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Abstract: Animal skin patterns are increasingly explained using the Turing pattern model proposed
by Alan Turing. The Turing model, a self-organizing model, can produce spotted or striped patterns.
However, several animal patterns exist that do not correspond to these patterns. For example,
the body patterns of the ornamental carp Nishiki goi produced in Japan vary randomly among
individuals. Therefore, predicting the pattern of offspring is difficult based on the parent fish. Such a
randomly formed pattern could be explained using a majority voting model. This model is a type of
cellular automaton model that counts the surrounding states and transitions to high-number states.
Nevertheless, the utility of these two models in explaining fish patterns remains unclear. Interestingly,
the patterns generated by these two models can be detected among very closely related species. It is
difficult to think that completely different epidermal formation mechanisms are used among species
of the same family. Therefore, there may be a basic model that can produce both patterns. Herein,
the Turing pattern and majority voting method are represented using cellular automata, and the
possibility of integrating these two methods is examined. This integrated model is equivalent to both
models when the parameters are adjusted. Although this integrated model is extremely simple, it can
produce more varied patterns than either one of the individual models. However, further research
is warranted to determine whether this model is consistent with the mechanisms involved in the
formation of animal fish patterns from a biological perspective.

Keywords: Turing pattern; majority voting model; cellular automata; animal skin patterns; reaction–
diffusion equation

1. Introduction

The Turing model is a type of reaction–diffusion (RD) model that was introduced by
Turing in 1952 [1] and describes the patterns that arise due to Turing instability. Turing
instability arises due to the interplay between active and inhibitory factors. Two types of
diffusion coefficient substances (morphogens) are assumed as these factors in the model. In
the 1980s, Meinhardt [2] demonstrated that the Turing model can create various patterns
via computer simulation. However, due to the lack of concrete experimental evidence, for a
long period, it was not recognized as a model that could explain pattern formations in living
organisms. Instead, Wolpert’s “morphogen gradient model” [3,4] for the morphogenesis
of organisms was considered to be the dominant model. However, even Wolpert’s model
could not explain the robustness of the actual morphogenesis of organisms because of the
dependence on the initial values and the vulnerability to disturbances. Thus, a definitive
model for such morphogenesis remains unavailable.

Pattern formation was first identified in an actual animal using the Turing model in the
1990s by Kondo and Asai [5] in sea anemones (Pomacanthus imperator). Regarding hybrids,
Miyazawa et al. [6] compared the patterns of pure and hybrid species of salmonid fish and
reported that each pattern could be explained by solving the Turing model equation and
that the hybrid pattern could be reproduced by considering intermediate values of the
parameters that reproduced the patterns of pure species. Milinkovitch et al. [7] discussed
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the efficacy of the RD systems, which can actually capture most of the functionally relevant
behaviors of skin color patterning without needing to parameterize the unmanageable
profusion of variables at the nanoscopic and microscopic scales.

Conversely, the proteins or chemicals that are responsible for morphogenesis have not been
identified, although some candidate substances (e.g., signaling factors such as TGF-β, Wnt, and
Dkk [8,9], as well as Hox gene products [10]) have been reported. Dilão et al. [11,12] showed
that mRNA diffusion is the primary morphogenetic mechanism that consistently explains the
establishment of bicoid protein gradients in the embryo of Drosophila. Recent experimental
studies have shown that the function of morphogens is not limited to the distribution of chemical
concentrations, and they are involved in cell–cell interactions [13–16]. These experimental studies
revealed that the diffusion of chemicals is not the only factor that forms Turing patterns; instead,
these patterns include the autonomous movement of pigment cells [17] or cell–cell signaling
via cell protrusions [18,19]. This is the specific case of the zebrafish pattern. Such cases should
be considered as patterns that emerge due to Turing instabilities, which are satisfied under
conditions similar to certain diffusion coefficients. Although the biochemical mechanisms of
pattern formation remain unclear, the experimental manipulation of patterns has elucidated that
the formation of certain body patterns is consistent with the models of the RD equation, such
as the Turing model; this is commonly accepted among biologists [20]. Furthermore, pattern
formation is possible even in the absence of chemical diffusion if the conditions required for the
interaction between local activation and long inhibition, with nonlinear effects, are satisfied [21,22].

Computer models have also been developed that more faithfully reproduce the realistic
pattern formation processes that have been elucidated based on these experiments. For
example, several simulations have been developed using agent-based models to reproduce
zebrafish pigment pattern formation [22–25]. Vasilopoulos and Painter [26] also constructed
a model with interacting cell protrusions and observed that, even if the protrusions are not
anisotropic, the adjustment of their length and density can produce patterns that are similar
to the RD model. In addition, Marcon et al. [27] investigated whether a stable stationary
wave pattern can be generated in a three-factor RD system. Moreira and Deutsch [28]
presented a model depicting pigment-cell pattern formation in zebrafish based on the local
interaction cellular automata (CA) model, demonstrating the importance of differential
intercellular adhesion and the mechanisms of stem cell regulation. Konow et al. [29]
proposed a lattice-based “survival model” based on recent findings on the nature of long-
range chromatophore interactions and found that the model produces stationary patterns
using diffuse stripes and undergoes Turing instability. Owen et al. [30] constructed an
individual-based mathematical lattice model of the zebrafish skin pattern that incorporated
all important cell types and known interactions. They reported that the model strongly
supports the validity of these experimental interpretations, a fact which compels further
detailed investigation into their molecular bases. In turn, Ishida et al. [31] developed a
pufferfish skin pattern model using a CA model. This CA model was based on Turing
patterns through the exchange of binary values between neighboring cells. Despite the
simplicity of the model, which uses five parameters (three parameters related to basic color
patterns and two parameters for the creation of a large black spot), it was able to produce
the skin patterns of Takifugu. Zakany et al. [32] reported that the dynamics of the color
flipping of Timon lepidus can be modeled using a stochastic cellular automaton.

Examples of discrete models outside these studies include Graner and Glazer [33],
who simulated the sorting of a mixture of two biological cell types using a modified version
of the large-Q Potts model with differential adhesivity. Dilão et al. [34] devised a reaction–
diffusion model that considers two diffusive morphogens and three nondiffusible pigment
precursors to simulate the general structural organization, phenotypic plasticity, and sea-
sonal variation of eyespots (a concentric motif on butterfly wings). Several studies [31–34]
have shown that various animal skin patterns are strongly dependent on the region and
dimension of the skin structure of the target animal.

As a more generalized model, Kondo proposed the Kernel–Turing (KT) model [35],
which uses distance and response profiles (i.e., kernels) to indicate activity and inhibi-
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tion and performs convolution integrals of these parameters to generate Turing patterns.
Simulations of the KT model with kernels of various shapes have shown that, in addi-
tion to being able to generate all standard patterns, i.e., stable 2D patterns (spots, stripes,
and networks), it can also generate complex patterns that are difficult to generate using
conventional Turing models.

Thus, models of the formation of animal epidermal patterns have long been studied
based on the Turing model. Nevertheless, can we assume that all epidermal patterns in
animals can be explained by the Turing model (or similar, related models)? Previous studies
have classified the body patterns of various fish [36] and it has been reported that the more
typical Turing pattern is limited to a few of these species. The KT model [35] can also form
derivative patterns other than the typical Turing pattern.

However, even among fish, some individuals clearly do not exhibit Turing patterns,
differing significantly from the patterns that can be generated using these models. For
example, the body pattern of the ornamental carp Nishiki goi (Cyprinus carpio) produced in
Japan varies randomly from individual to individual. Nishiki goi is the generic name of a
variety of carp that has been improved for use as an ornamental fish. Various patterns have
been created by crossbreeding these fish, including two-color red and white patterns and
three-color white, red, and black patterns, as shown in Figure 1A. Patterns vary randomly
from individual to individual and it is difficult to predict the offspring pattern based on that
of the parent fish. For example, Figure 1B presents an example of a two-color Nishiki goi
(red and white) in which the arrangement of the red pattern is different in every individual.
Figure 1C presents an example of a three-color Nishiki goi (red, white, and black) in which
the pattern mixture varies among individuals. Although genetic studies of carp body
coloration have been published, such as [37], no studies on the reproduction models of
these patterns are available.
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Figure 1. Examples of Nishiki goi patterns. (A) Nishiki goi is an ornamental carp (Cyprinus carpio) in
which various patterns have been created via crossbreeding, including two-color red and white patterns
and three-color white, red, and black patterns. (B) Examples of two-color Nishiki goi patterns with red
and white patterns. (C) Examples of three-color Nishiki goi patterns with white, red, and black patterns.
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The example of Nishiki goi patterns is similar to that of the black and white pattern
of Holstein cows and the pattern of calico cats (tortoiseshell and white cats). The body
patterns of these animals are genetically determined by the presence of two or three colors,
whereas the shape of the pattern is randomly determined. In 2002, Qiu J. et al. [38] reported
the birth of a somatic cell nuclear transplant clone of a cat. The nucleus was donated by a
calico cat, the surrogate mother that gave birth to the cloned animal was a tiger cat, and
the cloned cat was a calico cat. However, the patterns of the calico cat that donated the
nucleus and that of the cloned cat exhibited different formations [38]. Although it is clear
that genetic factors determine the number of colors in the pattern, the mechanism via which
the pattern is formed on the body surface remains under study. The modeling analysis in
the study did not consider a three-color model but only a two-color pattern. Although a
three-color model can possibly be similarly explained by extending the same model, this is
a subject for future investigation.

The majority voting rule model proposed by Vichniac is an explanatory model in
which these animal patterns are formed randomly [39]. The model is a CA model (the state
can be 0 or 1) that uses the sum rule of the Moore neighborhood (eight adjacent cells) via
the majority vote, where the focused cell is 1 if the sum of the surrounding cells is 5 or more
and 0 if the sum is less than 5. The time evolution of this model from a random initial state
strongly depends on the ratio or distribution of the 1 and 0 statuses in the initial state. It
has been reported that, given proper initial placement, it is possible to form animal patterns
using this model.

The epidermal pattern of Nishiki goi may also be explained by this majority rule
model. The pattern differences observed among individuals are attributed to slight differ-
ences in the conditions present during the growth process, and they can be thought of as
corresponding to the sensitivity of the majority voting model to the initial values. From
this, it can be inferred that the epidermal pattern of some fish can be explained by either the
Turing pattern model or the majority voting model. To what extent can these two different
models reproduce fish patterns?

Patterns from both of these models can also be found among extremely closely related
species. For example, the Nishiki goi is a member of the carp family; however, the zebrafish,
which is also a member of the carp family, has a Turing pattern; this pattern has been
used to investigate many morphological models. Nevertheless, whether all fish patterns
can be explained by these two different models remains unclear. However, interestingly,
patterns arising from these two models can be detected among very closely related species.
It is difficult to believe that completely different epidermal formation mechanisms are
employed among species of the same family. Therefore, there may be a more basic model
that can produce patterns via both models.

In this study, the Turing model and majority voting model are represented by CA,
leading to the proposal of a new model that integrates these two models. After adjusting
the parameters, this integrated model becomes equivalent to both previously mentioned
models. Parameters that are intermediate between these two models can also be established.
This integrated model produces a greater variety of patterns than either one of the two
models. Although the model is extremely simple, it can produce a variety of patterns.
This model diverges from previous CA models, such as those that generate biologically
analogous patterns. It is an expanded version of the Turing pattern model, a fundamental
model in biological morphogenesis, incorporating a majority rule model and demonstrat-
ing a broad spectrum of adaptability. Evidently, this model does not provide a detailed
biochemical model of body pattern formation in fish and other animals. Although it is an
examination of a Turing model derivative, this model permits patterns to materialize solely
through information exchange with neighboring cells and may facilitate the exploration of
the underlying biochemical mechanisms in future experimental studies.
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2. Models and Methods
2.1. Overview of the Turing Pattern Model

The Turing model is a type of RD model that was introduced in 1952 by Turing [1],
who considered morphogenesis as the interaction between activating and inhibiting factors.
Typically, this model achieves self-organization through the different diffusion coefficients
of two morphogens, which are equivalent to the activating and inhibiting factors. The
general RD equations can be written as follows:

∂u
∂t

= d1∇2u + f (u, v)
∂v
∂t

= d2∇2v + g(u, v),

where u and v are the morphogen concentrations, functions f and g are the reaction kinetics,
and d1 and d2 are the diffusion coefficients. Previous studies have considered various functions
for f and g; moreover, models such as the linear model, the Gierer–Meinhardt model [40], and
the Gray–Scott model [41] have been used to produce typical Turing patterns.

2.2. Representation of the Turing Model Using CA

In this study, instead of solving the RD differential equation directly, the CA model
was used which reproduces the Turing pattern with the characteristic “interactions between
an activating factor and an inhibiting factor”, which is a feature of the RD equation. CA
models are discrete in both space and time. The state of the focal cell is determined by the
states of the adjacent cells and transition rules. The advantage of CA models is that they
can describe systems that cannot be modeled using differential equations.

Historically, various Turing-like CA patterns have been discovered. Markus [42]
demonstrated that a CA model could produce the same output as the RD equations. The
Young’s model [43] is one of the 2D totalistic models that bridge the RD equations and
the CA model; this model is used to produce Turing patterns. Some other examples
of the production of Turing patterns are provided below. Adamatzky [44] studied a
two-dimensional binary-cell-state eight-cell neighborhood cellular automaton model with
semitotalistic transition rules. Dormann [45] also used a 2D outer-totalistic model with
three states to produce a Turing-like pattern. In turn, Tsai [46] analyzed a self-replicating
mechanism of Turing patterns using a minimal autocatalytic monomer–dimer system.
Manukyan et al. [47] designed a discrete von-Neumann-type cellular automaton based on
a continuous Turing reaction–diffusion system for lizard skin patterns.

Young’s CA model [43] uses a real number function, v(r), to derive the distance effects,
with two constant values within a grid cell—u1 (positive) and u2 (negative)—as shown in
Figure 2A. The v(r) function is a step function. The activation area, indicated by u1, has a
radius of r1; the inhibition area, indicated by u2, has a radius of r2 (r2 > r1) (Figure 2B). It
is believed that Young’s model incorporates diffusion coefficient differences and nonlinear
interactions using a step function. The calculation begins by distributing black cells randomly
on a rectangular grid. Subsequently, for each cell at position R0 in 2D fields, the next cell state
of R0 is determined by the value of function v(r). When Ri is assumed to be a black cell within
radius r2 from the R0 cell and function |R0 − Ri| is assumed to be the distance between
R0 and Ri, the next cell state of R0 is determined by the sum of the function v (|R0 − Ri|)
value at all nearby black Ri cells. If ∑i v (|R0 − Ri|) > 0, the grid cell at point R0 is marked
as a black cell; in turn, if ∑i v (|R0 − Ri|) < 0, the grid cell becomes a white cell. Finally, if
∑i v (|R0 − Ri|) = 0, the grid cell does not change state [43]. Young reported that a Turing
pattern can be generated using these functions. Spotted patterns or striped patterns can be
created with relative changes between u1 and u2.
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In the present study, the method of Ishida was used [48], who converted Young’s
model into a simpler CA model. Ishida’s method can be described as follows. In this
Young’s model, let u1 = 1 and u2 = w (here, 0 < w < 1); furthermore, if the state of the cell
is set to 0 (white) and 1 (black), this model can be arranged as follows. The state of cell i
is expressed as ci(t) (ci(t) = [0, 1]) at time t. The subsequent state at time t + 1, ci(t + 1), is
determined by the states of the neighboring cells. Here, N1 is the sum of the states of the
domain within the S1 meshes of the focal cell. Similarly, N2 is the sum of the states of the
domain within the S2 meshes of the focal cell, assuming that S1 < S2.

N1 =
S1

∑
i=1

ci(t)

N2 =
S2

∑
i=1

ci(t),

where S1 and S2 are the numbers of cells within the S1 and S2 meshes of the focal cell. In
addition, S2 = 2S1 was assumed in this paper. Figure 3 provides a schematic representation
of the total sum of states N1 and N2. The next state of the focal cell is determined by the
following expression (1):

Cell state at the next time step =


1 : if (N 1 − N2 w) > 0

Unchange : if (N 1 − N2 w) = 0
0 : if (N 1 − N2 w) < 0

, (1)

where w and S1 are the two parameters that determine the Turing pattern.
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2.3. Majority Voting Model Using CA

Here, a model that applied the majority decision model proposed by Vichniac was
considered [39]. The Vichniac model is a cellular automaton model that uses the sum
rule of Moore neighborhoods (eight adjacent cells); however, in this model, cells in the S1
range described in the previous section were considered, rather than cells that were merely
adjacent. The focal cell value was set to 1 if the sum of the states in the cells in this S1 range
was greater than half the number of cells in the S1 range and to 0 if the sum was less than
that. If the cell space was bisected by a straight line into black and white, and if this model
was considered to be on the boundary, exactly half of black and white would be obtained.
Cells slightly on the white side of the boundary would be whiter, whereas cells slightly on
the black side would be blacker. Therefore, if the initial value was in such an arrangement,
the pattern would not change when this model is applied. Conversely, if black and white
were randomly arranged as initial values, unevenness in the ratio of black to white would
occur in the local space, and a pattern using this as the seed would arise. The results of the
time evolution from a random initial state performed using this model strongly depended
on the ratio or distribution of 1s and 0s in the initial state. When given the appropriate
initial ratio, it is possible to form patterns that resemble animal body patterns. The equation
for the majority voting model in this study is indicated in (2):

Cell state at the next time step =


1 : if N1 > N0

2
Unchanged : if N1 = N0

2
0 : if N1 < N0

2

, (2)

where N1 is the sum of the states of the domain within the S1 meshes of the focal cell and
N0 is the total number of cells within the S1 range.

2.4. Proposed Integration Model

After the integration of the two models presented in Equations (1) and (2), they can be
expressed using two parameters, w and a, by considering equations such as (3):

Cell state at the next time step =


1 : if (N 1 − N2 w) > a

Unchanged : if (N 1 − N2 w) = a
0 : if (N 1 − N2 w) < a

(3)
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In (3), when w > 0 and a = 0, the equation becomes the same as Equation (1) and is
a Turing pattern model. In turn, when w = 0 and a = N0/2 in Equation (3), the model is
equivalent to Equation (2) and is a majority rule model. It is also possible to construct a
model that has intermediate parameters between the two models by varying w and a. This
is the integrated model of the two models.

2.5. Model with Invariant Regions at the Boundary of the Patterns

A variant of the majority voting model reported by Vichniac [39] has also been pro-
posed. At the pattern boundary, where the majority decision is divided, the model is
deformed in that the sum of the Moore neighborhoods is 0 when it should be 1 if the sum
value was 5, and it is 1 when it should be 0 if the sum value was 4. This model weakens the
effect of the majority decision at the pattern’s boundary. Based on this, a model was also
devised that does not follow the Turing model or the majority rule model for the boundary
domain of the pattern. Equation (4) is a model with a range that is invariant at the boundary
of the pattern:

Cell state at the next time step =


1 : if (N 1 − N2 w) > a(1 + b)
0 : if (N 1 − N2 w) < a(1 − b)

Unchanged : otherwise
(4)

Here, a new parameter, b, has been added to set the range of the unchanged region.

2.6. Calculation Conditions

The model used 2D hexagonal grids (Figure 4) in which the application of transition
rules was simple. Although square grids are generally used in 2D CA modeling, it also
used hexagonal grids because they are isotropic compared to a square grid. The calculation
program was implemented in JavaScript and can run on various browsers. Each step
could be executed within 1 s on a personal computer (Windows 10, Intel Core i7). If there
is no change in the result from the previous time step, it is determined that the process
has converged. Although differences exist depending on the calculation conditions, they
generally converge within 30 time steps.
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Figure 4. Hexagonal grid field. Here, N1 is the domain within the S1 meshes of the focal cell. Similarly,
N2 is the sum of the states of the domain within the S2 meshes of the focal cell, assuming that S1 < S2.
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The models were implemented using the following conditions:

- Calculation field: 100 × 100 cells in a hexagonal grid;
- Periodic boundary condition;
- Initial conditions: states 0 and 1 were placed randomly in each cell of the computa-

tional field with a probability of 0.5;
- At each time step, the cells in the lattice space were synchronously changed, and the

computation was repeated until the pattern formation stabilized;
- The range of S1 was set to three cells from the focal cell, and the range of S2 was set to

six cells from the focal cell. The parameter s determines the scale of the pattern to be
created and, if it is larger, the patterns will only become more similar and larger. For
this reason, s was fixed.

3. Results
3.1. Parameter Map

In the integrated model, after setting each parameter of w and a, the calculation was
initiated from random initial values until the pattern became stationary. Figure 5 shows the
parameter map, where the black cells indicate state 0 and the blue cells indicate state 1.
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Figure 5. Parameter map with parameters w and a; the black cells indicate a state of 0, and the blue cells
indicate a state of 1. The results obtained for w = 0 and a = 1.0 indicated at the top of the figure were
equivalent to those of the majority voting model. In the case of the majority voting model with w = 0,
the results changed sensitively according to the value of a. Therefore, the upper part of the whole map
presents the results obtained when a was varied slightly. The result obtained by changing the w value
with a = 0 in the rightmost column of the figure was equivalent to that of the Turing model.
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The results of w = 0 and a = 1.0 at the top of the figure were equivalent to those of the
majority voting model. In the case of the majority voting model with w = 0, the results
changed sensitively according to the value of a. Therefore, the upper part of the entire
map shows the results obtained when parameter a was altered slightly. When parameter
a exceeded 1.0, the entire image was black (0), whereas when parameter a was <1.0, the
entire image was blue (1).

The result of changing w with a = 0 in the rightmost column of the figure was equivalent
to that of the Turing model. In regions where the w value was small, the cells were indicated
in blue. As the w value increased, the cells appeared as black spots, changed to a striped
pattern, became a blue-speckled pattern, and finally became fully black. These results are
consistent with those of Ishida [48] and it is believed that the Turing pattern was reproduced.

The result of changing parameter a with each w value show that the patterns were
all black when the value of a was large. As the value of a decreased, the patterns became
similar to those of the Turing pattern model with a = 0. It could also be observed that the
effect of the majority voting model was stronger at approximately w = 0.1.

3.2. Initial Value Dependency

Smaller values of the parameter w (closer to the majority model) showed higher de-
pendency on the initial value. Figure 6 presents the results of the initial value’s dependence
in the equivalent model of majority voting with w = 0.0 and a = 1.0. These results were ob-
tained when the cell states were placed randomly according to the specified black (0)/blue
(1) ratio as the initial value. These are the results of five calculations at each ratio.
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Figure 6. Dependence of the initial values in the majority voting model. These are the results of
five calculations at each black (0)/blue (1) ratio as the initial value. The results indicate that a slight
change in the black/blue ratio (from 0.47 to 0.53) as the initial value can significantly change the black
and blue composition of the final pattern.
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The results of this analysis revealed that a slight change in the initial value of the
black/blue ratio (from 0.47 to 0.53) significantly changed the black and blue composition
of the final pattern. Moreover, for the same black/blue ratio, the compositions of black
and blue patterns in the final pattern tended to be similar, although the patterns changed
for each calculation. The majority voting model with a black/blue ratio of 0.5 produced a
pattern similar to the striped pattern.

3.3. Results of the Model with Invariant Regions at the Boundary of the Patterns

Figure 7 shows the results of the model that included regions in which the state was
invariant at the boundaries of the patterns. The figure depicts the results obtained when b
was altered under fixed conditions of the parameters w and a. In this model, a larger value
of parameter b yielded a larger region in which the state that remained unchanged near the
boundary of the pattern may expand. The results showed that the boundary of the pattern
became more ambiguous as b increased.
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indicates the range of the unchanged range on the pattern’s edge, with a larger parameter b yielding
a larger region in which the state that remained unchanged near the boundary of the pattern may
expand. The results show that the boundary of the pattern became more ambiguous as b increased.

4. Discussion

In this integrated model, when parameter w was 0, the model was assessed via a
majority vote of the states of nearby cells. In contrast, when w was different from 0,
the model tended to invert and incorporate the intensity of the information from distant
locations (as indicated by the formula N1 − N2 × w, where N2 at distant locations was
negatively affected), thus creating a Turing pattern.

In particular, in the case of varying w when a = 0, the parameter w, which varies the
Turing pattern, is a weight coefficient that adjusts the magnitude of the effect of the number
of states in the outer neighborhood (N2) on the number of states in the inner neighborhood
(N1). At the rightmost portion of Figure 5, a typical Turing pattern appears as the w value
changes. In the RD model, this w value corresponds to the difference between the diffusion
coefficients of the two diffuse substances and corresponds to the result in which the pattern
is created by the difference between the two diffusion coefficients.

In Figure 5, when w = 2.0 is fixed and parameter a is varied, a continuous pattern that
changes from a speckled pattern to a striped pattern similar to the Turing pattern can be
observed. This indicates that, under constant w value conditions (w = 0.2 in this case), a
change in parameter a can induce the same pattern change as a change in the w value. In
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equation N1 − N2 × w > a·N0
2 , parameter w is the parameter for adjusting the difference

between N1 and N2. However, even when w is fixed in a certain range and a is varied, the
value of a can affect the magnitude of the difference between N1 and N2. The condition of
w being fixed means that, although the difference in diffusion coefficients between the two
substances is fixed, the pattern can be changed by looking at the value of the difference
in a diffusion concentration under certain conditions. This suggests that the model can
be converted into a simpler mechanism for pattern creation than the conventional model,
which requires detailed changes in the diffusion coefficient to change the pattern and may
provide useful knowledge for exploring the mechanism in vivo.

In Figure 7, parameter b has the effect of blurring the boundary of the pattern and reflect-
ing random initial conditions in the boundary region. Although this model is a deterministic
state transition model, when near the boundary of the pattern (a region where the effects of
the inner and outer neighborhoods are antagonistic), the model could transform into a model
with a stochastic transition to 0 or 1. Although the model and results of this study alone do not
clarify how these parameters relate to specific mechanisms within the organism, the simplicity
of this model may be helpful in future studies of these in vivo models.

For example, the process of counting the number of states in the surrounding cells in the
model could correspond to the process by which cells receive signaling substances, such as
proteins, from neighboring cells. Furthermore, the transition between blue and black cells
could correspond to signals controlling chromatophores in pigment cells, a phenomenon
which could facilitate the understanding of the regulatory mechanism for skin patterns.

The following are the results from a comparative study of these results using actual
biological patterns. Figure 8 displays the results of the majority voting model. The fact that
large patterns are formed at any initial value, despite being sensitive to the initial value,
may explain the formation of Nishiki goi patterns. In general, a fixed number of colors are
observed in Nishiki goi patterns; however, the appearance of the patterns varies greatly
among individuals. This may explain why Nishiki goi patterns vary with slight changes
in the conditions in the epidermal cells during the growth process, corresponding to the
initial value dependence of the model.
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Figure 8 indicates the results obtained using parameters that were intermediate be-
tween those of the majority rule model and the Turing model, showing that patterns created
using this approach could not be generated using the Turing model. The image on the
right in Figure 8 provides an example of the pattern of the pufferfish Takifugu vermicularis
which is similar to the resulting pattern produced by the present model. Thus, a model
with intermediate parameter values could reproduce a wide variety of fish patterns.

Figure 8 provides an example of the calculation results based on a model in which
the state was invariant in the boundary region of the patterns. A pattern in which the
boundaries of the pattern are intermittently connected could be created, as observed in the
case of the pufferfish Takifugu stictonotus.

Figure 8 depicts a speckled pattern with a typical Turing pattern. Under these conditions,
it can be assumed that the pattern of the pufferfish Takifugu alboplumbeus was reproduced. In
the pufferfish family, the patterns vary greatly from species to species [6]; however, using this
model, it was possible to create patterns in the same model by adjusting the parameters.

Thus, in addition to the effects of short-range activation and long-range inhibition,
the proposed model can generate numerous patterns by considering the mechanism of the
majority voting model and the stochastic transformation of pattern boundaries.

In addition, the proposed model formed patterns by counting the states of the sur-
rounding neighboring cells. It is a model that can be computed only via information transfer
from neighboring cells. Therefore, it is possible to construct a model that corresponds to the
recent experimental results of Turing patterns, such as mutual stimulation between cells.
Although this model is simpler than the conventional computational models, it has the
potential to create a wide variety of patterns. Conversely, alternative mechanisms of pattern
formation without the Turing instability have been proposed [49], and their consistency
with these models should be examined in the future.

Analyses of the overall parameter map (Figure 5) revealed that most of the map
area was all black, i.e., an area that did not create patterns. This is consistent with the
trend reported by Miyazawa [36] in which most fish had no pattern. Patterns are created
exclusively when certain combinations of parameters are used. In particular, the patterns
of Nishiki goi emerged only in an extremely narrow region of parameter a, under the
condition of w = 0.0. Creating such a pattern is believed to be difficult under natural
selection; these patterns can be explained by consistent artificial selection over a long
period of time. Future studies should also address the pattern stability issues and the
robustness of the proposed model, as previously investigated by Maini et al. [50].

5. Conclusions

In this study, the Turing pattern and majority voting models were represented using a
CA, resulting in the proposal of a model that integrated these two models. By adjusting
the parameters, this integrated model could create patterns that are equivalent to both
previously mentioned models. By setting the intermediate parameter values of the two
models, it was possible to create a variety of patterns that were more diverse than those
created by each model alone. Although this model is simpler than previously proposed
models, it can create a variety of patterns. However, further research is warranted to
determine whether this model is consistent with the mechanisms involved in the formation
of skin patterns in fish from a biological viewpoint. Furthermore, a quantitative evaluation
of pattern formation is required—especially the use of pattern simplicity scores or pair
correlation functions—to understand the wavelengths that appear in the patterns and
the variation caused by initial conditions. Although the model developed in this study
alone cannot further elucidate the in vivo mechanism, a biochemical model equivalent to
the formula for determining two colors might reveal a different candidate substance for
morphogenesis. When speculating on extending this integrated model to three colors, the
possibility that the three-color pattern might be potentially due to two or more overlapping
and independent mechanisms should be considered as well.
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In fact, many fish species dynamically change their patterns during the growth and
maturation process from the juvenile to the adult stage. A possible explanation for this
finding is that cell–cell interactions on the epidermis change as the fish grows. It is believed
that the application of this model may allow the examination of large-scale changes in
patterns associated with growth.
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