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Article

A Note on the Johnson–Mehl–Avrami–Kolmogorov Kinetic
Model: An Attempt Aiming to Introduce Time Non-Locality
Jordan Hristov

Department of Chemical Engineering, University of Chemical Technology and Metallurgy, 8 Kliment Ohridsky,
Blvd., 1756 Sofia, Bulgaria; jordan.hristov@mail.bg or jyh@uctm.edu

Abstract: This note aims for a non-local extension of the Johnson–Mehl–Avrami–Kolmogorov
(JMAK) kinetic equation, describing solid phase transformation through the implemen-
tation of the time-fractional Caputo derivative and Mittag-Leffler function instead of the
exponential Avrami kinetics. These are preliminary results that include tests on some
published data and a clarification of the concept.
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1. Introduction
This note addresses a formal extension of the Johnson–Mehl–Avrami–Kolmogorov

(JMAK) equation of phase transformation (crystallization) [1–5]. This equation, follow-
ing Kolmogorov, can express the classical JMAK transformation theory for liquid–solid
crystallization processes as [5]

X = 1 − exp(X∗) (1)

correlating the actual X and extended transformed fraction X∗ = 1 − X of the material
with randomly distributed nuclei, moving towards the complete occupation of the space
by the new phase.

For X = 1, the material is completely transformed. In a more frequently presented
form, the JMAK equation is

X = 1 − exp(−ktn) (2)

In (2), k (with the dimension s−n) is a prefactor determined by the thermodynamic condi-
tions, and n is the Avrami exponent. In a doubly logarithmic scale, ln(− ln(1 − x)) = nt,
the slope defines the Avrami exponent. As follows from Avrami theory [1–3], this exponent
depends on the geometry of the crystallizing material: n = 2 in a linear case (as a rod or
filament), n = 3 in a planar configuration and n = 4 in a three-dimensional space. Despite
the simple form of (2), its parameters, specifically the exponent n, provide information
about the mechanism involved in the transformation process.

The JMAK equation corresponds to an isothermal condition of transformation [6], but
its applications and modifications [7–12] are widely applied to non-isothermal cases [8,9]
and processes outside crystallization, such as the intercalation [13] and dehydration of
minerals [14].

Despite its simplicity, the JMAK equation is under intensive study and modifications
to improve its applications to cases where the integer-order Avrami exponents mentioned
above are not confirmed by the data fitting procedure (see, for example, [14–16] and many
others devoted to its applications). For a deep understanding of the physical mechanism
driving the transformation kinetics and the basic assumption of the JMAK theories [1–5],
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we refer to the excellent analysis by Cahn [17] and the book by Christian [18]; a good read
is Chapter 21 of [19].

On this note, we do not intend to perform a systematic review of the JMAK-related
models but focus our efforts on a non-local extension involving the time-fractional Caputo
derivative applied to a modified fractional kinetic equation of the pseudo-first order, which
provides a solution in terms of the Mittag-Leffler function without any attempt to revise
the underlying principles of the JMAK equation’s derivations.

This study is motivated by the fact that in the dynamic process of phase transformation,
there is a time shift between the current state and the already-transformed (earlier) state.
The general relationship between the input x(t) and the output y(t) of a certain dynamic
system is generally described using a convolution integral relation as a general formulation
of the causality principle [20,21], namely

y(t) =
t∫

0

R(t − s)x(s)ds (3)

where R(t − s) is a correlation (memory) function relating to the recent states having a
stronger effect on the current state than the far-past states of the system. For instance, some
traces of this point of view can be found in the equation [1–5]

X = 1 − exp
(
−k(t − t0)

n) (4)

where t0 is the delay from the nuclei’s appearance to the crystallization’s onset. This
equation was the starting model in Kolmogorov’s solution [5], yielding (1).

Hence, we may formulate a general relationship between the rate of crystallization
dX/dt and the remaining (reduced) crystallization as a convolution:

dX
dt

≡
∫ t

0
R(t − s)X∗(s)ds, X∗ = 1 − X, X(0) = 0, X(∞) = 1, t > 0 (5)

which is a formulation relevant to the Boltzmann superposition principle [22].
Formulation (5) will be developed in detail in the sequel of this note (see

Sections 3.2 and 3.3).

Remark 1 (The term of memory). It is worth stressing that the term memory used in the
formulation of (4) does not match with the melt memory or crystallization memory widely
discussed in the literature; see, for example, [23–25] and many others related to them.

Remark 2 (Non-locality: some additional comments). In the context of the general definition
of dynamic non-locality expressed by Equation (5), we have to refer to the application of such
an approach to other aspects of thermodynamic systems out of equilibria, applying either a time
delay (the dual-phase lag) [26] or fractional calculus technology [27,28]. To be correct, we have to
mention that the time delay [26] and the non-locality, as presented in Equation (5), are two different
concepts from physical and mathematical points of view. In this way, we stress this again: time
non-locality is considered and applied in this work since there is no instant phase transformation, i.e.,
processes with infinite speed do not exist. The time lag concept assumes a relaxation, applying the
Cattaneo concept with a Taylor series expansion of the Fourier law in terms of local (integer-order)
derivatives and assumed exponential memory; this leads to a hyperbolic equation. In contrast, in
the non-locality expressed by a convolution, the memory function is a correlation function between
the input and output of the system and cannot be erroneously considered as a time delay. However,
there is a way to perform an artificial fractionalization of the model equation by replacing the
integer-order Taylor series expansion with a fractional counterpart in the form of Caputo derivatives
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(as is performed in [26]); examples of such a formalistic approach are available elsewhere [29]. More
details concerning the concept accepted here are available in Sections 3.2 and 3.3.

1.1. Aim

This note aims to present a new point of view of the description of the JMAK kinetic
model by implementing non-locality in time using a time-fractional Caputo derivative and
a general solution in terms of the Mittag-Leffler function of one parameter as a generaliza-
tion of the local JMAK kinetics with exponential phase growth. The emphasis is on the
formalization of the kinetic equation rather than on its derivation (beyond the scope of this
communication).

1.2. Further Text Organization

The following part of this note is organized as follows. Section 2 presents the physical
background of crystallization as a transformation process (Section 2.1), the case of isother-
mal crystallization (Section 2.1.1) and the kinetic models pertinent to it (Section 2.1.2). The
new approach to a non-local extension of the JMAK model is developed in Section 3, as a
formal treatment of the Avrami kinetic model (Section 3.1) and an explanation based on
the causality of dynamic systems resulting in a time-fractional equation with a Caputo
derivative (Section 3.3). Applications of the new approach are presented in Section 4 with
the qualitative simulation of θ(t) = 1 − X(t) and X(t) plots (Section 4.1) and tests on pub-
lished data (Section 4.2). For concise exposition, the supporting information pertinent to the
fractional Caputo derivative and the Mittag-Leffler function is summarized in Appendix A.

2. Crystallization: The Basic Features of the Process and JMAK’s
Formal Kinetics

Before continuing, we need to discuss a few basic characteristics of the phase transfor-
mation in connection with the JMAK kinetics.

2.1. The Physical Background

Crystallization as a process of phase transformation is commonly described by a
kinetic equation describing the time extent of the degree of crystallization (the fraction
of the crystallized phase), expressed in a general form as time and a time–temperature-
dependent functional:

X = X(t, T) (6)

X =
Mc

Mp−total
=

ρc ∑ Vj(t)
ρlV0

(7)

with the initial condition X(t = 0) = 0 and ∑ Vj(t = 0) (the total sum of the volume with
the crystallized mass). And, at t → ∞, when there is only completely crystallized material,
X(∞) = 1 and ∑ Vj(∞) = V0

ρl
ρc

.
There are three main kinetic processes [19,30]:

• Isothermal crystallization kinetics.
• Constant cooling rate crystallization kinetics.
• Crystallization upon non-linear cooling.

We restrict ourselves to the isothermal kinetics described by the JMAK equation
because the main idea is to demonstrate the application of the Mittag-Leffler function to a
non-local extension of this kinetic model rather than to start modeling from first principles,
which is beyond the scope of this note.
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2.1.1. Isothermal Crystallization

For isothermal crystallization, when the rapid cooling of liquid polymers takes place
(at temperatures Tc above their melting points), the models developed are based on the
following assumptions [30]:

• The rate of temperature change is much less than the rate of thermal diffusion; that
is, dT/dt ≪

(
a/L2)T where a = λ/ρCp

[
m2/s

]
is the thermal diffusivity, λ[W/mK]

is the thermal conductivity and ρ
[
kg/m3] and Cp [J/kg] are the density and heat

capacity, respectively.
• The latent heat release is much lower than the heat transfer rate.
• The ratio of the densities in the crystalline and liquid phases ρc/ρl does not change

and is assumed to be constant.
• The process is carried out in a finite volume and is controlled by the rate dX

dt = h(T)
g(X)

.

Thus, the phase transformation rate depends on h(T), which is only a temperature-
dependent function, where g(X) is a function of the transformed amount of mass. Moreover,
the transformation kinetics depend on the geometrical and spatial conditions of the process
of crystallized mass growth [19,30].

2.1.2. Kinetic Models

A first-order kinetic equation: [31]

dX
dt

= k(t)(1 − X) (8)

Common kinetics of nucleation and growth: [32]

dX
dt

= fnucl(T, X) + fgrowth(T, X) (9)

X = 1 − C0 + 1
C0 + exp[−C1(T)t]

(10)

with the material constants C0 and C1; for C0 = 0, we get (8).
The Avrami equation of the nth order [1]:

dX
dt

= nkt−1(1 − X) (11)

X = 1 − exp[−k(T)tn] (12)

k(T) =
α

V0

ρl
ρc

N(T)[G(T)]n−1 (13)

k(T) is the temperature-dependent crystallization rate constant; N(T) is the nucleation rate;
and α is the geometrical constant.

The Avrami exponent n is affected by the molecular weight, nucleation type and
secondary crystallization [19,30]. We will skip such details and refer to the cited literature
for more information since our efforts are directed toward the formalization of the JMAK ki-
netics, which, as mentioned, are applied not only to the processes where they originated but
to a broad range of phase change processes, such as crystallization in nanocomposites [33],
solid-state reactions [34], the stability of amorphous solid dispersions [35], intercalation
processes [13], fat crystallization [36,37] and the dehydration of minerals [14].

Remark 3 (The k constant). In the original Avrami kinetics, the rate constant k has a dimension
of s−n, and the model has no characteristic time scale. We may present the rate constant k as
k = kn

0 ⇒ k0 = k1/n , which allows the product ktn in the original Avrami version to be presented
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as ktn = (k0t)n. This is not strange, commonly used in the treatment of crystallization kinetic
data (see, for example, [37]). If such a presentation of the product ktn is accepted, then k0 (a
dimension of s−1) can be used as a time scale. From this point of view, k0t could be considered a
pseudo-Fourier number (dimensionless time). However, the JMAK model has no time scale, and this
is an open problem that should be resolved; if such a time scale exists, then with a stipulated value of
n, following the JMAK theory, we should extract this by data fitting only the value of k0; this is the
mathematically correct approach because in the single Avrami equation, we have two unknowns to
be determined, while a second equation is missing (it is artificially created as a step of the regression
analysis, and this refers to its essence, which, since the massive use of computer codes, has been
forgotten). Using only one equation leads to effects of n on k [38], but using (kt)n or (k0t)n, the
problem can be eliminated (see the comments in [37]), despite the critiques in [39] on the approach
used in [37,38], suggesting an expansion of the Avrami exponential function as a power series; we
can see in the sequel that the Mittag-Leffler function works in this direction (see the comments in
Section 4.1).

3. The JMAK Kinetic Model Reconsidered
3.1. A Formal Treatment of the JMAK Kinetics

Now, we will try to perform a formalization of the JMAK kinetics, envisaging an
extension of their application. As a first step, let us consider Equation (11), taking into
account the fact that dX/dt = −d(1 − X)/dt and denoting θ = 1 − X, resulting in

dθ

dt
= −kntn−1θ (14)

Applying the non-linear transformation of the time scale as τ = tn, meaning ln τ = n ln t, a
linear relationship in a logarithmic scale, we obtain a first-order kinetic model,

dθ

dτ
= −kθ (15)

with a simple solution:

θ = exp(−kτ) = exp(−ktn) ⇒ X = 1 − exp(−ktn) (16)

The formal transformation of (11)–(15) will help us to extend these non-linear kinetics
to the area of non-local (fractional) modeling, as explained next.

3.2. An Extended Non-Local Presentation of the JMAK Kinetics

We start with (15), expressing it through the time-fractional Caputo derivative (see
Appendix A.1.2).

Dµ
t θ =

∂µθ

∂τµ = −kθ, 0 < µ < 1, t > 0 (17)

with the solution [40]
θ(τ) = Eµ,1(−kτµ) (18)

Eµ,1(−kτµ) is the Mittag-Leffler function of one parameter [40] (for the properties of the
Mittag-Leffler function, see Appendix A.2).

For µ = 1, Eµ,1(−kτµ) → exp(−kτ) and (17) reduces to (16).
We may present (18) in an extended form that will help us to explain what we mean

by the fractional extension of the JMAK kinetic model, namely

θ(τ) = Eµ,1(−kτµ) =
∞

∑
j=0

(−1)jkjτ jµ

Γ(jµ + 1)
= 1 − kτµ

Γ(µ + 1)
+

k2τ2µ

Γ(2µ + 1)
+ . . . (19)
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If we consider only a limited number of terms, i.e., a truncated Mittag-Leffler function, then

θ(τ) ≈
J

∑
j=0

(−1)j(kτ jµ)
Γ(jµ + 1)

= 1 − kτµ

Γ(µ + 1)
+

k2τ2µ

Γ(2µ + 1)
+ . . .

kJτ Jµ

Γ(Jµ + 1)
(20)

Now, in terms of the time, we have the relation τ = tn, which can simply be inserted in
(19) with the simple assumption that n depends only on the geometry of the crystallizing
system: n = 2 for a linear system, n = 3 for a plate-like system and n = 4 in the case of a
spherical system.

Therefore, we focus on the value of the fractional order 0 ≤ µ ≤ 1 and the number of
terms in the truncated Mittag-Leffler function.

3.3. Explanations Concerning the Non-Local Approach

We now attempt to explain the transition from local to non-local kinetics concisely.
For example, as stated in the previous section and textbooks, kinetic equations in chemical
kinetics are often local, or memoryless. For instance, the first-order local kinetic equation of
N(t) is

d
dt

N(t) = −c0N(t), c0 > 0, N0 = N(t = 0) (21)

where c0 is a prefactor, and it has the solution

t∫
0

dN(t)
N(t)

dt = −
t∫

0

c0dt ⇒ N(t) = N0 exp(−c0t) (22)

Since no dynamic process can operate at infinite speeds, the realistic perspective that
there are temporal delays between the causes (reasons) and the results (reactions) naturally
leads to non-locality. With the concept of causality, the reaction (or output) cannot come
before the cause. This can be presented in a simplified form of (1) relating the rate dN/dt
of the changing value N(t) characterizing the dynamic system to its past values over the
time interval t − s through the functional differential equation

dN
dt

= −c
t∫

0

R(t − s)N(s)dτ (23)

Here, R(t − τ) is the correlation function (memory kernel) relating the current version of N
to its past values over the time interval s; its closest values have stronger contributions than
the oldest ones. The general condition in this non-local functional relationship conveying
the causality principle [20,21] is that R(t) should be a causal function, and the integral
in (23) is a convolution integral; since t represents the processing time (i.e., the process
duration), rather than a time instant, R(t) should be monotonically declining and vanishing
for t → ∞ and negligible (i.e., equal to zero) for t < 0 [41]. If the initial value of N0 at t = 0
is non-zero, then this should be taken into account.

Let us consider (21) again and integrate it, but present it in a general manner, the way
in which it was considered in [42].

N(t) = N0 − c0D−1
t N(t) (24)
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with 0D−1
t denoting the standard Riemann integral, the same integral that in (22) yields the

exponential function. Then, the introduction of non-locality can be performed by replacing
only 0D−1

t with 0D−µ
t where 0 < µ < 1 in (24). The final result is [42]

N(t) = N0 f (t)− c0D−µ
t N(t) (25)

In the case of the non-local kinetics of the first order, with a zero initial condition (N0 = 0),
that is, no crystals exist at t = 0, we have

N(t) = −c0D−µ
t N(t) (26)

This approach can be simply explained by the convolution relationship

N(t) = −cµDµ
t N(t) = −cµ IµN(t) =

1
Γ(µ)

t∫
0

N(s)
(t − s)µ ds (27)

where D−µ
t N(t) = IµN(t) is the Riemann–Liouville fractional integral with a memory

function, t−µ

Γ(µ) .

Now, applying the Caputo derivative Dµ
t to both sides of (27), we obtain

Dµ
t N(t) = −cµN(t) ⇒ N(t) = Eµ

(
−cµtµ

)
(28)

Power law memory is a special case coming from classical fractional calculus [43],
and we use it to explain more familiarly the transition from local to non-local kinetics
when the JMAK model is considered and the Mittag-Leffler function is used instead of
the Avrami exponential relationship. This does not restrict the application of the general
formulations (24) and (25), where the memory function could be of a different kind directly
related to the physics of the described process; more examples of non-local kinetics are
available elsewhere [44].

4. The Application of the New Approach
4.1. Qualitative Plots of θ(t) and X(t)

Before performing any test on real data, we had to see what the behavior of the Mittag-
Leffler function was when direct calculations were applied as a series. This step focused on
three points: (1) Does the directly simulated series have behaviors qualitatively mimicking
the real plot? (2) What is the minimum number of terms in the series ensuring stable
calculations? (3) What is the upper limit of terms allowing for rational calculations?

Qualitative plots of θ(t) and X(t) calculated directly with the Mittag-Leffler function
as a series (50 terms in Maple) are shown in Figure 1. These plots only demonstrate the
suitability of the new approximations. Moreover, the tests revealed that with less than
25 terms in the series, the calculations were unstable (see the examples in Figure 2), and
because of that, the simulations presented further in this study were obtained with a
minimum of 50 terms in the Mittag-Leffler series. The upper limit of terms in the series
used in this study was about 180, but this is a problem for a separate investigation beyond
the scope of this work.

We already commented on the exponent k in Remark 3, but now we have to emphasize
its important role in the time range of plot simulations. The first question that comes to
mind when seeing the plots in Figure 1 is why the time range is so large when we know
that the Mittag-Leffler function can only be calculated as a series for small arguments. The
answer to this question lies in the value of k. For the cases with n = 2, n = 3 and n = 4,
we had an average value of k = 2.5 · 10−7 (for sporadic nucleation) [37], while in case (a),
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k = 8 · 10−11 (instantaneous nucleation) [37]. Regarding the product ktn, we can see that
in the case of (a), ktn

max was approximately ktn
max ≈ 1.37 · 10−4, while for cases (b), (c) and

(d) with k = 2.5 · 10−7, we had kt2
max ≈ 5 · 10−4, kt3

max ≈ 3 · 104 and kt4
max ≈ 6.25 · 10−4;

there are many data leading to such results in the references quoted in this article. Thus,
denoting y = ktn, we obtain Eµ(−yµ) with arguments less than 1, approaching the Mainardi
asymptotic for t0+ , and this allows us to calculate θ(t) = Eµ(−yµ) and X(t) = 1 − θ(t)
directly as a series.

Figure 1. Qualitative plots of θ(t), left column, and x(t), right column, for the stipulated values of
the exponent n (taken from [37]): k = 8 · 10−4 for (a); k = 2.5 · 10−7 for (b–d). For all cases, µ = 0.85,
and there were 80 terms in the series.

Figure 2. Qualitative plots of θ(t) and X(t) for stipulated values of the exponent n = 2, showing the
effect of a low number of terms (18) (panel a) and a high number of terms in the series (180 (panel b)).
For all cases, µ = 0.85 and k = 5.5 · 10−7 (taken from [37]).

4.1.1. Qualitative Plots of θ(t) and X(t) and Dimensionless Time

The preceding comments on the value and effect of the Avrami constant provoked an
idea that we would like to express briefly since it is directly related to the application of the
Mittag-Leffler series as an approximating function.
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The original Avrami product ktn is dimensionless and, as we commented above, can
be used as the approximation of arguments in the Mittag-Leffler series. Now, let us suggest
that k = kn

0 , such that k0 = k1/n, as was mentioned in Remark 3. This substitution allows
the product ktn to be presented as ktn = (k0t)n. Then, since k0 has a dimension inverse to
time but is only temperature-dependent, following the JMAK theory, we may suggest that
the characteristic time scale is t0 = 1/(1/k0), such that the product Y = k0t, an analog of
the diffusional Fourier number, is the dimensionless time. With this step, we may express
our approximations through the Mittag-Leffler functions as Eµ

(
−(k0t)nµ) = Eµ(−Ynµ)

with n = 1, 2, 3 or 4, respectively, depending on the transformation process considered. We
have an ongoing kinetic process happening in a time less than the characteristic time scale
when 0 ≤ Y ≤ 1.

Now, as a numerical experiment, in Figure 3, we repeat the simulations from Figure 1,
with n = 3 as an example, but with Y as the time scale and various values of the fractional
order µ.

Figure 3. Qualitative plot of θ(t) and x(t) for n = 3 and k = 2.5 · 10−7 against the dimensionless time
Y, showing the effect of the fractional order µ as a rate-controlling parameter.

The plot in Figure 3 reveals that the fractional order µ controls the behavior of the
curves. Thus, with the stipulated value of k, k0 and n, the fractional order µ is a new
parameter that can characterize the phase transition behavior.

Remark 4 (The time scale definition). It is worth stressing that the time scale should be defined
before the experiment, as was performed with k0, but not after its completion. We emphasize this
definition because if the time for the complete phase transformation is taken as a time scale, as one
might expect, then we may again define a dimensionless time varying between 0 and 1. However,
its definition would be incorrect because all scales related to the length, time, mass or any other
varying process variables should be defined before the experiment based on process parameters
that do not vary with them is carried out; in the case of an isothermal transformation, k (or k0) is
time-independent and depends only on the imposed thermal conditions.

The last statement in Remark 4 is relevant to the comments in Remark 3 that with one
equation, two parameters cannot be determined correctly because they become interrelated;
k should be defined based on thermodynamic considerations, and then the Avrami exponent
n can be determined correctly from the exponential relationship. In the concept explored in
this note, both k and n are stipulated based on the thermal conditions and suggested spatial
transformation evolution, but a new parameter that should account for any deviations from
the perfect conditions is the fractional parameter 0 ≤< µ ≤ 1; this is beyond the scope of
this work, but the idea is worthy to be explored.
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4.1.2. Estimation of Fractional Order µ: Initial Steps

Here, we suggest a pragmatic approach to the determination of µ based on Mainardi
asymptotics. Taking data from experiments or tabulated from the literature, the first step
was to rescale the time as τ = tn, where n is stipulated and depends on the geometry of the
studied crystallizing system. Then, from asymptotic (A5), we have in a logarithmic scale

ln Eµ(−τµ) ∼ ln
[

exp
(
− τµ

Γ(1 + µ)

)]
⇒ ln Eµ(−τµ) ∼ − τµ

Γ(1 + µ)
(29)

Hence, for short times, we have the approximation

ln θτ0+ ∼ − τµ

Γ(1 + µ)
⇒ ln(− ln θτ0+) = ln(− ln (1 − X)τ0+) ∼ − ln τµ − ln Γ(1 + µ) (30)

That is, taking the data for short times, where the plot of θ seems to be well approximated
by a power law, we may calculate in a doubly logarithmic scale the value of µ as the slope of
the linear plot; this approach, to some extent, matches the technique for the determination
of the Avrami exponent n.

For a long time, asymptotic (A11) provides

Eµ(−τµ) ∼ τ−µ

Γ(1 − µ)
⇒ ln Eµ(−τµ) ∼ ln

(
τ−µ

Γ(1 − µ)

)
⇒ ln θ ∼ −µ ln τ − ln Γ(1 − µ) (31)

That is, having the experimental points θ = 1 − X, 0 < θ < 1 and thus ln θ < 0, we obtain
− ln θ ∼ µ ln t + ln Γ(1 − µ), which allows us to easily find µ as the slope of the plot.

4.2. Tests on Published Data

Next, we applied the Mittag-Leffler approximation to real published data. The data
points fitted by our approximation were taken using digitization from figures in the quoted
literature sources. This process, to some extent, may have introduced errors since tabulated
data about X(t) were missing, but the most important issue at this point in time was to see
if the new approach worked or not.

Note: Before describing the testing of the approximations on real data, two important
facts concerning their sources and the consequent calculations have to be highlighted:

• It is worth noting that there were two types of published data, mainly presented as
plots: (1) data where there were points reaching about a 100% transformation, and the
fitting curves plateaued when X → 1, and (2) data with an incomplete transformation
where the points reached a plateau at levels of Xsat < 100%. We describe how these
cases were tested separately with the new approximation next.

• The present study focused on the fact that all parameters were in SI units. However,
the published data did not always follow these rules: there were cases where the time
was in hours and then k was in h−n, or the time was in minutes and then k was in
h−min. The general rule followed in the calculations was that there was no need to
transform the units into SI because the product ktn (also k0t) is dimensionless and,
thus, it does not affect the calculation of the Mittag-Leffler function. In the following
description of the tests on published data, the time axes of the plots are preserved
(expressed in the original time units as published) because k, for instance, is directly
related to the time units used.

4.2.1. Tests on Data Related to Complete Transformation (Xsat ≈ 100%)

As the first example, we refer to the results from [16] on the crystallization kinetics
of poly(ethylene terephtalate) (PET) at different temperatures. The first plot in Figure 4
(panel a) demonstrates the effect of the fractional order µ on the successful data fitting
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when both n and k were stipulated (based on preliminary considerations about n and
thermodynamic calculations for k). In this example, n = 3 was considered instead of
n = 2.6, determined through regression data fitting utilizing the original Avrami exponen-
tial (see Table 1 in [16]).

Figure 4. Test on published data with 100% transformation of poly(ethylene terephtalate) (PET) (the
diamonds are the experimental points, and the same is used in the following figures). Data from [16].
(a) From Figure 1 in [16] (reduced crystallinity of PET at 180 ◦C). Best fit with µ = 0.825. (b) From
Figure 1 in [16]: case at 210 ◦C . Note: In all cases, n = 3 and k = 2.63 · 10−7 s−1, and there were
80 terms in the Mittag-Leffler series.

The second test was with data from [15] concerning the crystallization of filled
poly(ethylene terephtalate) (PET − TiO2 − 1 − 1), shown in Figure 5.

Figure 5. Test on published data with 100% transformation of filled poly(ethylene terephtalate)
(PET − TiO2 − 1− 1). Data from Figure 2 in [15]. (a) Reduced crystallinity, X(t), at 218 ◦C: n = 4(3.5),
k = 2.4 · 10−8. Best fit with µ = 0.87. (b) Case at 224 ◦C: n = 4(3.8), k = 2.3 · 10−11. Note: Values of n
in parentheses were taken from Table 2 in [15] and determined using Avrami exponential equation.
For all situations, 80 terms were used in Mittag-Leffler series.

In both tests, we could see satisfactory curves in the approximation plots through the
points for medium and long times. For short times, the discrepancies could be attributed to
either inexact data recovery through digitization or something that should be improved in
the approximation technique; for now, this problem is open and not resolved.

Moreover, we can see how realistic the approximation was concerning the fractional
order µ in Figure 4 (panel b) and Figure 5 (panel b). Specifically, for µ = 1, we obtained
the Avrami exponential relationship, and in Figure 5 (panel b), we see that it could not ap-
proximate the experimental points. In this context, in the data from Cheng and Shanks [15],
there was a case in which the Avrami formula could not fit the data (see Figure 8 in [15]).
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The fact that there was a satisfactory approximation of the data points for long times
reveals that the idea conceived earlier of the preliminary estimation of the fractional order
µ can be realized using the Mainardi power law asymptotic (A10) for t → ∞.

Remark 5 (Why there is a discrepancy with the exponential Avrami model?). We see that
there is a discrepancy between the experimental points and data fitting with the Mittag-Leffler
function and the Avrami equation (the case with µ = 1), and we are obliged to explain why
this happens. The origin of this was commented on earlier in Remark 3. Now, we will explain
this concisely. The dominating approach in the literature is the “blind” application of the least
squares regression analysis of data points, either using computer codes or graphically in logarithmic
coordinates. However, as mentioned in Remark 3, this an erroneous approach because following
the Avrami theory, both k and n are predetermined (before the crystallization experiment), k from
the thermodynamics and n from the geometry of the crystallization pattern, and there is no room to
find a new process parameter controlling the correct data fitting. The regression procedure provides
values of k and n that are interrelated since it does not take into account their physical meaning
and the process background. As mentioned in Remark 3, it is incorrect to define two unknowns
from one equation; the argument (the independent variable) is only the time t. In contrast, the
new non-local approach introduces a new parameter, i.e., the fractional order µ, which allows us,
along with the predetermined k and n, to control the data fitting. Moreover, it is noteworthy
that in the Mittag-Leffler function generated by the new model, the argument (the independent
variable) is the dimensionless product ktn, which contrasts with the existing literature approach to
the Avrami equation. From our point of view, this is an innovation simultaneously obeying the rules
of thermodynamics, physics (a non-local process with a finite speed) and mathematical modeling
concerning data fitting.

4.2.2. Tests on Data Related to Incomplete Transformation (Xsat < 100%)

In cases when the entire volume is not transformed and the experimental points
Xexp(t) reach a plateau at a value of Xsat less than 100%, then there are two options: (1) all
the data are reduced to x = Xexp/Xsat so that 0 < x < 1, and then the fitting is performed
with x = (1 − θ(t)) as in the case with complete transformation; (2) there is no need for
the experimental point to be reduced, but the calculation should be performed through the
multiplication of X(t) by Xsat. The two examples in Figure 6 show the same behavior for the
approximation lines as in the cases of complete transformation. The technique of applying
the factor Xsat to the approximation function works acceptably, and any discrepancies can
be attributed to the exactness of the digitization of the plots.

Figure 6. Test on published data with less than 100% transformations. (a) Data from Marangoni
(from Figure 1 in [39]) concerning isothermal transformation of palm oil with k = 2.53 min−n, n = 3
and Xsat = 0.561. (b) From Figure 1 in [45]: isothermal cocoa butter crystallization at 19 ◦C with
k = 3 h−n (from Figure 6 in [45]), n = 2 and Xsat = 0.791. Note: In all cases, there were 80 terms in
Mittag-Leffler series.
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4.3. Some Remarks on Data Simulation Using the Mittag-Leffler Function

The demonstrated data approximations (not data fitting) are tentative, showing only
that the new approach works. However, for the next steps, beyond the scope of this note,
reliable algorithms for data fitting specifically addressing the value of µ (because n and k
are predetermined) are highly required. For now, there have been several works [46–49]
applying the Mittag-Leffler function for data fitting with existing codes (starting with [46])
that might be a useful basis for creating a code specific to the JMAK model and its versions.

5. An Outline of the Results Obtained
This note only suggests the idea that the Avrami exponential equation, based on a

non-linear local kinetic equation of the pseudo-first order, with the addition of simple time
scaling, τ = tn, can be easily transformed into a well-known first-order kinetic model. This
step, and the fact that the Mittag-Leffler function reduces to a simple exponential function
when the fractional order equals unity, as well as that the time-fractional kinetic model with
the Caputo derivative is a generalization of the local kinetics, allowed for a non-locality to
simply be incorporated in the JMAK model.

This note uses the concept that the Avrami kinetics constant k should be calculated
prior to simulations, when the exponential JMAK model is applied, to determine the
exponent n, because only one equation exists with two unknowns and a second one is
missing. With the extension, i.e., the fractional kinetics, resulting in the Mittag-Leffler
function as an approximation, both k and n can be stipulated. A new parameter that
can control the approximation and be used for the characterization of the transformation
process is the fractional order µ. It is possible to perform a preliminary test with the Avrami
model to see what the value of n (commonly a non-integer) is and to choose the closest
integer, as we did in the test on the published data.

A non-local extension of the JMAK model is a new idea, to our knowledge never
conceived of before, but it is in agreement with the concept that there is no intrinsic
transformation, i.e., a transformation with infinite speed, and that crystallization could be
considered as a hereditary process. Despite the fact that such a non-local extension was
made with the final result of the Avrami model, it provokes a deeper exploration into its
basic considerations (and of any related JMAK modifications), looking for a way for the
non-locality to be implemented in the first steps of the model’s construction.

To some extent, the new model and the approximating function confirm the idea of
Khanna and Taylor [38] and the models of Foubert et al. [37,45] (with data tested here) that
the product kt should be considered as one dimensionless variable; this was also confirmed
by the test on the Marangoni data [39], even though he tried to demonstrate that this
was wrong.

There have been attempts to approximate the transformation points using the high-
order polynomials of power laws, as demonstrated by Marangoni in [39]. Such an approach,
when the terms are power laws, Pit

p
i , gives their factors (coefficients) dimensions of time−p,

which is hard to explain physically. In contrast to ad hoc polynomial approximations, all
coefficients of the Mittag-Leffler function (in a truncated version considered as a poly-
nomial) are dimensionless; this is because the variable is the product ktn, which is also
dimensionless, as was demonstrated in this note.

Probably, the text of this note will provoke many questions because it is at the in-
terface of material science (the kinetics of materials as defined by Cantor [6]) and non-
local mathematical modeling, but such an amalgamation, at the very beginning of its
application, promises to be fruitful, even though some problems should be resolved
(see the next section).
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6. Emerging Problems That Should Be Resolved
In developing this note and the non-local version of Avrami kinetics, some problems

appeared, among which were the following:

• There are not enough numerical data to allow us to test the new approximation.
Dominating the literature are graphical presentations with not enough points that,
even if they are presented as numerical data, are not enough to make a successful
estimation of the parameters of the approximating function.

• There is a need for a code for data fitting based on the Mittag-Leffler function and
specially adapted to the JMAK basic model and any of its versions to be developed;
in this direction, the existing approaches and the related codes commented on in
Section 4.3 would be a good basis for this to be performed.

7. Conclusions
The concept of a non-local JMAK kinetic was conceived, which resulted in the use

of the Mittag-Leffler function with one parameter instead of the exponential Avrami’s
model. The idea was presented step by step through a non-linear scaling transform of the
Avrami first-order non-linear equation and its extension as a non-local kinetic with the
Caputo time-fractional derivative. Tests on published data confirmed the idea of fitting
transformation data with the Mittag-Leffler function as an important role of the fractional
order. The main results and problems needing to be resolved were outlined.
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Appendix A. Necessary Information Concerning the Fractional Calculus
Used

This is the minimal required information concerning fractional derivatives and the
Mittag-Leffler function permitting us to understand the main idea of the article.

Appendix A.1. Time-Fractional Integral and Derivatives

Appendix A.1.1. Fractional Integral

Following the Riemann–Liouville approach to fractional calculus, the fractional inte-
gral of the order µ > 0 is a natural result of Cauchy’s formula reducing calculations of the
m-fold primitive of a function f (t) to a single integral of a convolution type [40].

0 In f (t) := fn(t) =
1

(n − 1)!

t∫
0

(t − τ)n−1 f (τ) dτ, t > 0, n ∈ N (A1)

where N is a set of positive integers, and fn(t) and its derivatives of the order 1, 2, ..., n − 1
vanish for t < 0. Taking into account that (n − 1) = Γ(n), then for arbitrary positive
numbers µ > 0, the fractional integral of the order µ > 0 is defined as

0 Iµ f (t) :=
1

Γ(µ)

t∫
0

(t − τ)µ−1 f (τ) dτ, t > 0, n ∈ R+ (A2)
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For the sake of convenience, we will use also the notation 0D−µ f (t) for 0 Iµ f (t). Further,
the law of exponents for fractional integrals means 0D−µ

0D−γ f (t) = 0D−µ−γ f (t) =

0D−γ
0D−µ f (t).

Appendix A.1.2. Caputo Derivative

The Caputo derivative of a casual function, f (t), i.e., f (t) = 0 for t < 0, is defined [40]
as

CDµ
t f (t) = 0 I1−µ d

dt
f (t) = 0D−(1−µ)

t f (1)(t) =
1

Γ(1 − µ)

t∫
0

f (1)(t)
(τ − 1)µ dt (A3)

where 0 < µ < 1.
The Laplace transform of the Caputo derivative is

L
[

CDµ
t f (t); s

]
= sµF(s)−

m−1

∑
k=0

f (m)(0) sµ−k−1 (A4)

The Caputo derivative of a constant is zero, i.e., CDµ
t C = 0; this is consistent with what we

already know about integer-order calculus.

Appendix A.2. Mittag-Leffler Function: Properties

Appendix A.2.1. Definitions

The two parameters of a Mittag-Leffler-type function are defined as a series
expansion [40]:

Eµ,β(z) =
∞

∑
k=0

zk

Γ(αk + β)
, α > 0, β > 0 (A5)

When z = λtµ, then

Eµ,β(±λtµ) =
∞

∑
k=0

(±1)k(λtµ)k

Γ(αk + β)
(A6)

It is an entire function of the variable z for any µ, β ∈ C or Re(µ > 0) of the order ρ = 1/µ

and converges for each finite z, and therefore its sum is an analytic function in the whole
complex plane. From this definition, it follows that for µ = 1 and β = 1, we have

E1,1(z) =
∞

∑
k=0

zk

Γ(k + 1)
=

∞

∑
k=0

zk

k!
= ez (A7)

E1,2 =
∞

∑
k=0

zk

Γ(k + 2)
=

∞

∑
k=0

zk

(k + 1)!
=

1
z

∞

∑
k=0

zk+1

(k + 1)
=

ez − 1
z

(A8)

Appendix A.2.2. Asymptotics

There are two common asymptotic approximations relevant to the present study,
known as Mainardi’s conjectures, specifically a stretched exponential (the Kohlraush func-
tion) for t0+ and a power law for t → ∞, as follows [50]:

Eµ(−tµ) = 1 − tµ

Γ(1 + µ)
+ . . . ∼ exp

[
− tµ

Γ(1 + µ)

]
, t → 0 (A9)

Eµ(−tµ) ∼ ∑ (−1)
j−1

− t−µj

Γ(1 − µj)
, t → ∞ (A10)
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and the first-order approximation of (A10) is

Eµ(−tµ) ∼ t−µ

Γ(1 − µ)
, t → ∞ (A11)

These approximations were tested numerically by Concezzi and Spigler [51] using the
Diethelm predictor–corrector algorithm [52].

Appendix A.2.3. Calculations

The calculation of the Mittag-Leffler function is a challenging task. There are several
approaches to finding suitable numerical methods, as mentioned above [51–58], with ad-
vanced techniques resolving particular cases and clarifying emerging calculation problems.
For example, for a small argument, a Taylor series, spectral integral representations for
intermediate values and asymptotic values for large magnitudes were used in [53]. Seybod
and Hilfer [54] applied the Hankel integral representation, while Garrappa [57] applied a
numerical inversion of the Laplace transform.

In the context of the task of the present article, where the analytical calculation is in
the form (19) or (20), we refer to the work of Liemert and Kielne [58], where for a small and
moderate argument (time), direct calculations as the series (A5) or (A6) were applied (called
the direct computation of the ML series [59]), while for large arguments, the following
series was used.

Eµ(−x) = − 1
π

∞

∑
k=1

(−x)−nΓ(kµ) sin(kµπ) (A12)

Thus, it is hard to find the right method, and the choice of which approach to use strongly
depends on specific problems caused by the inclusion of the Mittag-Leffler function; in this
case, a matter of argument as to what is a small argument and what is a large argument
and how many terms have to be used in the direct series calculations.
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