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Abstract: Physical modeling of the functioning of the adaptive immune system, which has been
thoroughly characterized on genetic and molecular levels, provides a unique opportunity to define
an adaptive, self-organizing biological system in its entirety. This paper describes a configuration
space model of immune function, where directed chemical potentials of the system constitute a space
of interactions. A mathematical approach is used to define the system that couples the variance of
Gaussian distributed interaction energies in its interaction space to the exponentially distributed
chemical potentials of its effector molecules to maintain its steady state. The model is validated by
identifying the thermodynamic and network variables analogous to the mathematical parameters
and by applying the model to the humoral immune system. Overall, this statistical thermodynamics
model of adaptive immunity describes how adaptive biological self-organization arises from the
maintenance of a scale-free, directed molecular interaction network with fractal topology.

Keywords: system; network; chemical potential; thermodynamic activity; antibody; self-organi-
zation; fractal

1. Introduction

Macromolecules, and, in particular, proteins, have evolved as part and basis of the
evolution of life. The diversity of proteins reflects the diversity of life itself, while the tree
of evolution of proteins reflects the evolution of life [1]. Proteins serve to build (structural
proteins) and operate (enzymes, transporters, regulators, secretions) an organism. For all
these functions, it is necessary for proteins to interact with other molecules, from metal ions
through small molecules to other macromolecules. Beyond spatial arrangement, that is, the
necessity of being at the same place at the same time, interactions require thermodynamic
probability for the binding. In other words, the system searches for a free-energy-minimum
state while proteins sample interacting partners. This, in turn, means that most proteins
have energy minimums in a bound state. The evolution of proteins from this aspect is
the search for binding partners; genetic changes resulting in new, modified proteins are
sustained if the binding is advantageous for the survival of the organism. Since paired
interactions create networks of interactions, evolutionary processes are constrained by
energy transduction networks [2]. These biological networks may mediate metabolic
fluxes [3], protein interactions [4] or information in neural networks [5].

The functioning of the adaptive immune system is based on the directed evolution
of proteins, called antigen (Ag) receptors, of lymphocytes [6,7]. In its essence, the adap-
tive immune system is a catabolic system; it removes molecules and cells from the body
based on molecular, immunological instructions. Humoral adaptive immunity utilizes
glycoproteins called antibodies (Abs) for tagging targets for removal [8]. Abs, unlike all
other somatic proteins, are not encoded in the genome but are produced as a result of
genetic recombination and mutation events during our lifetime (sometimes referred to as
accelerated evolution). The role of the immune system is to drive and direct the evolution
of these molecules so as to maintain the molecular and cellular integrity of the host; this is
what we call immunity. As a result, millions of distinct Abs are produced constantly in our
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bodies, removing cellular debris, maintaining balance with the microbiota and fending off
invading agents [9].

On the molecular level, these immunological events have been characterized in detail;
however, the systems-level understanding and physical description of the self-organization
of the adaptive immune system are still incomplete. Since the adaptive immune system
is a bona fide, complex, adaptive system, considering its number of elements, its diversity
and its self-organizing capability, this bigger picture can be approached by characterizing
immunological phenomena using the terminology of the physics of complex systems and
mathematical models. Following the pioneering work of Perelson [10–12], the application of
physical and mathematical models for the answering of questions about immune repertoire
size and diversity and lymphocyte population dynamics, immunological memory has
regained interest [13–17]. Here, I attempt to combine chemical thermodynamics with
network theory, building up a model that is consistent with a novel technological approach
to serum Ab reactivity measurement [18]. The basic concept of this model was introduced
in previous papers that showed how stages of B-cell differentiation correspond to the
generation of a thermodynamic system and a network of interactions [19,20]. In this paper,
we first define the biological system as a configuration space using physical chemistry
in order to identify analogues of cells and molecules in a physical system. Then, we use
the mathematical description of the system to derive the architecture of the hierarchical
network that governs Ag transport in a stationary state of the system. Finally, we discuss
the model from the perspective of immunology, physical chemistry, network science and
the physics of complex systems. The mathematical approach described connects these
fields of science and, therefore, contributes to the quantitative, biological understanding of
an adaptive biological system.

2. Materials and Methods

A mathematical approach was used to examine exponential, Gaussian and power
law functions that serve as the basis of the proposed theoretical model; transformations of
these functions revealed the relationships between thermodynamic, network science and
immunological concepts building on such functions. The revealed analogies were used for
validating the model.

3. Results and Discussion

The following sections first outline the theoretical aspects of the model and describe
the mathematical approach taken. Then, support for the validity of the mathematical
approach is provided by identifying the thermodynamic, network and immunological
phenomena explained by the model.

3.1. Compartments of the System

Throughout the article, we examine the adaptive immune system in an abstract
space called configuration space. Configuration here refers to the arrangement of all the
constituent Abs in a system of interacting molecules. A general Ab structure is modified by
the arrangement of atoms that contribute to the binding site of the Abs, creating a huge,
conformational landscape. Since the formation of non-covalent bonds between interaction
partners requires shape congruency, arrangement in this space determines both Ab and
Ag structure and binding specificity and strength. The manifold enclosing components
of the immune system in this configuration space thus define both Abs and Ags. In this
space, cells and molecules of the immune system, corresponding to clones bearing or being
a particular Ab, respectively, are positioned according to their potential to interact with a
target and in the direction of the target. The interaction potential is the chemical potential
of the Ab in body fluids. Targets are Ag molecules that drive the evolution of the system.
Considering a three-dimensional Euclidean space as the configuration space of the system,
target Ag shapes—epitopes—form a continuity on an imaginary, spherical canvas enclosing
the system (Figure 1).
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Figure 1. Compartments of the self-organizing system shown schematically in two scales: (A), energy
scale, (B), thermodynamic activity scale. System core is blue, arrows represent chemical potentials of
system components in interaction space, shown in green. Arrows represent vectors with the length
as chemical potential and direction as specificity. G, Gibbs free energy; S, entropy; T, temperature;
E, energy.

From a physical point of view, the system is embedded in a reservoir, which serves as
a heat and particle bath; this is the host organism that maintains constant temperature and
pressure of the system. The system is in a stationary state in the sense that it is constantly
dispersing energy while maintaining its state functions. Overall, we can regard the system
as an ensemble of overlapping and hierarchically arranged thermodynamic ensembles.

We consider three compartments in our configuration space model: 1. the core of the
system, surrounded by the core surface; 2. interaction space around the core, extending
from the core surface to the system surface; and 3. the system environment (surroundings)
beyond the system surface. We use two scales for examining and visualizing the system:
the energy scale (Figure 1A), which is the logarithmic form of the interaction probability,
or the thermodynamic activity scale (Figure 1B). The system core contains the concep-
tual energy source of the system that is located in the origin of the configuration space.
Events within the core, therefore, can be thermodynamically unfavorable, consuming
energy to maintain a continuous supply of particles in the interaction space. The core
surface is spherical and is characterized by system components with average molecular free
energy µ0.

The system is composed of Ab and Ag molecules. B cells, which carry sequence infor-
mation, at various stages of differentiation, determine Ab structure and define clonotypes.
Soluble Abs released by B cells mediate energy transfer by binding and releasing Ags. En-
ergy corresponds to Ag molecules, which are transferred from lower- to higher-affinity Abs,
with a corresponding decrease in the system free energy. These constituents are present
both in the core and in the interaction space. Interaction space is defined and confined by
the totality of chemical potential vectors, each of which represents the interaction energy
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of a particular Ab clonotype. Radial geometrical distance in this configuration space is
measured in units of chemical energy per molecule or chemical potential, while vector di-
rections identify Ag structures and molecular shapes in the surroundings. From a network
point of view, in the humoral adaptive immune system, nodes are basically Ab molecules,
while links represent Ab structural similarities and, thereby, represent potential pathways
of Ag transport.

3.2. Principle of Self-Organization

Self-organization is the ability of a system to arrange its constituents so as to adjust to
its environment and also maintain a responsive state. Self-organizing systems tend to reach
an optimal state associated with minimal interaction and dissipation [21–23]. The immune
system adjusts the quality (intensive physical property) and number of molecules (extensive
physical property) in the host by the coupling of a sensor and an effector mechanism [20].
The sensor mechanism is a B cell that survives only in the presence of signals triggered by
the target molecule via an Ab displayed on the cell surface. The effector mechanism is the
generation of molecules, soluble Abs, that bind both to the target molecule and to cells that
remove the resulting complexes. Coupling means the balanced adjustment of the chemical
potential µ of the Abs on the sensor surface and of the effector molecules against that
molecule species. Biologically, it means that the sensor and effector B cells are genetically
closely clonally related, expressing identical or similar Abs either on their surface or as
secreted components. Relations in terms of network connectivity are determined not only
by similarity but also by the similarity of interaction partners [24]. In the case of the
humoral immune system, this means that Abs that are clonally not or only distantly related
may contribute to the binding and elimination of a given Ag molecule. In other words,
in a subnetwork of the system dedicated for a given Ag, distinct Ab clonotypes may be
linked together in the network of Ag transfer pathways. The concept of clone sizes and
corresponding Ab chemical potential and Ag thermodynamic activity, with corresponding
chemical potentials, can be visualized by activity maps and energy diagrams (Figure 2).
The thermodynamic activity of a particular Ab clone is related to the frequency of the cells
belonging to that clone (clone size) and the serum concentration of Abs. The chemical
potential of an Ab is the logarithm of its activity. Similarity is represented by the topology of
the activity map, with closely related clones being neighbors. The thermodynamic activity
of an Ag is related to its ability to stimulate the immune system and the corresponding
chemical potential is its logarithm. Again, structural similarity is represented by location in
the activity map.

Effector cells (plasma cells) secrete Abs, which bind Ags with an efficiency determined
by chemical potential and Ab concentration. During the active phase of the immune
response, the chemical potential of the effector molecule is raised, and more bound Ag is
removed from the system. At the same time, the coupled increase in the sensor sensitivity
allows the cell to survive in the presence of less Ag, and a steady state with higher chemical
potential is established. The active phase of the immune response is followed by contraction,
wherein memory cells, the long-lived sensors and effectors of the system, are selected and
maintained. We assume that, in the resting phase of the immune response, a steady state is
maintained regarding Ab and Ag concentrations. Since several different Abs with distinct
chemical potentials may contribute to Ag free-energy adjustment, the system selects clones
with the chemical potential and concentration required. Our argument here is that this
selection process is governed by thermodynamic rules.

The cells of the adaptive immune system, a tissue that penetrates the whole organism,
possesses a unique property that no other cells have; lymphocytes are capable of directing
the evolution of proteins within the organism [15]. These proteins, called Ag receptors,
are generated by genetic recombination and mutation and selection events, resulting in a
diversity that well exceeds the diversity of all other proteins in the organism. Depending
on the size of the host, lymphocyte numbers are in the range of 108–1012 cells [25,26].
Generation of diversity is a random molecular process, while the function of the adaptive
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immune system is to adjust, by cycles of division and checkpoints of selection, lymphocyte
specificity and affinity. These two features correspond to the direction and length of the
vector in the configuration space. A steady state, which is immunological rest in our
system, is reached by the adjustment of an intensive and an extensive property. The
intensive property is the chemical potential of Abs, determined by a cell’s genes and the
Ab sequence and structure. The extensive property is diversity and numerosity of Abs, the
coverage of the conformational space of the system surface (Figure 1). Thus, in a broader
sense, balancing is between molar free energy and system entropy.
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Figure 2. Activity and energy diagrams of antibodies and antigens. Thermodynamic activity, chemical
potential and structural similarity appear in activity maps (A) and energy diagrams (B) for antibody
(blue) and antigen (red). Square areas in the map represent activity; neighborhood distance (blue
double arrows) means similarity. (C) Higher chemical potential results in better Ag-binding efficiency
for effector Abs and higher Ag sensitivity for sensor Abs. Removal of Ags lowers signaling in sensor
B cells; sustained Ag presence and immune stimulation triggers sensor B cells and triggers generation
of effector Abs.

Self-organization also maintains responsiveness in the system. In our case, it is
maintained by the sensors, B cells displaying membrane-bound Abs, that are able to initiate
an immune response and, thereby, reset the chemical potential of both sensors and effectors
and lead to the reorganization of local hierarchy in the system. Activity maps and energy
diagrams in this paper, therefore, represent a particular point in the lifetime of a highly
dynamic system.

3.3. Architecture of the System

The immune system is theoretically capable of interacting with any molecular structure.
This means it takes up volume in all directions of Ag space, creating a spherical core
(Figure 3). It has to allocate its limited resources for the generation of particles in the
interaction space in the most energy-efficient way. Therefore, it is split up into a number of
thermodynamic ensembles, distributing its resources between these. A particular ensemble
is directed against a particular target epitope, adjusting its properties to attain a steady state.
Because resources of the system are finite, ensembles compete for them and may overlap,
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cluster and form hierarchies. At any one moment in time, the distribution of the state of
the ensembles is the distribution of chemical potentials and their way of sharing system
energy. The configuration space of the self-organizing system is a systemic ensemble in
the sense that it is a collection of coexisting grand canonical ensembles, each ensemble
responding to a different antigenic component of the environment. In the vector space of
the chemical potentials of the system, the location of each ensemble identifies a particular
direction, representing the potential energy of the interaction with the particular part of
the environment.
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Figure 3. System organization by mixture of exponential and normal distributions, shown in energy
scale. Green and yellow double arrows correspond to the green and yellow normal distributions sam-
pled from the interaction space with exponentially distributed variance. The self-organizing system
(Ab system) comprises units (Abs) capable of interacting with the surroundings (Ag surroundings).
The free energy of the interactions has normal distribution on a system level. Organization is the
adjustment of variance of interaction energy in response to thermodynamic activity of Ag so as to
maintain the system. G, intensive free energy.

The probability density function of absolute thermodynamic activity λ of elements of
the system, as determined by chemical potentials µAb~ln(λAb), can be modeled by a mixture
of exponential and lognormal distributions, as proposed in the RADARS model [27]. The
model is based on the assumptions that:

1. Chemical potentials of Ags in the interaction space, corresponding to the molecular
free energy of the interactions of the system with the surroundings, are distributed
exponentially, similar to a Boltzmann distribution;

2. Equilibrium binding constants of Abs are distributed lognormally [28], with a corre-
sponding normal distribution of molar free energies of binding;

3. The immune system arranges and adjusts Ab chemical potentials to maintain a
steady state.
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The mixture of exponential and lognormal distributions, which we use here with the
following parametrization, was described by Reed [29] and Mitzenmacher [30] as:

p(λ) =
∫ ∞

0
αe−αµ 1√

2πµ

1
λ

e−
1
2

(lnλ)2
µ dµ (1)

where:
α is the rate of the exponential distribution of chemical potential of Ag;
λ is the absolute thermodynamic activity of Abs;
µ is the chemical potential of Ag, the distance from average chemical potential µ0.
Solving the integral (see Appendix A), the result is a power law function for λ ≤ 1,

that is, for the system core,

p(λAb) =
√

α/2λAb
+
√

2α−1 (2)

Whereas, for λ ≥ 1, that is, in the interaction space,

p(λAb) =
√

α/2λAb
−
√

2α−1 (3)

These functions are the probability densities of the absolute thermodynamic activity
of Abs in the system and also define a network of interaction pathways. Thermodynamic
activity corresponds to the degree of nodes in the sense that it represents the probability
of interactions. The exponent of network node degree distribution, −(

√
2α + 1), is thus

determined by the rate of the exponential distribution of the chemical potential of Ag
molecules, α, generating the interaction network.

3.4. Architecture of Interaction Space: A Hierarchical, Scale-Free Network

Interaction space spans the range of interaction energies between µ0 and the upper
limit of non-covalent binding energy. This is the space where effector Abs establish a
network of interactions for Ag transport. For the description of interaction space, we can
use another mathematical approach, the combination of exponentials, as suggested by
Reed [31] and Newman [32]. Reed proposed that, when observing exponential growth
after an exponentially distributed time, the process exhibits power law behavior. Here,
we consider the exponential relationship between Ag chemical potential and the absolute
thermodynamic activity of Abs combined with the exponential distribution of the chemical
potential of Ags. In terms of molecular interactions, the former is the relationship between
the free energy of the molecule and the number of different states of binding. Since a greater
surface area, or more non-covalent bonds available for binding (greater buried surface area
in the bound molecule), corresponds to greater free energy, absolute thermodynamic activity
is a summation of the number of ways of interaction. For a given molecule, therefore, it
is the number of links to other molecular structures with shared binding properties, an
expression of similarity in reactivity. The combination of exponentials with the generation
of networks can be illustrated by the overlay of activity maps (Figure 4) and the mapping
of the pathways of Ag flow.

Again, we assume that the chemical potential µ of Ags is distributed exponentially
when the immune system is in a resting, steady state.

p
(
µAg

)
= αe−αµAg (4)

If the absolute thermodynamic activity λ of Abs is related to Ag chemical potential as

λAb = βeβµAg (5)
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then the combination of these exponential functions, the distribution of Ag chemical
potential and the thermodynamic activity of Abs is given by

p(λAb) = p
(
µAg

)dµAg

dλAb
=

αe−αµAg

βeβµAg
=

α

β
λAb

−1− αµ
βµ =

α

β
λAb

−1− α
β (6)

In other words, the combination of the exponential distribution of the chemical po-
tential of Ag and the exponential relationship between Ag chemical potential and Ab
thermodynamic activity determines properties of the energy transduction network and
is defined by the power law distribution of Ab thermodynamic activity. Of note, this
expression is an alternative to the system equilibrium binding constant Ksys used in a
previous publication [27]. The value of λAb reflects the number of pathways a single bond
can evolve into a full binding surface and is, therefore, the number of links to nodes lower
in hierarchy. Absolute thermodynamic activity thus corresponds to node degree, and its
distribution determines network node degree distribution in the system.
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Figure 4. Schematic organization of antigen transfer networks and network hierarchy of molecular
interactions. (A) By first overlaying the activity maps of antigens (red grid) and antibodies (blue grid),
we obtain network nodes. Nodes (red dots, shown only for highlighted box) are assigned to each box
in the overlayed maps. (B) Nodes are sequentially linked within each red box by applying grids with
increasing side length and joining nodes in smaller boxes to nodes in the biggest box until all nodes
with the red box are linked. Node hierarchy resulting from own links (blue) and renormalization
links (red) are shown in energy diagrams for the shaded red box. (C) Minimal (upper diagrams) and
maximal (lower diagrams) binding energies associated with the network nodes are characterized by β

and α values, respectively, and represent intersections and the unions of conformational entropy of
Ab–Ag interactions.
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Beyond relating Ab and Ag thermodynamic properties, the value of β influences how
nodes are linked during renormalization. Increasing α/β is accompanied by an increasing
hierarchy of sub-nodes (Figure 4). From Equation (6), we can see that, in order to keep the
value of degree exponent between 2 and 3, the scale-free network regimen, α/β should be
in the range 1 < α/β < 2. Comparing Equation (6) and Equation (3), we can see that

p(λAb) =
√

2αλAb
−
√

2α−1 =
α

β
λAb

−1− α
β (7)

Therefore, β =
√

α/2 and
α

β
=
√

2α (8)

meaning that the assumption of normally distributed energies with a variance of 1 restricts
the possible values of β, and the value of α alone, via determining the distribution of Ag
chemical potentials, determines the distribution of Ab thermodynamic activity and the
degree distribution of the Ag transport network.

3.5. Distribution of Energy by Links in the System

The humoral adaptive immune system is a transport system for Ag molecules. The
flow of Ag molecules in the interaction space of the system, resulting from a concatenated
series of interactions, is an energy transduction process. As an Ag molecule is transferred
from a lower-affinity Ab to a higher-affinity Ab, the free energy of the system decreases. We
may examine in the system the pathways of energy transduction by assigning direction and
weight to links. The direction of Ag transport is from lower to higher chemical potential,
so links are always directed to nodes with a higher degree. We can assign to each link the
chemical potential difference between the two nodes connected by the link. The molecular
basis of this assignment is the capability of Abs to take over Ag from weaker binders (lower
chemical potential). As Figure 4 suggests, renormalization results in the joining of links
with lower weight to higher-energy nodes, with hierarchy being inversely related to link
weight. The number of links assigned to a chemical potential energy level is the sum of
in-degrees of the nodes of that level. The average number of interchangeable links to nodes
of a given chemical potential can be obtained from the relative number of direct links
β and the rate variable of the distribution of Ag chemical potentials α as

gµ =
β

α
e

β
α µAb (9)

This value is the degeneracy g of the energy level. Links of identical chemical potential
leading to the same node are interchangeable; they represent degeneracy in binding states.
The total number of accessible states or molecular partition function Z is given by the
integral of the product of Equation (9) and the exponential distribution of Ab chemical
potential obtained from the distribution of thermodynamic activity in Equation (6) as

Z =
∫

Zµdµ =
∫

gµ p(µAb)dµ =
∫

e−(
α
β−

β
α )µAb dµ (10)

In other words, with increasing node chemical potential, the increase in activity of
the nodes is limited by the number and weight of incoming links, as determined by the
hierarchy of sharing interaction energies. The logarithm of the weighted probabilities of
interactions in the energy shells, of the number of microstates the system ranges over, is a
thermodynamic potential, entropy (S). For a system consisting of N elements, the entropy
can be obtained from the partition function as

S =
U
T

+ NkBlnZ (11)
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where U is internal energy, T is thermodynamic temperature, kB is the Boltzmann constant
and N is the number of particles in the system. An ideal state of the system is described by
(β/α)µ− (α/β)µ = −µ, that is, when α/β = 1.618 . . . , the golden ratio (19). The number
of accessible states, Zµ, as a function of Ab chemical potential in this configuration, is
given by

Zµ = e−µAb (12)

and describes energy transport in an ideal, stationary state, supported by a golden network
with an optimal balance between increasing node energy and the sharing of transport.

3.6. Thermodynamic Validation of the Model

The mathematical constructs obtained from the model so far can be corroborated
by understanding the physical meaning of the variables α and β. Zheng and Wang
proposed [28] that the distribution of the equilibrium binding constant is related to the
conformational space available at the given temperature and thermal fluctuation, which
is, in turn, related to the heat capacity and flexibility of the molecules [33–35]. A more
flexible interaction allows for the binding of Ag to distinct Ab clonotypes, exploring greater
conformation surface, while a rigid Ag epitope shows stronger preference for a single
clonotype. On the other hand, distinct, flexible Ab clonotypes may bind to the same Ag,
their probability-weighted chemical potentials determining the average binding energy of
Ag. A higher value of α/β thus corresponds to greater flexibility and binding promiscuity,
and the tail of the distribution becomes flatter; the probability of high-affinity interactions
in a steady state decreases (Figure 5).

In analogy to the heat capacity ratio, which relates heat capacity at constant pressure
to heat capacity at constant volume,

cP
cV

=

(
∂U
∂T

)
P(

∂U
∂T

)
V

=
T
(

∂S
∂T

)
P

T
(

∂S
∂T

)
V

(13)

The ratio of α/β defines a binding flexibility ratio in configuration space where

α

β
=

T
(

∂S
∂T

)
µ

T
(

∂S
∂T

)
N

(14)

This relates binding flexibility to chemical potential µ, kept constant to flexibility with
number of system elements N kept constant, in the following sense: The partial differential
expression in the numerator describes the extent of conformational surface S explored
by Ag molecules when these molecules are provided by the surroundings so as to keep
chemical potential µ constant. The expression in the denominator describes the potential to
explore the conformational surface due to thermal fluctuation T; when no extra molecules
are supplied, N is invariant. The immune system is, indeed, capable of fine thermodynamic
tuning of the interactions of its Abs by selecting the structure with appropriate flexibility
by isotype switching and affinity maturation and by targeting selected Ag epitopes. The
regulation of these Ab properties for each and every Ag is the essence of controlling
Ag concentrations.

If we regard blood plasma as an open, single-phase, multicomponent system, we can
use a thermodynamic potential for the description of energies related to Ab–Ag interac-
tions. Following the nomenclature used by Emmerich [36] for a thermodynamic potential
expressed for extensive entropy,

Λ = S + ∑
i

µi
T

Ni (15)
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Figure 5. System properties as determined by the binding flexibility ratio α/β. The relative arrange-
ment of two binding ensembles, here represented as cones, in interaction space is shown. The effects
of increasing the value of the ratio, exerted via increasing α (red) and β (blue), on the coverage of the
conformational entropy surface is depicted by the base of cones and their overlap. The distribution of
chemical potentials (solid line) and of partition function (dashed line) is shown against a reference
exponential distribution (filled gray) with exponent −1. The distribution of network node chemical
potentials, corresponding to Ab chemical potentials (solid purple), and of link chemical potentials,
corresponding to Ag chemical potentials (dashed red), for different values of the ratio are shown
against the reference exponential distribution in gray. The bottom row is the schematic topology of
networks for the three different values of α/β ratio shown at the top. The relationship between α and
β is defined by Equation (8). p(µAb), probability density of Ab chemical potential; gµp(µAb), product
of degeneracy and probability; Nµ, number of nodes or links with given chemical potential; N, total
number of nodes or links; µ, chemical potential.

Thermodynamic potential Λ summarizes the essence of the adaptive thermodynamic
system: create a large conformational landscape (conformational entropy S) and generate
N elements with chemical potential µ expressed as the ability to cover conformation space,

∂S
∂N

= − µ

T
(16)

Equation (16), in our model, states that the addition of molecules to the system changes
the conformational entropy according to the molecular free energy µ per unit temperature
T. We can replace the summation in Equation (15) with the probability-weighted sum
of chemical potentials, which is the average chemical potential 〈µ〉, and combine with
Equation (11) in the form:

Λ = N
(

kBlnZ + 〈 µ

T
〉
)

(17)
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Thus, the thermodynamic potential Λ of Abs depends on their number N, the number
of interactions they can engage in, summarized in Z, and their average chemical potential.
The configuration space model introduced here arranges constituents of the system based
on their “power” to change other constituents’ chemical potential. This power is reflected
in the topology and network linkage of constituents. In a stationary state, the distribution,
and, thereby, the average chemical potential of all Ag molecules, is kept constant, adjusting
binding energy that tickles but does not activate sensors, memory or naïve B cells. This is
achieved by setting a chemical potential that immunologically suits the host: low chemical
potential for harmless self molecules, high chemical potential for dangerous non-self
molecules. Concentrations of targets are then adjusted accordingly, meaning that Ags with
high chemical potential are eliminated with higher efficiency. The process leads to a wide
range of chemical potentials of Ags and Abs in the system. A theoretical, system-wide
steady state is reached when Ab free energies are distributed exponentially. In the ideal
configuration of Equation (12), the partition function Z is equal to one; thus, Equation (17)
simplifies to the product of element number N and the average chemical potential.

Self-organization of the system refers to how many Ab molecules are generated and
how Ab chemical potentials are distributed. In a thermodynamic steady state, the system
minimizes free energy and maximizes entropy; this state can be described by statistical
mechanics functions. The adaptive, self-organizing biological ensemble is a co-existing
collection of large numbers of copies of states, with a regulated total extensive free energy G
and a composition that may fluctuate with the distribution of chemical potentials adjusted
via network formation (Table 1). In immunological terms, in order to reach a steady state,
the chemical potential of Abs in the system has to be tuned with regards to all potential
binding partners, not just the Ag that triggered a response. The pathway to reaching the
steady state is the selection of Abs (cell clones) that fit into a previously organized network.
Steady state is reached when the system, again, possesses an extensive free energy G that
continuously drives the binding of Abs to Ags.

Table 1. Comparison of physical ensembles.

Ensemble Constant 1 Adjusted

microcanonical E microstates
canonical T E

grand canonical T, µ E, N
adaptive biological G/T = ∑Nµ/T µ/T, N

1 Pressure is assumed constant in all these ensembles.

The biological, self-organizing system diversifies its tool of energy transfer, Ab molecules
in our case, adjusting the distribution of chemical potentials so as to maintain the system
against forces of change in the environment. By deploying mechanisms to sense the free
energy of constituents in the environment, the system can adjust, readjust and evolve with
the environment.

3.7. Immunological Validation of the Model

The humoral immune system must regulate, over a very wide range, the concentra-
tion of a vast number of molecules that are found in and constitute an organism. How
it is technically possible to eliminate certain molecules while leaving others unharmed
has led to the long-standing question of tuning recognition specificity and affinity [37],
breadth and depth [38]. The solution provided by an adaptive immune system appar-
ently requires a scale of numerosity, diversity and affinity comparable to that found
in the organism—or, more accurately, the supraorganism [39]—itself. A mechanistic
approach to the feedback and tuning procedure, based on saturation of Abs and Ags,
was proposed in a quantitative model of B-cell development and Ag removal [8,40]. The
model treated distinct molecules independently, neglecting the effect of cross-reactivity
but, nevertheless, providing a general framework for understanding the system. On the
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level of individual cells, the level of engagement of Ag receptors determines the cell’s
fate: programmed death, survival, proliferation or differentiation. An initial repertoire of
naïve cells, which are constantly generated, displays receptors produced by the random
rearrangement of gene segments and subsequent selection steps. The immunologically
controlled encounters of these cells with the Ags of the inner and outer environment lead
to the expansion and differentiation of clones according to the immunological ranking of
the target Ag. These processes are happening continuously, manifesting as the adapta-
tion of the system to the antigenic environment or, in other words, as self-organization.
As a result, a repertoire of memory B cells and long-lived plasma cells is produced, which
reflects past adaptation and serves as the basis of further evolution in response to the
environment [20,41].

The present model identifies variables that characterize network formation and define
the system on a thermodynamic basis. Both Abs and Ags are cross-reactive, being able to
bind multiple partners. The average binding flexibility or cross-reactivity on the system
level manifests as the slope of the distribution curves when a logarithmic scale is used
(Figure 6). Changing the slope of either influences the other via self-organization, as
described above. Complexes of Abs and Ags are constantly removed from the system via
cells with Ab Fc receptors. Changes in the composition and availability of Ags trigger
the activation of sensor cells, leading to readjustment of the properties of the repertoire
(Figure 6). It is tempting to speculate that the local hierarchy of binding has important
immunological consequences; minimal hierarchy would result in a “powerful” Ab response,
in the sense of high-affinity binding and appropriately switched Ig isotypes, such as
an allergic IgE response. With the application of novel tools for the deeper analysis of
serological reactions, such questions can be experimentally addressed [18].
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Figure 6. Immunological aspects of the distributions. The exponential distribution of chemical
potentials of both the Abs and Ags are maintained by the feedback loop of effector and sensor Abs.
On a logarithmic scale, the slope of the distributions is indicated for Ab chemical potentials (solid
purple), Ab–Ag complexes (dashed purple line) and Ag (red). The immune system reduces the
concentration of Ags according to its chemical potential that is adjusted by Abs and removes Ab–Ag
complexes to maintain Ag flow. Nµ, number of events with chemical potential µ; N, total number of
events; gµ, degeneracy of events with chemical potential µ.

Immunoassays probe the system of Abs via measuring Ab binding to selected Ags.
These assays are also called serological assays because they characterize serum Ab reac-
tivity against medically relevant Ag targets. An immunoassay that uses Ag titration, a
gradient of Ag concentrations, can be interpreted as the measurement of the changes of
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chemical potential in the interaction space and can be modeled by the Richards differential
equation [20]. In the sigmoid Richards curve, the point of inflection corresponds to the
sum of probability-weighted chemical potentials and is, therefore, a measure of Ab affinity.
Meanwhile, the asymmetry parameter of the Richards function is related to α/β in the
system, which corresponds to the limiting activity coefficient of Ags. Thus, the variable
that describes the hierarchy and network organization of Abs in the system appears in a
biochemical measurement as a thermodynamic variable.

A theoretically important message of the model is the continuity of self. The inter-
action space belongs to the system; it is self. However, it also incorporates elements of
the surroundings in a regulated way. Ag-binding energies in the interaction space range
from system average to very far from average, and elements are distributed according to
an exponential distribution. Therefore, the frequency or mole fraction contribution to the
system also covers a very wide range (Figure 7). All binding events belong to the system,
becoming incorporated into the architecture as imprints in the network. This is consistent
with the liquid hypothesis of self, which states that immunological identity is continuous
and dynamic [42]. Even though we have no exact physical models describing the function-
ing of the immune system, we have more and more experimental data on the structural and
molecular mechanisms of Ab function and networks of Abs based on sequencing. It is, thus,
possible to relate our model to these observations. The total immunoglobulin concentration
([Ab]t) in adult human plasma is in the high micromolar range (~10−4 M). We can express
Ab quantities as a fraction of the system by using this reference as [Ab]/[Ab]t (Figure 7).

Figure 7. Antibody concentrations and equilibrium affinity constants. (A) Relative (left axis) and
absolute (right axis) concentrations of Abs with indicated binding energies. (B) KD values corre-
sponding to binding enthalpy for a monoclonal Ab solution (solid purple line) and for a serum
Ab (dashed line) with entropy effects. ∆GAb, free energy of interaction; KD,H, equilibrium dissoci-
ation constant calculated from enthalpy; KD,H, equilibrium dissociation constant calculated from
Gibbs energy.

Assuming that the system is in a steady state when all its components are present
at their equilibrium dissociation concentrations KD, their distribution as a function of
chemical potential is determined by the standard free energy of their interactions. Gibbs
free energy has two components:

KD = e
∆r G◦

RT = e−
∆rS◦T

RT × e
∆r H◦

RT (18)
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Namely, an entropic (S) and an enthalpic (H) component. We can relate the free energy
of binding to these components using the relationship between the distributions of chemical
potentials and interactions, combining Equations (10) and (18) as

KD = e−
β
α

∆r G◦
RT × e

α
β

∆r G◦
RT (19)

The difference between using only the enthalpic component or both components is
illustrated by the solid and dashed lines, respectively, of Figure 7. The concentration of an
Ab clone with a particular binding energy in the system in steady state is higher than that
of the same Ab alone in equilibrium with its single binding partner. Simply stated, because
interaction energies are “spread out” over the network, equilibrium concentrations in a
system are higher than in a solution of two components, such as a monoclonal Ab and a
single target Ag.

3.8. Network Validation of the Model

A theoretical network of Abs can be generated on the basis of sequence and structure
similarity [27], which corresponds to experimentally determined, Ag-binding correlation
networks [43]. On the molecular level, these networks allow the transfer of Ags from an
Ab node to another Ab node in the direction of increasing affinity. The configuration space
model of this article organizes such links into a hierarchy of chemical potential and renders
structural similarity into topological relationships. Increasing chemical potential in the
configuration space means shifting in the hierarchy and increasing node degree, which
is related to the probability of receiving an Ag molecule from a node lower in hierarchy.
All nodes high in the hierarchy are “supported” by a large number of nodes with lower
chemical potential. This arrangement causes the spreading of hubs over the interaction
space and manifests as the repulsion of hubs and results in a disassortative network.

The power law degree distribution and scale-independent property of the network
were previously derived from a lognormal distribution of equilibrium binding constants
of random interactions in combination with an exponential distribution of the standard
deviation of binding energy [27]. Here, a power law distribution is also obtained from a
Boltzmannian distribution of molar free energy of Ags and the relationship between the
absolute thermodynamic activity of Abs and the chemical potential of Ag. Cross-reactivity
is the result of partial interactions with lower-than-maximal energy. Higher-energy inter-
actions allow more cross-reactivity, since a greater molecular surface area is available for
binding. This cross-reactivity appears in the renormalization strategy (Figure 4), where
nodes with lower degree are joined to nodes with a higher degree. This renormalization is
similar to the box-counting method of determining fractal dimension [44] in the sense that
grids with increasing side lengths are applied to reveal network architecture. Disassortativ-
ity and fractality have been recognized as features of biological networks [45,46].

From a network perspective, the ratio of our variables α/β corresponds to the ratio of
fractal dimension dB and degree exponent of boxes dk, as described by Song et al. [45,47].
The network degree distribution exponent γ can be calculated from these as

γ = 1 +
dB
dk

= 1 +
α

β
(20)

This is in agreement with our findings that α/β is the rate parameter of the expo-
nential distribution of chemical potential, and α/β+1 is the exponent of the power law
distribution of thermodynamic activity and network degree distribution (Equation (6))
(also see Appendix B). The evolution of the network in time is reflected in configuration
space, in as much as the nodes with greater chemical potential that develop in the time
course of immunological reactions are located more distantly from the system surface.
Therefore, these indices can be interpreted as factors of renormalization in energy levels.

According to Caetano-Anollés et al. [48], scale-free networks can follow a trajectory in
network morphospace from homogenous, non-modular towards heterogenous, modular
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network organization. This trajectory can correspond to a mesh-like structure of random
binding events at the core surface of the system, evolving into a highly hierarchical and
modular network of specific and high-affinity interactions. This corresponds to a star-
like network distribution of energy when α/β approaches 1 and multiple transfers of
energy when α/β increases (Figure 5). Whereas the probability density of binding energy
is associated with a Boltzmannian distribution, scale-free networks are known for the
power law distribution of network node degree. Our configuration space model of a
system suggests that these two phenomena are two sides of the same coin; an identical,
complementary cumulative distribution results in the exponential probability density
function of chemical potential and power law probability function of node degrees of
elements of the system (see Appendix B).

3.9. Interpretation of the Model as a Complex System

In their maximum-entropy model for Ab diversity, Mora et al. associated Ab sequences
with effective energies as if the sequences represented a particular state in a system in
equilibrium [16]. In this article, it is suggested that Ab structures, which are defined by
their amino acid sequences, are, indeed, distinct states in the configuration space of the
system. The molecular free energy of these structures is determined by the composition of
the system, which is itself regulated by the system.

Following the active, expansive stage of the immune response, a contraction stage
establishes a balance between the thermodynamic activity of Abs and of Ags by selecting
only a subset of the cells that evolved in the active stage. This process leads to a steady state,
whereby secreted Abs are continuously removed along with bound Ags, keeping both
free Ab and free Ag concentrations at the immunologically adjusted values. A two-way
feedback mechanism of sensor and effector cells adjusts chemical potential so that cells
are poised between under- and overactivation (see [8,20,40] for details). The effector cell
secretes Abs capable of reducing target Ag concentration; the extent of reduction is deter-
mined by the chemical potential of the Ab. The sensor cell receives an amount of energy in
the form of survival signals by the target Ag—this is called tickling in immunological jargon.
This signal is adjusted by the effector cells, secreting soluble Abs. From an immunological
point of view, this means the parallel generation of memory B cells (sensors) and plasma
cells (effectors) in germinal centers with closely related if not identical binding proper-
ties [49–51]. Perturbations at any point in the interaction space trigger the rearrangement of
this hierarchy and network. In this sense, the system is poised at criticality, a phenomenon
suggested to be present in all biological systems [52]. Critical events represent the reor-
ganization of hierarchy in a system. These events are the coalescence of sub-ensembles
or subnetworks. The size of these events often shows power law distribution over time
(strength of earthquakes, size of forest fires, avalanches of sandpiles) [53]. The immune
system presumably reorganizes itself constantly, adapting to the antigenic environment,
via such events. Occasionally, triggered by infections, massive reorganization is necessary,
which may correspond to a huge critical event.

A variety of phenomena has been shown to follow power law, including natural events
and systems and artificial, man-made systems. In these systems, the power law applies
only for values greater than minimum value xmin. The distributions described here suggest
that the minimum value of x corresponds to activity with the average energy or reference
chemical potential µ0 of the system. By our definition, this reference value is zero, and the
corresponding activity is one.

λmin = eµ0 = 1 (21)

It also means that, in our directed network, all isolated nodes possess an in-degree of
1 (see Figure 5). Nodes with a higher degree connect to form the networks, which represent
the organization of the interactions of the system with its environment.

Power law relationships can be broadly assigned into two main categories: distribu-
tions of frequencies and of magnitudes [54]. Complementary cumulative distributions
(cCDF) of frequencies, rank–frequency plots, Zipf’s law and the Pareto distributions are
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examples of the first type [30,55]. Protein interaction and metabolic networks are examples
of the second type [56,57].

Magnitudes represent an intensive physical property of the adaptive system. The
distribution of an intensive physical property describes a hierarchy and often represents
a hierarchical network that organizes the system. It follows that these magnitudes are
related to the network degree of the entities. The configuration space model presented here
suggests that these magnitudes are absolute thermodynamic activities and are related to
molar free energy or chemical potential, an intensive physical property.

Frequency is an extensive property and corresponds to the number of links (interac-
tions) of a given energy in our model. If the energy of interactions is distributed exponen-
tially (Equations (4) and (12)), then the logarithm of probability (Equation (9)) decreases
linearly (Figures 6–8). The corresponding linear growth of entropy (for cumulative distribu-
tion) is characteristic of criticality in thermodynamic systems [16,58]. In unchanging, simple
surroundings, the system can strongly adapt (Figure 8, vertical arrow) and distribute its
energies over a wider range of chemical potentials. On the other hand, changing, diverse
surroundings prohibit effective adaptation (Figure 8, horizontal arrow), allowing large
numbers of weak interactions. The system can develop and grow, maintaining its organiza-
tion by parallel growth of its intensive and extensive properties, chemical potentials and
the number of interactions as a function of those potentials, respectively.
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Figure 8. Graphical representation of relationships of system variables. (A) The relationship between
entropy and chemical potential of system elements results from the balanced distribution of interac-
tion energies and accessible binding states. Too strong an adaptation (α/β decrease) or too weak an
adaptation (α/β increase) results in less stable configurations (dashed lines). (B) Balanced growth
maintains organization by maintaining relations between these intensive and extensive properties.
S, entropy; zµ, partition function of energy level µ.

Power law distributions, in general, characterize critical points and phase transition. In
this respect, self-organization aims to maintain the state of phase transition. In an abstract
sense, transition is between the two phases of organization of matter in the system and
in the surroundings. Self-organization thus counteracts the effects of the surrounding
environment by generating an interaction space and, therein, sustaining phase transition,
maintaining steady-state reactions towards all environmental components that would
otherwise disintegrate the system.

4. Conclusions

There can be little doubt that a system with the number of constituents and the extent
of diversity that the adaptive immune system possesses can behave as a complex, adaptive
physical system. The more important question is, perhaps: would a complex biological
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system follow the rules that apply to a thermodynamic system? The thermodynamic
system within the complex biological system of immunity can be defined as an open,
multicomponent system of molecular interactions between antibodies and antigens. As
compared to a physical system with very clear boundaries, e.g., a thermally insulated bottle
with gas molecules filling it, the biological system can be thought of as treating only a part of
the biological system as a thermodynamic system. Thus, it has no strict physical boundaries;
antibodies and antigens interact everywhere in the organism, with some privileged sites,
such as the blood plasma, the lymphoid organs and the mucosal surfaces. The boundary is
present only in the abstract, theoretical space because we consider only these interactions.
Because of this abstraction, and because this system is embedded in a highly complex
and dynamic environment, the model only serves to obtain the general laws and global
variables of the system. This is why we regard the system to be an open one. Unlike in
the case of the Thermos bottle or chemical reactions taking place in a test tube, no precise
calculations can be made for each of the interacting components. Yet, the validity of the
model can be supported by the analogies described in the paper and by the experimental
technologies that examined a singular antigen’s reactivities. Of the multicomponent system,
selected subsets of the components can be measured by serological assays.

This article identified attributes of the humoral adaptive immune system that seem
to capture the physics of the biological system. These attributes are the magnitudes and
frequencies of Ab chemical potentials. A coefficient that appears in all approaches to
describing the system is the heat capacity ratio, or binding flexibility ratio or degree dis-
tribution exponent. Beyond the theoretical advancement in modeling, the introduced
mathematical framework can also be put into practice in quantitative serological measure-
ments [18,20] where this coefficient is the limiting thermodynamic activity coefficient and
can be experimentally obtained. Such measurements could provide quantitative maps of
the Ab configuration space in the future.
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Appendix A

Derivation of power law from combination of exponential and lognormal functions [29,30]:

p(λ) =
∫ ∞

0
αe−αµ 1√

2πµ

1
λ

e−
1
2
(lnλ)2

µ dµ

Rearranging, after substituting µ = u2 in the integral,

p(λ) =
2α√
2π

1
λ

∫ ∞

u=0
e−αu2− (lnλ)2

2u2 du

Using integral the table identity,

∫ ∞

0
e−az2−b/z2

dz =
1
2

√
π

a
e−2
√

ab
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and substituting α for a and (lnλ)2/2 for b,

∫ ∞

0
e−αz2−(lnλ)2/4z2

dz =
1
2

√
π

α
e−2
√

α(lnλ)2/2

Replacing the integral part of the equation,

p(λ) =
2α√
2π

1
λ

1
2

√
π

α
e−2
√

α(lnλ)2/2

Simplifying with
√

π, 2, 2/
√

2,

p(λ) =
2α√
2π

1
λ

1
2

√
π

α
e−2
√

α(lnλ)2/2

for λ > 1 gives

p(λ) =
√

α√
2λ

e−lnλ
√

2α

Then, simplifying the exponential expression,

p(λ) =
√

α√
2λ

λ−
√

2α

Expressing 1/λ as power:

p(λ) =
√

α√
2

λ−1λ−
√

2α

Uniting exponents of λ:

p(λ) =
√

α

2
λ−1−

√
2α

Appendix B

Appendix B.1 Summary of Parameter Definitions

α: rate parameter of exponential distribution of Ag chemical potential in interac-
tion space:

p
(
µAg

)
= αe−αµAg

β = α√
2α

=
√

α
2 : relation of Ab thermodynamic activity to Ag chemical potential.

λAb ∼ eβµAg

α
β =
√

2α: binding flexibility ratio, heat capacity ratio, fractal dimension to box degree
exponent ratio, related to network degree exponent as

γ =
√

2α + 1

Appendix B.2 Correspondence of Exponential and Power Law Distributions

Probability density function (PDF), cumulative distribution function (CDF) and com-
plementary cumulative distribution function (cCDF) of node with chemical potential µAb
and of absolute thermodynamic activity λAb, corresponding to node degree; these variables
are related as

λAb = eµAb
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Table A1. Correspondence of distributions.

PDF p(µAb) =
√

α/2e−
√

2αµAb p(λAb) =
√

α/2λAb
−(
√

2α+1)

CDF P(µAb) = 1− e−
√

2αµAb P(λAb) = 1− λAb
−
√

2α

cCDF P−1(µAb) = e−
√

2αµAb P−1(λAb) = λAb
−
√

2α
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