of six tree-based classifiers, including decision trees, random forest, Stochastic
Gradient Boosting, LightGBM, CatBoost, and Extra Trees, was used in both phases. The
results indicated that the first phase achieved the highest accuracy, reaching 100% with the
Extra Trees classifier. In the second phase of fault diagnosis, four classifiers—Extra Trees,
XGBoost, LightGBM, and CatBoost—achieved 100% accuracy, with Extra Trees demon-
strating the fastest training and convergence time. A novel post-processing technique
was integrated to determine the optimal number of features for achieving 100% accuracy.
This study revealed that six features were necessary for the first phase and two for the
second, with the significant contribution coming from the range i features. XAl was finally
employed to validate the research findings through two analyzers: LIME and SHAP. Future
work will focus on validating the proposed framework with publicly available real-world
PV datasets to assess its practical applicability.
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