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Abstract: Increasing the process efficiency of agricultural tasks is a key measure to decrease
overall costs and CO2 emissions. However, optimizing tractor–implement combinations
is challenging due to the variety of processes and implements and the complexity of the
powertrains in modern tractors. In addition, overall process efficiency is an ambiguous
optimization objective in agricultural processes as it relates resource consumption to har-
vest yields, which are only known at the end of a harvest season. The presented approach
defines process constraints, ensuring optimization does not negatively affect harvest yield.
These constraints allow for the formulation of explicit objective functions that are observ-
able during the operation. The method establishes a mathematical foundation for the
optimization of agricultural processes. The mathematical principles of the theoretical
framework and the techniques used to define control constraints are explored, whereby the
applicability to alternative objectives like optimizing the overall process cost is highlighted.
To demonstrate the practical utility of the proposed approach, an optimization cycle is
applied to a real-world scenario: adapting the working speed during the tillage process
using a cultivator to maximize energy efficiency. The approach simplifies the optimization
problem by formulation as a constraint optimization problem, allowing for improving the
operating point of tractor–implement combinations with respect to observable process
objective functions. The results underline the importance of advanced control strategies
in agricultural machinery, advancing precision agriculture and promoting sustainable
farming practices.

Keywords: operating point optimization; energy efficiency; agricultural processes

1. Introduction
In agriculture, tractors are primarily used as a power source, whether in the form

of drawbar pull, via the PTO shaft, or hydraulically [1]. Nowadays, efficiency optimiza-
tion in agriculture is usually limited to the tractor’s drivetrain in order to provide the
power required for the work process as efficiently as possible. Standardized performance
requirements, such as the DLG PowerMix [2], are used to evaluate the efficiency of tractors.
However, the efficiency improvements in this context are limited to improving the physical
machine setup and the behavior regarding a specified control input.

Alternatively, the efficiency of the work process, e.g., tillage, can be optimized by
adapting the control inputs during the actual task. This increases the optimization potential
but results in a complex optimization problem since, in addition to the tractor’s drive
train, the characteristics of the implement need to be taken into account. Likewise, the
agronomical requirements are crucial, as efficiency optimization must not be achieved at
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the expense of the yield. Holistic optimization of agronomical work processes must set the
yield in relation to the effort required, i.e., costs or fuel consumption.

Renius described the variety of potential objectives that can be optimized during
fieldwork as speed, process quality, energy consumption, safety, environmental protection,
comfort, and total production costs [3]. As the yield depends on many factors and is
not observable during soil cultivation, process quality is used as a substitute to take the
agronomical requirements into account.

In recent years, research has focused on individually describing and optimizing some
of these target criteria. For example, approaches to observe the process quality using
camera-based or lidar-based approaches have been presented in [4–7]. In [8,9], the authors
focused on optimizing machines’ performance and energy consumption.

In both cases, the research focused on one optimization target, neglecting the others.
However, combining these separate objectives poses a major challenge to the automation
of the whole task.

Steinhaus presented an approach to combine the objectives of process quality and
efficiency into one unified target function to be able to evaluate the individual processing
steps in the process chain [10].

Boysen et al. used a deep learning approach to predict the result from adaptation of
control inputs to process quality parameters and machine-internal parameters, which could
potentially also be used for state optimization [11].

In previous work, we proposed an approach to combine the objectives of process
quality and energy efficiency using constraints for either process efficiency or process
quality, respectively, using the example of agricultural tillage. The target was to use this
approach to optimize the state of the machine combination [12].

Thus far, to the best of our knowledge, no holistic approach has been developed to
optimize soil cultivation. This paper aims to address this research gap by presenting an
approach to optimizing tillage with respect to agronomical requirements. The approach
includes the tractor’s characteristics, the influence of the implement, and the agronomical
requirements of the soil cultivation task and provides multiple possible objective functions
depending on whether to optimize overall costs, efficiency, or process time.

The paper is structured as follows: In Section 2, the theoretic considerations leading to
the constraint optimization problem for the holistic optimization of the cultivation task are
derived. In addition, the representation of the state of a tractor–implement combination
is described. Next, in Section 3, the experimental setup is explained that illustrates the
approach in the case of soil tillage with a cultivator. In Section 4, the results of the soil
tillage process are presented. The advantages and limitations of the presented approach
are discussed in Section 5 before Section 6 concludes the paper.

2. Materials and Methods
It is assumed that all parameters required to describe the state of a machine combi-

nation can be combined in a single state vector x⃗. A general state description for tractor
implement combinations is possible by splitting the state vector into control parameters w⃗,
interface parameters τ⃗, and internal parameters θ⃗:

x⃗ = [w⃗, τ⃗, θ⃗] (1)

The control vector w⃗ describes adjustable parameters like operating speed, rotatory
speeds of power take-offs, hydraulic volume flows, and electric flow. For agricultural
machinery, the combination of the tractor with various implements features a unique
adaptability, and the power demand of the process is heavily impacted by the choice of
implement. Therefore, it is advantageous to separate the interface parameters τ⃗, which
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describe the interactions at the connecting point between the tractor and the implement. The
commonly available interfaces can transmit forces, torques, fluid pressures, and voltages.
The state vector is completed with the tractor’s internal parameters θ⃗, like the fuel rate and
engine torque. These parameters are not adjusted directly for optimization but result from
the combination of the other parameters.

Given an objective function h(x⃗), an optimization of the machine state using the
control parameters w⃗ can be described as follows:

arg max
w⃗

h(x⃗) (2)

The universal optimization objective in agricultural field work can be described as
maximizing the harvest yield related to the required resources. These resources can include
energy input, monetary values, or production time.

h(x⃗) =
Harvest Yield

Resource Input
(3)

This general process objective has the issue that the harvest yield is not only impacted
by the process quality of each specific task within the agricultural production chain but
also depends on the type of plant that is cultivated, the composition of the soil, and the
effects influenced by weather, such as the moisture of the soil.

While research has already been conducted to describe the process quality of specific
tasks, the relationship between the process quality of every single step in the agricultural
production chain and the harvest yield is not yet quantifiable for every step.

This leads to the issue that the objective function h(x⃗) is not observable during machine
operation. Standard optimization techniques like Pareto front optimization can, therefore,
not be deployed since the optimization requires measurability of the objective function.

However, a human operator can use their experience to define process parameters
that are supposed to have the best impact on the harvest yield. In consequence, the
objective function h(x⃗) can be optimized by minimizing the resource input as long as this
optimization occurs within the specified boundary conditions.

Constraints can be any given function of the state vector. Mathematically, this opti-
mization problem and the proposed constraints are as follows [13]:

maximize h(x⃗)

by varying x⃗

subject to ci(x⃗) = 0 for i = 1, . . . , n

cj(x⃗) ≥ 0 for j = 1, . . . , m

(4)

These constraints can take multiple forms and can vary between specific tasks in the
production chain.

One option is the introduction of equality constraints ci(x⃗), where a specific combina-
tion of state parameters must permanently be satisfied. An example of equality constraints
could be the specification of a relatively shallow working depth for stubble cultivation,
in contrast to a high working depth for primary tillage. Another option is restricting the
optimization space by introducing inequality constraints cj(x⃗). These constraints deter-
mine that specific state parameters or parameter combinations must be within a specified
optimization scope. Typical inequality constraints are, for example, speed limitations
(minimum/maximum) during tillage operations. This ensures the functionality of the
implement and, consequently, the effective execution of the process.
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The two options are visualized in Figure 1 in a simplified manner by constraints
between two of the parameters of the state vector.

Version January 21, 2025 submitted to Eng 4

State Parameter 1

St
at

e
Pa

ra
m

et
er

2

(a) Inequality Constraints

State Parameter 3

St
at

e
Pa

ra
m

et
er

4

(b) Equality Constraints
Figure 1. Types of Optimization Constraints. The gray space resembles invalid operating points due
to active process constraints. These can either be inequality constraints 1a, in which the optimization
space is limited by boundary conditions, or equality constraints 1b, where only a single combination
of state parameter values is valid.
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Figure 1. Types of optimization constraints. The gray space resembles invalid operating points due
to active process constraints. These can either be inequality constraints (a), in which the optimization
space is limited by boundary conditions, or equality constraints (b), where only a single combination
of state parameter values is valid.

As the defined restrictions ensure the correct execution of the process, influences on
the variation in the operating point in the defined limit ranges are regarded as constant
with regard to the resulting harvest yield. h(x⃗) can be expressed as a specific, observable
target function h∗(x⃗) multiplied by the constant, non-observable part c, which considers
the effect on the harvest yield:

h(x⃗) = h∗(x⃗) · c (5)

Observable target functions, such as the productivity functions proposed by Scherer [14],
can be adapted to agricultural field work. These functions facilitate the quantification of
specific performance metrics.

The productivity concerning time, expressed in hectares per hour (ha/h), represents
the processed field area and is determined by the operating speed v and the working
width d:

h∗time(x⃗) = v · d (6)

Energy productivity, often referred to as energy efficiency, is expressed in hectares
per liter (ha/L). This metric is calculated by relating the processed field area to the fuel
consumption rate B:

h∗energy(x⃗) =
v · d

B
(7)

Monetary productivity, expressed in hectares per euro (ha/€), incorporates fuel costs,
machine rental costs, and labor wages. The parameters include Cfuel, representing the
fuel price per liter; Carea, which quantifies the machine costs per unit of processed area
(commonly applied in implement rentals [15]); and Ctime, denoting the cost per hour for
tractor rental and operator wages [15].

h∗money(x⃗) =
v · d

Cfuel · B + Carea · v · d + Ctime
(8)

Each of these objective functions depends on parameters derived from the machine
state vector x⃗, as previously introduced, and can be used as an optimization basis.

Despite the fact that the current status of the machine combination can be observed
in principle by measuring the parameters contained in the state vector x⃗, optimization by
means of iterative adjustment of the machine status within the specified process limits
would influence the processing quality. If environmental variables are changed, subsequent
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iteration loops are required to find the new optimum point, which makes continuous opera-
tion at the optimum operating point more difficult. A much more convenient optimization
variant opens up if the possible state space of the machine combination can be modeled
directly using the measurement of a single operating point as input for a prediction model.
This approach avoids the otherwise necessary optimization iterations, as these can now be
carried out in the model and no longer require any physical adjustments.

Various influences must be considered to predict the parameters that describe the
state of the machine combination. The machine state is influenced by the environment
in which the current process is carried out—for example, the type of soil and the slope.
Furthermore, process parameters introduced by the tractor–implement constellation and
settings, together with the defined process constraints, have an impact on the state. The last
influence to consider is the effect of control inputs. Therefore, we define the control vector,
which is a subset of the state vector with parameters that can be adapted independently. The
predicted state ˆ⃗x can, therefore, be expressed as a function of the environment parameters
ϵ⃗, the process parameters and constraints p⃗, and the control parameters w⃗.

ˆ⃗x = f (⃗ϵ, p⃗, w⃗) (9)

The machine state prediction process is structured similarly to the power flow of the
process coming from the control input, the resulting power demand of the process, and
the respective internal drivetrain parameters required to provide the requested power. At
each step, all essential parameters for the description of the machine state are selected
to be included in the state vector. Each component of the prediction architecture must
thereby consider the current environment and the given process parameters. The prediction
approach is visualized in Figure 2.

State DescriptionInputs

Control 
Parameters

Control 
Parameters

Environment  
Parameters

Environment  
Parameters

Process Power 
Demand

Process Power 
Demand

Interface 
Parameters
Interface 

Parameters

Control 
Parameters

Control 
Parameters

Internal 
Parameters

Internal 
Parameters

Drivetrain
Characteristics

Drivetrain
Characteristics

Process  
Parameters
Process  

Parameters

Figure 2. Prediction architecture.

In the first step, control parameters are specified to define the operating point. The pro-
cess’s power requirement is then determined on this basis. This is accomplished separately
for each mounted implement, taking into account the relevant environmental parameters
and process parameters so that, ultimately, the power requirement resulting from the
process at the interfaces between the implements and the tractor is known. This power
requirement is then used to calculate the tractor’s internal operating point, again taking
into account the environment and the process conditions. This allows the consideration
of losses that occur in the drivetrain. The result is the previously introduced uniform
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description of the machine state, which contains the control input, the load at the interfaces,
and tractor-internal parameters.

3. Experiments
The method was applied during maize stubble cultivation on a field located near

Osterzell, Germany, on one day in October 2024 without precipitation. The field exhibited
a constant slope between minus two and plus two degrees, depending on the driving
direction. The soil type of the field was classified as loamy. Although the soil was moist,
it was passable and workable, with no negative impact on the soil structure. Detailed
soil type and soil moisture measurements were not conducted. The tractor used for the
experiment was a Fendt 724, while the tillage implement was a LEMKEN Karat 10 KUTA
with a width of 4 m. The ballasting was performed using a front weight of 1250 kg. The
machine combination is shown in Figure 3.

Figure 3. Fendt 724 with LEMKEN Karat 10 KUTA.

In accordance with the presented approach, to assure the process quality, a working
depth condition, and a speed boundary condition were set. The process quality of this
task depends heavily on the choice of working depth t and, therefore, varies between
different possible applications of a cultivator during the production chain. In line with [16],
the operator begins with the shallowest depth possible to minimize energy requirements.
Subsequently, the depth is adjusted incrementally downward until a satisfactory work
result is achieved. The best working depth for stubble cultivation depends on the amount
of organic material on the surface and the site conditions—common are working depths
of up to 20 cm [16]. For the given field, the human operator judged the work result
satisfactory at a depth of t = 17 cm, which was fixed as an equality constraint for the
subsequent experiment.

t = 17 cm (10)

Furthermore, during the reference passes, an issue with inadequate surface smoothing
at very low speeds was observed by the operator. This speed constraint was set as a
boundary constraint, since no negative impact of high speeds was observed.

v ≥ 4 km/h (11)

The maximization of the productivity concerning energy usage for the task (Equation (7))
was selected as the optimization objective. As control input, the adaption of the speed of
the machine combination was chosen.

ˆ⃗w = (v) (12)
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For the state description and prediction, the model was reduced to the forces acting in
the direction of travel (parallel to the ground), while the acceleration forces were neglected.
All required sensor signals were collected from the standard CAN-BUS and processed
using a moving mean filter with a window size of 1 s.

A weight was attached to the tractor’s front interface to improve the machine combi-
nation’s traction characteristics. The weight with a fixed mass m requires propelling forces
Fx,weight depending on the gravitational acceleration g when driving on a slope δ.

Fx,weight = m · g · sin(δ) (13)

According to the presented method, these characteristics can be described as the
influence of the environment ϵ⃗, the influence of the process p⃗, and the influence of the
control input w⃗. The gravitational acceleration and the slope of the field are parameters that
depend on the environment and cannot be adapted, as it is assumed that the navigation
and choice of path are determined in advance and cannot be optimized. The mass of the
implement is a process-specific constant since the weight can be adjusted in advance to
optimize the weight distribution, but is not adaptable during operation.

ϵ⃗weight =

(
g
δ

)
, p⃗weight =

(
m
)

, ˆ⃗τweight =
(

Fx,weight

)
(14)

The cultivator at the rear interface of the tractor requires draft forces to operate. The
load due to the soil moving was specified according to ASAE D497.7 [17]. On the one hand,
the overall power requirement is caused by this movement of the soil due to the process
itself, but also by the force of gravity when driving on slopes.

Fx,cultivator = sD · d · t · (46 + 2.8 · v) + m · g · sin(δ) (15)

The parameters can be assigned to the respective vector accordingly.

ϵ⃗cultivator =

 g
δ

sD

, p⃗cultivator =

m
d
t

, ˆ⃗τcultivator =
(

Fx,cultivator

)
(16)

In the practical application, the parameters sD, w, and t are combined into a single
parameter calculated from the machine’s current operating point, as in [9].

The interface state vector combines the load demand of the implements mounted at
the front or the rear as

ˆ⃗τ = [ ˆ⃗τf ront, ˆ⃗τrear] =

(
Fx, f ront

Fx,rear

)
=

(
Fx,weight

Fx,cultivator

)
(17)

For the specified objective function, only knowledge of the fuel rate is required.
Therefore, all internal state parameters except for the fuel rate are omitted.

ˆ⃗θ = (B) (18)

An artificial neural network was used to predict the internal state of the tractor, taking
the control vector and the state of the tractor–implement interfaces as prediction inputs.
Furthermore, to include environmental effects in the prediction model, the slope and
an assumption regarding the machine’s traction characteristics are part of the network’s
input vector. In previous experiments, it was determined that the calculated slip values



Eng 2025, 6, 27 8 of 12

based on the provided internal signals of the tractor are subject to very high noise. As a
result, the use of complex slip models based on this inaccuracy of the current machine
state leads to strong oscillations in the prediction model during optimization. Therefore,
the assumption of constant slip was used in the tests, which is associated with strongly
increasing inaccuracies with increasing speed differences between the predicted state and
the current state. However, this approach leads to a more stable behavior of the optimizer
and to better prediction results than the complete exclusion of the traction characteristics
from the input of the network.

For practical reasons, the input of the neural network regarding the slip was not the
slip rate s itself but rather the respective theoretical speed vtheo of the tire and the given
speed from the control vector.

vtheo =
v

1 − s
(19)

This allows the direct setting of this parameter as the new target speed of the tractor since
the cruise control uses the theoretical speed as a reference.

ϵ⃗tractor =

(
δ

vtheo

)
, p⃗tractor = (), ˆ⃗τ =

(
Fx, f ront

Fx,rear

)
, ˆ⃗θ =

(
B
)

(20)

The training dataset for the neural network contained 101,440 operating points col-
lected from previous tillage experiments conducted with a cultivator. Each data point
consisted of the parameters listed in ϵ⃗tractor, p⃗tractor, w⃗, τ⃗ as inputs and θ⃗ as the output. The
recorded and synchronized sensor signals were standardized by subtracting the mean and
scaling to unit variance using PyTorch’s StandardScaler.

The neural network was implemented in PyTorch and trained to minimize the mean

absolute prediction error of ˆ⃗θ.
For the training process, the Adam optimizer with a batch size of 512 was used,

and a hyperparameter search was conducted using Bayesian optimization to optimize
other architecture parameters. The discrete hyperparameter space is described in Table 1.
To ensure the model’s applicability, five-fold cross-validation was performed during the
hyperparameter search in combination with early stopping (patience = 5).

The final architecture of the neural network consisted of a fully connected network
with three layers of 128 neurons each.

Table 1. Hyperparameter search space.

Parameter Search Space Selected Value

Learning Rate 10−6, 10−5, ..., 10−1 10−3

Layers 1, 2, ..., 10 3
Layer Size 8, 16, 32, ..., 2048 128
Weight Decay 10−6, 10−5, ..., 0 0
Batch Normalization False, True False

As an optimization scheme, the presented state prediction scheme was applied once
every second in the constrained optimization space of 4 km/h ≤ v ≤ 20 km/h in discrete
steps of 0.5 km/h to make sure that the minimum speed did not exceed the provided
boundary condition and that the maximum speed that was evaluated exceeded the maxi-
mum power output of the tractor. The predicted states were evaluated using the overall
energy efficiency (Equation (7)) as the objective function, and the best state was selected as
the new control target of the tractor if the expected outcome of the state transition would
lead to an increase of a minimum of 5% of the objective function. This was implemented
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to avoid unnecessary oscillations due to relatively small changes in the objective function
within the optimization space.

4. Results
In the following, the mean fuel efficiency is compared to parallel rows on the same

field. For the reference rows without optimization, the speed is set to 5 km/h, 7.5 km/h,
and 10 km/h using the cruise control. The actual speed of the machine is lower than the
theoretical speed of the cruise control due to wheel slip. Table 2 lists the mean speed, the
mean efficiency, and the relative efficiency improvement compared to a reference speed of
7.5 km/h for the downhill pass (negative slope).

Table 2. Downhill evaluation.

Algorithm Const.
5 km/h

Const.
7.5 km/h

Const.
10 km/h

(Full
Throttle)

Mean Speed (km/h) 6.0 4.55 6.69 8.31
Mean Efficiency (ha/L) 0.09 0.089 0.085 0.073
Efficiency Improvement 1 5.9% 4.7% - −14.1%

1 Efficiency improvement is calculated based on the reference run with a constant theoretical speed of 7.5 km/h.

In the downhill pass, the algorithm improved energy efficiency by 5.9% compared
to a constant theoretical speed of 7.5 km/h (6.69 km/h with wheel slip). Reducing the
theoretical speed to a lower constant speed of 5.0 km/h (4.55 km/h with wheel slip)
improves efficiency by 4.7%. However, compared to the algorithm, the improvement is
lower at a much higher speed reduction. In direct comparison with the full-throttle pass,
the algorithm achieved an efficiency improvement of 23.3%.

A pass in the uphill direction was conducted with the identical setup to change the
influence environment and, thereby, also the optimal operating point. These results are
visualized in Table 3.

Table 3. Uphill Evaluation.

Algorithm Const.
5 km/h

Const.
7.5 km/h

Const.
10 km/h

(Full
Throttle)

Mean Speed (km/h) 4.99 4.34 6.45 7.67
Mean Efficiency (ha/L) 0.084 0.078 0.079 0.069
Efficiency Improvement 1 6.3% −1.3% - −12.7%

1 Efficiency improvement is calculated based on the reference run with a constant theoretical speed of 7.5 km/h.

For the uphill pass, an improvement of 6.3% compared to a constant theoretic speed
of 7.5 km/h (6.45 km/h with wheel slip) was observed, with a lower average speed of
4.99 km/h compared to the uphill pass.

A reference speed ramp was executed parallel to the uphill pass to visualize the
algorithm’s choice of operating point. The operating points chosen by the algorithm are
visualized in relation to the efficiency characteristics to control variable changes. The results
are presented in Figure 4.
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Figure 4. Algorithm points compared to speed ramp points.

The speed ramp demonstrates the shape of the efficiency curve without considering
process quality restrictions. Therefore, it also includes unfeasible operating speeds below
the minimum speed value. The figure illustrates a visual representation of the optimization
process, demonstrating that the selected speed aligns with the optimal operating point of
the machine combination.

5. Discussion
The analysis of the data collected in the field tests visualizes the method’s potential to

optimize the machine state. The targeted operating speed of an average of 6.0 km/h was
within the reference speeds of 4.55 km/h to 8.31 km/h for the downhill pass, and 4.99 km/h
within 4.34 km/h and 7.67 km/h for the uphill pass, which suggests the optimization found
an optimum within the scope.

The different selected operating points between the uphill and downhill passes can
be explained by the additional traction force demand due to gravitational effects when
driving uphill and the optimal operating point of the machine combination being set at
a fixed power outcome. Henceforth, with a reduced operating speed, the required draft
power is reduced to maintain the optimal operating point.

The method’s evaluation in the field showed that the general approach of predicting
possible system states and comparing them with an objective function is feasible for
optimizing the machine state within the constrained optimization space.

The experiments did not study whether a human operator would be able to
achieve similar improvements since this depends on the operator’s experience and
concentration level.

The advantage of the allocation between the prediction of the process power demand
and the drivetrain characteristics is that it offers interchangeability and interoperability
of the individual components of the tractor–implement combination. Furthermore, the
design of the particular model components is not predetermined, allowing for allocating
classical mathematical models like the model implemented to predict the cultivator’s power
demand and artificial neural networks like the model for the tractor’s drivetrain behavior.

The method currently requires a manual setting of process constraints. However, with
an advanced process quality measurement system, the relationship between control input
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and process quality might be quantifiable, and therefore, it could be used to dynamically
set process constraints concerning process quality.

Improving the sensor measurements and filtering methods used to determine the
machine’s current state could further improve prediction accuracy. The individual parts
of the prediction algorithm can be further optimized, for example, by implementing more
accurate traction models. It is to be expected that the assumption of a more complex slip
model, for example, based on the relationship between tractive force and slip (e.g., [18–21]),
and using assumptions for the multipass effect (e.g., [3,22,23]), should lead to improved
prediction accuracy.

6. Conclusions
This paper presents a novel approach to describing the influences on machine state

and defining process constraints, which allows for the systematic consideration of various
process objectives. The method’s feasibility to optimize the machine state was demonstrated
in field tests. Further testing is required to specify the optimization approach’s actual
optimization potential and verify its functionality under different environmental conditions.
Furthermore, the system’s modular usage has to be examined to allow adaptation to various
implements. The required modularization and communication of the different modules
must be defined to standardize the information exchange and uniformly optimize the
operating point for flexible tractor–implement combinations.
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