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Abstract: Fractal dimension, a measure of self-similarity in a structure, is a powerful physical
parameter for the characterization of structural property of many partially filled disordered materials.
Biological tissues are fractal in nature and reports show a change in self-similarity associated with
the progress of cancer, resulting in changes in their fractal dimensions. Here, we report that fractal
dimension measurement is a potential technique for the detection of different stages of cancer using
transmission optical microscopy. Transmission optical microscopy of a thin tissue sample produces
intensity distribution patterns proportional to its refractive index pattern, representing its mass
density distribution. We measure fractal dimension detection of different cancer stages and find its
universal feature. Many deadly cancers are difficult to detect in their early to different stages due
to the hard-to-reach location of the organ and/or lack of symptoms until very late stages. To study
these deadly cancers, tissue microarray (TMA) samples containing different stages of cancers are
analyzed for pancreatic, breast, colon, and prostate cancers. The fractal dimension method correctly
differentiates cancer stages in progressive cancer, raising possibilities for a physics-based accurate
diagnosis method for cancer detection.
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1. Introduction

An object exhibiting self-similar structures at different length scales is known as a
fractal. Several systems in nature are fractal, including biological tissue samples from
different organs [1–5]. Biological tissues have spatial heterogeneity in their mass density
distribution and are a self-similar structure. This self-similar structure can be analyzed and
expressed in terms of fractal dimension. The fractal dimension of an object is a number
quantifying how similar the structure remains with changes in length scale and is related
to the structural porosity of the tissue samples. It is now known that the fractal dimension
of tissue changes with the progress of cancer [6–10]. A tissue’s fractal dimension will
change throughout the course of cancer progression due to the increased production and
rearrangement of intracellular structures such as DNA, RNA, lipids, heterochromatin, and
the extracellular matrix, which causes an increase in the mass density and rearrangement of
the tissue. Because cancer progression changes a tissue’s fractal dimension, a quantitative
diagnostic test can be developed based on these changes [11,12]. Therefore, a physics-based
quantitative approach that detects structural change with the progression of carcinogenesis,
in particular changes in the fractal dimension, at the earliest possible point as well as the
time progression of carcinogenesis may be a potential parameter for characterization of
the progress of cancer. Although several reports are measuring fractal dimensions for
cancer detection, they are mainly individual cancer cases and the topic requires more
exploration [6,10].

According to the WHO, millions of people are dying from cancer each year. Therefore,
accurate detection of early stages of cancer, as well as different stages of cancer progression,
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is necessary for preventing this widescale mortality [13]. Cancer arises in people due
to changes in the DNA replication processes that occur during cell reproduction due to
random processes. This may be due to the influence of carcinogenic chemicals, radiation
exposure, or many other factors. Cancerous cells tend to reproduce themselves more
rapidly than normal cells, causing a massive buildup of abnormal cells known as a tumor.
These tumors inhibit the normal bodily functions of the organs they reside in and then can
spread through the bloodstream or immune network to several vital organs such as the
lungs, brain, liver, etc., resulting in a potentially fatal outcome if left to grow unchecked.
Currently, most cancer tests rely on a pathologist qualitatively studying a cell/tissue from
a biopsy tissue/cell sample for minute structural differences or they rely on chemical
methods involving exceedingly expensive and time-consuming dyes and stains [14,15].
Both of these methods are inefficient and potentially inaccurate due to potential bias for
the staining chemical and the reliance on the observational abilities of the pathologist.
Due to the high potential for human error in eye detection in conventional techniques,
a more easy, quantitative, physics-based test is necessary to help detect cancer and its
stage characterization.

To test the usefulness of the potential of the fractal method for cancer detection and its
stage characterization, as well as to explore its universal approach of applying this method
to different cancers, tissue microarray (TMA) samples from common cancer types, pancre-
atic, breast, colon, and prostate, were utilized. TMA samples are a method of commercially
available clinical sample observation that is increasingly growing in popularity, especially
for research purposes, that avoids the complicated process of collecting tissue directly from
patients in hospitals. TMA consists of a glass slide containing multiple cores of consistent
paraffin embedded tissue samples from the same bodily region of several human subjects
of control and with varying stages of cancer. In our case, each core consists of a circular
sample of tissue that is 1.5 mm in diameter and 5 µm in thickness embedded in paraffin
wax to increase the sample’s shelf-life. Each slide can contain up to a hundred cores, greatly
increasing the speed and high-throughput analysis at which multiple tissue samples can be
processed and analyzed [16,17]. For the purpose of the present experiment, four different
cancer TMA slides containing only 24 cores each of different cases were used. The following
four cancer types were studied using TMA samples: pancreatic, breast, colon, and prostate.
Pancreatic cancer was chosen due to its lethality; it is estimated that 48,220 people will die
from this disease in the United States in 2021. Its mortality is due in large part to the organ’s
location being difficult to reach, and because it does not display any prominent chemical
changes or symptoms until the hard-to-treat late stages. Another cancer that was studied
was breast cancer due to its prevalence. In 2021, it is estimated that over 281,550 women in
the United States will be diagnosed with breast cancer, which is characterized by a diverse
range of potential causes including radiation exposure, consumption of alcohol, and age
at which a first pregnancy occurs [18,19]. Colon and prostate cancer, both of which have
been linked to high consumption of red meat, also exhibit high rates of mortality and
diagnosis rates, so they too were studied using the fractal dimension technique [18,20,21].
It is estimated that, in 2021, these four cancers will be responsible for the deaths of almost
180,000 people within the United States alone [18]. Due to either their prevalence, lethality,
or combination of the two, pancreatic, breast, colon, and prostate cancers were analyzed
using this quantitative method, which has the potential to become a new diagnosis method.

The key concepts explored in this paper are as follows: (1) the mass density structure
of the tissue is fractal, which is self-similar in all length scales and has a fractal dimension.
(2) The progress of cancer is associated with more mass density accumulation in the tissue
and in turn leads to changes in the fractal dimension of the tissue. (3) The refractive index
of tissue is proportional to its mass density; therefore, change in the tissue due to cancer
progression can be probed by the optics. (4) In this study, we quantify the different stages
of cancer in tissue by calculating the fractal dimension of this cancerous tissue by probing
the tissue structure by a bright field transmission microscope. A flow chart for the steps are
shown in Figure 1.
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Figure 1. The step-by-step process for calculating the fractal dimension of a microscopic image
is outlined.

2. Materials and Methods
2.1. Materials

Human tissue samples are obtained commercially from US Biomax Inc. (Derwood,
MD, USA), that has collected the tissue samples with the legal and ethical procedure (as
documents provided by the Biomax).

2.2. Mathematical Methods
2.2.1. Fractals and Fractal Dimensions

Fractals are samples with partially filled structures in space that exhibit self-similarity
at different length scales and can be divided into two categories: deterministic and random.
Deterministic fractals are generated deliberately by systematically removing or filling a sam-
ple with a deterministic algorithm, while random fractals are created through a stochastic
process [22]. Random fractals occur quite often in nature and can be seen in the structures
of trees, coastlines, and most importantly for this experiment, in tissue structures. These
random fractals can have varying degrees of self-similarity, which leads to the need for a
quantifiable fractal dimension. A structure’s fractal dimension is essentially a measure of
how self-similar the structure is; the higher the dimension, the more self-similar it is, with
more filling or less porosity. The fractal dimension of a random fractal is determined using
a box-counting method. This method works by first placing the fractal structure on an
evenly spaced grid and counting the number of boxes needed to cover the structure [23,24].
According to the definition of a fractal object, it follows the relationship of different
length scales with the following mathematical relations between any two length scales:
Ni(ri) × (ri)Df = Nj × (rj)Df = Constant, where Ni is the number of boxes at length scale ri,
and Nj is the number of boxes at length scale rj. The average fractal dimension Df is then
calculated by refining the grid through a box-counting algorithm. The equation used in
this algorithm can be derived from the above definition as an average slope of ln(N(r)) vs. r
curve, with varying length scales r.

D f =
ln(N(r))

ln
(

1
r

) (1)
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where N(r) is the number of boxes of side length r needed to cover the fractal structure. Df
is the ensemble averaged fractal dimension of the structure since the box-counting method
accounts for several different realizations.

2.2.2. Calculating Fractal Dimension using Microscopic Images

We report here the study of fractal dimension from paraffin embedded thin tissue
samples and attempt to see the universality in the change in the fractal dimensions for
most common deadly cancer cases. Some aspects of this method have been utilized in
previous studies of cancer detection [14,25]. This method works by taking the binary
version of an image and applying the box-counting method to divide the image into a
grid of evenly sized boxes and creating a plot of ln(N(r)) vs. ln(1/r) whose average slope is
equal to the fractal dimension. While most of the previous experiments focused on a single
type of cancer, the experimental results reported in this paper deals with multiple types of
cancer to explore the potential of creating a standardized numerical index that applies to
many cancers and to explore their universality with less intensity tissue samples (paraffin
embedded), and lastly, to see any universality.

2.3. Physical Set-Up
2.3.1. TMA Samples

Four different TMA samples from US Biomax were studied in this experiment: pan-
creatic (T142b), breast (BR248a), colon (T054c), and prostate (T191a). Each slide consists
of around 24 cores of 1.5 mm in diameter and 5 µm-thick tissue that were embedded in
paraffin wax and attached to the slide. For each sample, at least 3–5 cores of each stage of
control or cancer are analyzed. Each core on the pancreatic and colon TMA slides comes
from individual patients of varying ages and sex. The prostate TMA slide contains 12 pairs
of identical cores, where each pair was obtained from a different patient. The breast TMA
slide contains individual cores from female patients of varying ages of control and cancer
cases. These cores were either normal tissue samples or tissue samples in stage I, stage II,
or stage III of cancer.

2.3.2. Microscope Setup and Imaging

The images were taken using an Olympus BX61 Upright Bright field Microscope
(Tokyo, Japan) coupled with an Amscope model MU1003 camera using Amscope software.
Each TMA slide is imaged on the microscope stage, which is being operated in brightfield
transmission. At least 20–22 different cores are imaged on each slide, depending on the
number of cores and stages of cancer present. Each core is imaged with 50× magnification
objectives without immersion oil in at least 10 different spots. Every spot has 5–10 images
taken at slightly different focusing heights to ensure at least one focused image is captured
within the working distance of the objective. The best focus map was obtained by the most
intense average gray spots.

For every biological sample, change in certain/overall refractive index properties can
be attributed to the progress of cancer. In the early stages of cancer, there is an accumulation
of nucleic acid in the nuclei followed by unregulated cell division in the advanced stages
of cancer. These properties show a distinct change when cancer present in the sample
causes a small linear increase in the sample’s mass density [26]. In particular, an increase
in the mass density and filling of the porosity or less mass density areas happens with
the progress of cancer. For this study, the contrast of the grayscale images taken with
the microscope is assumed to be caused by the spatial mass density variation within the
sample. This variation provides the refractive index variation, which, in turn, provides
the correlation between the mass density of the sample and pixel intensity/transmission
intensity of the image.
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Transmission intensity It of a biological tissue sitting on a glass slide of an incident
intensity I0 can be expressed as the transmission through a thick sample, and it follows the
following equations:

It = I0 × (1 −
ntissue+glass − nair

ntissue+glass + nair
)× exp(−K.d) (2)

where ntissue+glass is the effective refractive index of the tissue over the glass system, nair
is the refractive index of the air, K is the effective absorption coefficient of the tissue over
the glass, and d is the thickness of the slide with the tissue sample. For a TMA tissue
sample, I0, K, and d are constants (for dried tissue, the absorption is quite negligible), and
there is a linear relationship between transmission intensity and change in the refractive
index (ntissue+glass − nair).

It α (ntissue+glass − nair) α change in tissue mass density (3)

This implies the change in image intensity pattern is proportional to the change in the
refractive index of the tissue, where the refractive index is proportional to the mass density.

2.4. Analysis of Images

Each captured microscopy image is analyzed using Image J (NIH, Bethesda, MD, USA)
software [27]. First, the bright-field images are converted into 8-bit binary images with Image
J. The threshold for determining the background versus objects in the image is calculated
automatically by Image J by first taking a test threshold, computing the average pixels above
and below the threshold, and then incrementing the threshold. This process is repeated
until the threshold is larger than the composite average as described in the equation.

Threshold = (average background + average objects)/2 (4)

The microscopy best focusing was performed by moving the focusing around the best
focus point and then performing a histogram of best mean gray points. After the image
is converted to binary, a smaller area is selected for each realization, and its surroundings
are cropped to remove any dead space or deformities in the tissue structure of the TMA
sample. Finally, the fractal dimension is calculated using the box-counting method, which
is performed by the fractal analysis through the method mentioned above in Section 2.2.2.

2.5. Statistical Analysis

All the statistical analyses of the calculation of the p-value for relative changes in the
fractal dimension were performed using Student’s t-test (two-tailed).

3. Results

After collecting microscopic images of each sample, they are converted into binary
images in Image J. Following that, the fractal dimension analysis tool in Image J is used
to calculate the fractal dimension of each cancer stage of TMA samples, which are then
graphed for comparison. As seen in the graphs, the fractal dimension for the pancreatic,
breast, colon, and prostate cancer samples increases with the progression of cancer through
the different stages. This increase in fractal dimension is because the presence of cancer
results in a higher cell replication rate [28]. The rate of cancerous cell replication is greater
than that of normal cells due to genetic mutations. These genetic mutations also cause
the cancerous cells to spread to other regions of the body at a higher rate than the normal
cells [29]. As the cells reproduce at a faster rate, the mass density of the affected tissue area
increases. Since the fractal dimension of a tissue sample is dependent on this mass density,
it will increase as the mass density increases due to the progression of cancer.
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3.1. Pancreatic Cancer

Figure 2a,b show the brightfield images of normal and stage III pancreatic tissue from
a TMA sample, respectively. Figure 2a’,b’ show the binary versions of each brightfield
images. These binary images display the increased mass density distribution, which results
from the progression of cancer. As seen in Figure 2c, the normal pancreatic tissue sample
had the lowest fractal dimension, while the different stages of cancer possess increasing
fractal dimensions. The actual fractal dimensions for each sample are calculated to be
1.5984 for the normal, 1.6673 for stage I, 1.6866 for stage II, and 1.7407 for stage III. The
percent difference between the normal and stage I sample is 4%, between normal and
stage II is 6%, and between normal and stage III is 9%. This percentage increment in the
logarithm scale of the fractal dimension with the increase in the stage of cancer is highly
significant. These results suggest that the fractal dimension of a pancreatic tissue TMA
sample increases with the progression of cancer. This is a logical outcome, as cancer is
known to cause cell replication to increase, which then causes the density, and therefore
the self-similarity, of cells within the tissue to increase as mentioned earlier. This results
in variation to the transmission intensities from the sample, which increases the fractal
dimension. Since the fractal dimension is a measure of the self-similarity of a sample, the
fractal dimension of pancreatic tissue will increase with the progress of cancer. Similar
results have also been observed in several other studies [30].
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Figure 2. Pancreatic cancer: (a,b) are the brightfield images of the normal and stage III pancreatic
TMA. (a’,b’) are the corresponding binary images. (c) is the bar graph of the average fractal dimension
of the pancreatic tissue samples (n = 24, 3–5 subjects per stage). The results show the fractal dimension
of cancer stage I increases by 4%, stage II by 6%, and stage III by 9% with respect to the normal
(p-values < 0.05).

3.2. Breast Cancer

The brightfield images from a normal and stage III breast cancer TMA tissue core
are shown in Figure 3a,b, respectively. Their binary analogs are shown in Figure 3a’,b’,
with Figure 3b’ showing an increased density. The greater density demonstrates how
the progression of cancer results in an increased mass density distribution. As shown
in Figure 3c, the normal breast tissue sample has the lowest fractal dimension, while
the different stages of cancer had fractal dimensions increasing with the progression of
cancer. The actual fractal dimensions of the breast tissue samples are 1.5448 for the normal,
1.6126 for stage I, 1.6631 for stage II, and 1.7284 for stage III cancer. For the normal, and
stage I tissue samples, the percent difference between the two is 4%, while the percent
difference between the normal and stage II and the normal and stage III are 7% and 12%,
respectively. These results suggest that the fractal dimension of a breast TMA sample
increases with the progression of cancer. Cancer is known to cause an increase in the
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replication rate of cells, which therefore causes an increase in the tissue’s mass density
distribution. These results make sense because the fractal dimension of a tissue sample is a
measure of its mass density distribution. Similar results to these have also been observed
in other studies [30].
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Figure 3. Breast cancer: (a,b) are the brightfield images of the normal and stage III Breast TMA.
(a’,b’) are the corresponding binary images. (c) is the bar graph of the average fractal dimension of
the Breast cancer tissue microarrays (TMA) samples (n = 24, 3–5 subjects per stage). The results show
the fractal dimension of cancer stage I increases by 4%, stage II by 7%, and stage III by 12% with
respect to the normal (p-values < 0.05).

3.3. Colon Cancer

Normal and stage III cores of the colon TMA slide’s brightfield images are shown in
Figure 4a,b. Their corresponding binary images are pictured in Figure 4a’,b’ and show how
the mass density distribution of a tissue sample increases throughout the progression of
cancer. As can be seen in Figure 4c, the normal colon tissue sample possesses the lowest
fractal dimension, while the fractal dimensions for each stage of cancer increase with its
progression. The actual fractal dimension values for each sample are 1.5551 for the normal,
1.6393 for stage I, 1.6652 for stage II, and 1.7004 for stage III. When the normal tissue sample
is compared with stage I, stage II, and stage III samples, the percent differences are found
to be 5%, 7%, and 9%, respectively. These results suggest that the fractal dimension of a
colon TMA sample increases with the progression of cancer. Like other tissue samples, the
presence of colon cancer causes the replication rate of the affected cells to increase, resulting
in an increased mass density distribution. The fractal dimension of the tissue sample will
increase due to this, so the results gathered from this study make sense. Similar results
have also been observed in other studies [18].

3.4. Prostate Cancer

Representative brightfield images of a normal and stage III core are presented in
Figure 5a,b, respectively. Figure 5a’,b’ are the binary versions of the brightfield images
obtained through the Image J software. They clearly show that the mass density distribution
within tissue increases with the progression of cancer. As seen in Figure 5c, the normal
prostate tissue possesses the lowest fractal dimension, while the fractal dimensions for each
stage of cancer increase with its progression. The actual fractal dimension values for each
sample are 1.5737 for the normal, 1.5981 for stage I, 1.6302 for stage II, and 1.6798 for stage
III. The percent difference between the normal and stage I samples is 2%, normal and stage
II samples is 4%, and the difference between the normal and stage III is 7%. These results
suggest that the fractal dimension of a prostate TMA sample increases with the progression
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of cancer. The mass density distribution of a tissue sample increases due to the increased
cell replication caused by the presence of cancer, supporting the results obtained [25,31,32].
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Figure 4. Colon cancer: (a,b) are the brightfield images of the normal and stage III Colon TMA. (a’,b’) 
are the corresponding binary images. (c) is the bar graph of the average fractal dimension of the 
Colon cancer tissue microarrays (TMA) samples (n~24, 3–5 subjects per stage). The results show the 

Figure 4. Colon cancer: (a,b) are the brightfield images of the normal and stage III Colon TMA.
(a’,b’) are the corresponding binary images. (c) is the bar graph of the average fractal dimension
of the Colon cancer tissue microarrays (TMA) samples (n = 24, 3–5 subjects per stage). The results
show the fractal dimension of cancer stage I increases by 5%, stage II by 7%, and stage III by 9% with
respect to the normal (p-values < 0.05).
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Figure 5. Prostate cancer: (a,b) are the brightfield images of the normal and stage III Prostate TMA.
(a’,b’) are the corresponding binary images. (c) is the bar graph of the average fractal dimension of
the prostate cancer tissue microarrays (TMA) samples (n = 24, 3–5 subjects per stage). The results
show the fractal dimension of cancer stage I increases by 2%, stage II increases by 4%, and stage III by
7% with respect to the normal (p-values < 0.05).

4. Discussions

In this section, we compare the variation of different stages of cancer with respect to
the normal for the four main cancer cases considered here: pancreatic, breast, colon, and
prostate. The actual value of the fractal dimensions of the tissue with the increase in cancer
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stages has presented the by the Table 1 for better clarification. Also, the average values
of fractal dimension of the different stages of different cancer are graphically represented
in Figure 6, which concludes the universalities of fractal dimension with the increase in
cancer stages.

Table 1. The mean values of the fractal dimension of different cancer for different stages.

Normal Stage I Stage II Stage III

Pancreatic 1.5984 1.6673 1.6866 1.7047

Breast 1.5448 1.6126 1.6631 1.7283

Colon 1.5551 1.6393 1.6652 1.7004

Prostate 1.5737 1.5981 1.6302 1.6798
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Figure 6. The plot of the systematic increases in the fractal dimension with the progress of the cancer
stages. The x-axis steps are false steps that are measured by an equal distance unit of 1 for increasing
stages, for better presentation. It can be seen that the fractal dimension on average increases with the
stage; however, they take slightly different paths. Note: only mean values are shown, standard errors
are the same as shown in bar graph plots.

From the above data, the universal nature of the fractal dimension increasing with the
progress of cancer is seen; that is, there is an increase in the fractal dimension from normal
to Stage I to Stage II to Stage III. However, the paths have slight differences for different
types of cancers. Hypothetically, when there will be no space left for filling as in a very
advanced stage of the cancers, all cancer types will have a fractal dimension of two (for the
2D tissue samples) and will meet at the same point.

It can be pointed out here that, recently, there have been several studies of cells and
tissues where the fractal dimension calculations have been explored using lab-developed
quantitative phase microscopies, where mass structures can be detected, and fractal dimen-
sions can be calculated. However, the present paper addresses the most basic bright-field
transmission optical microscopy for fractal dimension calculation, which is available to
most biomedical laboratories or hospitals. A combination of bright field transmission mi-
croscopy and quantitative phase microscopy may provide more accurate fractal dimensions
or more accurate stages of cancer detection that need to be explored [33–36].

5. Conclusions

In this paper, we explored the possibility of creating a standardized, physics-based
cancer diagnosis test capable of accurate detection of cancer in both early and late stages
based on the fractal dimension analysis of paraffin embedded TMA samples. This was
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undertaken by optical transmission microscopic imaging of TMA samples of different stages
of pancreatic, breast, colon, and prostate cancer and calculating their fractal dimensions.
Intensity distribution from a thin tissue sample using transmission bright field microscopy
is directly related to the mass density distribution of the tissue, and the fractal dimensions
are calculated. The results show that in all the four types of cancer cases studied here,
the mean fractal dimension of a tissue sample increased as cancer progresses through
the different stages, with slightly different paths. The fractal dimension increases due
to the increase in the mass density and filling of the tissue porosity structure with the
progress of cancer. These results support that the histogram of the grayscale average
represents the degree of tissue disorganization, which reduces with the progression of
carcinogenesis. Therefore, the normal of each cancer tissue has a minuscule gray scale,
while the higher stages of each cancer have a higher grayscale or fractal dimension due
to more accumulation of mass density, such as due to the higher accumulation of DNA
mass, etc. Here, we were able to distinguish the different stages of pancreatic, breast,
colon, and prostate cancer cases via computer-aided/automated quantitative approach
of the fractal dimension detection of commercially available TMA samples using optical
transmission imaging. This result shows that there is definite potential for the creation of
a physics-based, standardized, automated, and quantitative cancer diagnosis approach,
which is free of some of the issues plaguing the current cancer diagnosis methods that
are based on the eye estimation of pathologists. Lastly, a physics-based easy, prompt,
cost-effective, and accurate quantitative cancer diagnosis method can also be compiled
into a database with the possibility for the creation of a shared database accessible to every
physician. By compiling the fractal dimensions that are calculated by doctors all over the
country, a master list can be created that gives the range of the average fractal dimension
for each type and stage of cancer and helps to distinguish the early stages of cancer. This
master list would become increasingly more accurate as more data is entered and be further
improved based on this structural change detection method of fractal dimension for early
cancer and its progression of different stages. We have to note here that, because the fractal
dimension changes logarithmically with the filling, this makes fractal dimension change
slow but it is still a powerful parameter for characterization of the progression of cancer
and its different stages.
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