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Abstract: In this study, we examine the cooperative effect between vitamins C and E that mitigates
oxidative stress by using experimental and computational methods. We performed superoxide
scavenging experiments on each vitamin individually and their combination using rotating ring–disk
electrode voltammetry. The results indicate that vitamins E and C together produce more effective
scavenging of superoxide as evaluated by a steeper slope in the efficiency graph, −7.2 × 104, com-
pared to that of vitamin E alone, −1.8 × 103, or vitamin C alone, −1.3 × 104. Density Functional
Theory calculations agree with our experimental results, and we describe a mechanism for the antiox-
idant action of individual vitamins E and C, plus the synergistic action when both vitamins interact.
This process involves the restoration of vitamin E by vitamin C and includes π-π interactions between
superoxide and scavengers. The overall result produces an increase in scavenging superoxide radicals
when both vitamins act together.
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1. Introduction

The in vivo and in vitro relationship between vitamin C and vitamin E has been
known and studied for some time [1–4]. The in vivo results of a pioneering study on
healthy young adults by Jeng et al. [5] showed that combined supplementation with
vitamins C and E resulted in an enhanced immune response over supplementation by either
vitamin alone. Similarly, beneficial results of in vivo interaction between vitamins C and E
were reported after sequential antioxidant vitamin C and E supplementation to the diet
of human subjects [6]. More recently, elderly adult immune function was improved with
supplementation of vitamins C and E [7]. Also, the fertility of male rats under conditions
of high oxidative stress was restored by a diet containing tocopherols and vitamin C [8].

Vitamin E’s cooperative role with vitamin C as an antioxidant species in diseases
associated with oxidative stress is much studied [9]. These essential nutrients play a major
role in reducing and controlling oxidative stress by protecting the immune system and
enhancing resistance against infectious microbes such as bacteria, viruses, and parasites.
The beneficial effects of these two antioxidant vitamins on the immune system are described
in several reviews [10–23]. Relevant to this work, supplementation of vitamins C and E
decreased O2

•− concentration in the bloodstream and improved antioxidant activity by
enhancing NADPH oxidase and superoxide dismutase activity [4].

Many literature studies on the individual action of these two antioxidant vitamins
exist. Vitamin C (ascorbic acid) supplementation, for example, has been shown to reduce
the duration and severity of upper respiratory infections, including colds [24] and other
respiratory infections, including COVID-19 [25]. Water-soluble vitamin C is an important
non-enzymatic antioxidant found in human tissue that is involved in many biological
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functions by acting as a reducing agent through the donation of two electrons. This
redox ability is crucial to its role (1) as a cofactor in either monooxygenase or dioxygenase
enzymatic reactions, including collagen synthesis, and (2) as an antioxidant against cellular
oxidative stress [26]. Vitamin C also restores vitamin E through redox recycling and
facilitates the absorption of iron by enhancing its intestinal absorption [27]. One of its
biological roles is as a normal skin constituent, both dermis and epidermis, and it plays
an important role in tissue repair and wound and burn healing. Scurvy was one of the
first examples of a serious disease caused by vitamin C deficiency [28]. Current reviews
describe the helpful effects of vitamin C on several other infections [13,29]. However,
the relationship between insufficient vitamin C and altered inflammatory and immune
responses is not yet clear. As such, the biochemical mechanisms by which vitamin C
influences NF-κβ activation to produce pro-inflammatory cytokines are not obvious, and
this topic is the subject of many research studies [11,30].

Vitamin E is chemically more complex and consists of a family of eight different
compounds: α-, β-, γ-, and δ-tocopherols and four α-, β-, γ-, and δ-tocotrienols (Figure 1).
α-Tocopherol is the predominant form in the body and has been given the greatest attention.
It is a fat-soluble antioxidant, and its role in human health, particularly as it interacts with
peroxyl radicals to prevent lipid peroxidation and subsequent membrane damage, is much
investigated and not yet completely explained [31,32]. All naturally occurring vitamin E
forms are strong antioxidants with anti-inflammatory activities [33]. A recent review
describes the capability of vitamin E to behave as an antioxidant and its effects on diseases
caused by oxidative stress [34]. However, despite many studies that have reported on
vitamin E’s relationship with the immune system, the mechanistic details are lacking [35,36].
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R1 = H, R2 = H, R3 = Me. (Bottom) Tocopherols have the C12 long chain saturated: α-tocopherol, R1, 
R2, R3 = Me; β-tocopherol, R1 = Me, R2 = H, R3 = Me; γ-tocopherol, R1 = H, R2 = Me, R3 = Me; δ-
tocopherol, R1 = H, R2 = H, R3 = Me. 
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studying their interactions with reactive oxygen species (ROS), especially the superoxide 
radical, is of importance. The latter is biologically obtained through two main processes: 
(1) leakage from the electron transport chain during oxidative phosphorylation [37] and 
(2) the generation of the superoxide radical by NADPH oxidases in the immune system 
to destroy ingested microbes by neutrophils and other leukocytes [38]. However, excess 
superoxide is damaging and needs to be regulated. This is performed enzymatically by 
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R1, R2, R3 = Me; β-Tocotrienol: R1 = Me, R2 = H, R3 = Me; γ-Tocotrienol: R1 = H, R2 = Me, R3 = Me;
δ-Tocotrienol: R1 = H, R2 = H, R3 = Me. (Bottom) Tocopherols have the C12 long chain saturated:
α-tocopherol, R1, R2, R3 = Me; β-tocopherol, R1 = Me, R2 = H, R3 = Me; γ-tocopherol, R1 = H,
R2 = Me, R3 = Me; δ-tocopherol, R1 = H, R2 = H, R3 = Me.

The antioxidant role of vitamins C and E is a subject of continual investigation, and
studying their interactions with reactive oxygen species (ROS), especially the superoxide
radical, is of importance. The latter is biologically obtained through two main processes:
(1) leakage from the electron transport chain during oxidative phosphorylation [37] and
(2) the generation of the superoxide radical by NADPH oxidases in the immune system
to destroy ingested microbes by neutrophils and other leukocytes [38]. However, excess
superoxide is damaging and needs to be regulated. This is performed enzymatically by
superoxide dismutases (SODs) and assisted through human diets that provide natural
antioxidant compounds from fruits and vegetables, including vitamins C and E. Therefore,
we focus our attention on trying to understand the mechanism by which vitamin C and
α-tocopherol exhibit a cooperative effect to ameliorate oxidative stress, specifically due to
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the superoxide radical. Among these antioxidant mechanisms, π-π interactions between
superoxide and its scavengers permit superoxide to act as a reducing agent, mimicking
SOD action, as recently shown for isoflavones [39].

A recent review on superoxide chemistry [40] describes the role played by the elec-
trodes in the electrochemical generation of O2

•–. This is relevant to the rotating ring–disk
electrode (RRDE) voltammetry technique that we developed and used in this study. In
fact, we perform voltaic experiments to measure individual superoxide scavenging by each
vitamin as well as examine their combined effects. The advantage of our method is that
the concentration of superoxide present in the solution can be calculated directly. Density
Functional Theory (DFT) calculations supporting a synergistic effect for both vitamins are
evaluated in a similar environment to the natural location of vitamin E in the cell membrane.
This chemical mechanism agrees with our experimental results.

2. Materials and Methods
2.1. Hydrodynamic Voltammetry (RRDE)

Hydrodynamic Voltammetry was performed at a rotating ring–disk electrode (RRDE)
using the WaveDriver 20 bipotentiostat (Pine Research, Durham, NC, USA) with the
MSR Electrode Rotator, also from Pine Research, Durham, NC, USA. In RRDE, the bipo-
tentiostat measures, at the same time, both the currents at the disk and ring electrodes
(that correspond to charge movements among the ring, the disk, and the counter elec-
trode) and the potentials of the disk and ring electrodes relating to the single refer-
ence electrode. The RRDE cell contains four electrodes: the two gold working elec-
trodes, both the rotating ring and disk (Pine Research, Durham, NC, USA), one coiled
platinum wire counter electrode, and one reference electrode consisting of a platinum
wire immersed in 0.1 M dried tetrabutylammonium bromide, TBAB (Sigma-Aldrich,
St. Louis, MO, USA), dissolved in 50 mL dimethyl sulfoxide, DMSO, anhydrous, ≥99.9%
(Sigma-Aldrich, St. Louis, MO, USA), in a fritted glass tube. The electrodes were placed
in a 5-neck electrochemical cell together with means for either bubbling or blanketing the
solution with gas. The solution was subsequently bubbled with dry O2/N2 (35%/65%)
for five minutes to establish the required dissolved molecular oxygen level. Careful initial
cleaning of the electrodes was performed to clear potential film formation.

Aftermath software release 1.6.10523 (Pine Research, Durham, NC, USA) was used to
set up the parameters needed for the experiment: the potential sweep was applied to the
disk from 0.2 V to −1.2 V and then reversed to 0.2 V, while the potential of the ring electrode
was held constant at 0.0 V. The disk voltage sweep rate was set at 25 mV/s. The rotation
setting used for the rotation of the Au/Au disk electrode was chosen to be 1000 rpm at the
disk electrode. The superoxide radical is generated through molecular oxygen reduction,
and the peak was detected around −0.6 V. Meanwhile, the reverse oxidation reaction
of the remaining unreacted superoxide radicals was detected at the ring electrode. An
initial blank solution consisting of bubbled N2/O2, the electrolyte TBMB, and DMSO was
run. The ratio of the ring/disk current was defined as “efficiency”. Next, an antioxidant
aliquot of vitamin E (DL-α-tocopherol) or vitamin C (0.03 M) was introduced. The solution
containing antioxidant in the voltaic cell was bubbled with the gas mixture for 5 min, a
revised voltammogram was documented, and the corresponding efficiency was calculated.
In this way, the rate at which the increasing concentration of the antioxidant scavenges the
generated superoxide radicals during the electrochemical reaction is determined upon the
addition of each antioxidant aliquot. Aftermath software was used to record the results
from each run, represented as voltammograms showing the current vs. potential graphs.
These were later evaluated using Microsoft Excel. The volume amount used in each of
the aliquots is indicated in the related RRDE graph. Finally, the decreasing slope of the
curve, describing the overall decrease in efficiency with the incremental addition of the
antioxidant, serves as a quantitative measure of the antioxidant activity of the vitamins.
Any decrease in the collection efficiency is anticipated to be due to the amount of superoxide
consumed by the antioxidant. This method was developed in our laboratory [41].
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2.2. Computational Study

Calculations were run using BIOVIA Materials Studio DMoL3, implemented in Mate-
rials Studio 7.0. DMoL3 is a modeling program (Dassault Systèmes, San Diego, CA, USA)
that utilizes Density Functional Theory (DFT) to calculate properties of molecules such as
energy, geometry, and transition state optimizations [42]. The results allow the relationships
between the molecular structure with its antioxidant properties and scavenging behavior to
become evident. We employed the double numerical polarized (DNP) basis set, including
all the occupied atomic orbitals plus a second set of valence atomic orbitals, as well as
polarized d-valence orbitals [43]. Correlation generalized gradient approximation (GGA)
was used, including BLYP correlation plus BLYP-D and Becke exchange [44]. We also
included Grimme’s correction when van der Waals interactions were involved [45]. The
continuous model of Dmol3 was applied for solvent effects and calculation, including polar
DMSO, non-polar n-hexane, or non-solvent (gas phase), showing no important variation
in dimensions (bond distances or separations between isolated species) [46]. All electrons
were treated explicitly, and the real space cutoff of 5 Å was set for the numerical integration
of the Hamiltonian matrix elements. The self-consistent field convergence criterion was
established for the root mean square variation in the electronic density to be less than
10−6 electron/Å3. The convergence criteria applied during geometry optimization were
2.72 × 10−4 eV for energy and 0.054 eV/Å for force.

An attempt to use a functional of higher quality, B3LYP, which is better at estimating
potential barrier heights, was made, but calculations became extremely lengthy. Ultimately,
these B3LYP calculations confirmed what we saw using BLYP, e.g., some calculated potential
energy minimums for our molecules are extremely shallow, which makes for extremely
prolonged calculations to reach the needed energy minimum. (After almost a week for
completion of the first calculation where we get convergence, we needed to refine the entire
system to look for the true minimum through other very lengthy iterative refinements).
Therefore, the dimensions of our molecules pose a problem, as using the strong functional
(B3LYP) instead of BLYP is markedly time-consuming. From our computational studies, we
are looking mainly for trends in the barriers to identify fast and slow steps for correlation
with our experimental studies, which can be achieved using the simpler and faster BLYP
functional. These calculations try to correlate experimental RRDE features.

3. Results and Discussion
3.1. DFT of Vitamin E-Model and Vitamin C
3.1.1. Vitamin E-Model Scavenges Superoxide

DFT methods were applied to study the antioxidant properties of vitamins E and C.
To decrease the calculation time, we used a model of vitamin E α-tocopherol, which we
call vitamin E-model (Figure 1), which consists of the 6-chromanol nucleus contained in
the α-tocopherol isomer but with the long, hydrophobic, saturated side chain replaced
by a methyl group. The model then has a total of five methyl groups on the 6-chromanol
nucleus (methyl groups in position R1, R2, and R3 of the aromatic ring plus the two methyl
groups at the C2 position of the 6-chromanol). This model is a suitable representative of
all forms of vitamin E, and a published report concluded that the antioxidant capacity of
vitamin E and a model without the side chain were quite similar [47].

The superoxide radical anion, considered to be of major importance in cell biology, is
primarily obtained when an oxygen molecule acquires an extra electron leaked from the
mitochondria during aerobic cellular respiration that ultimately produces ATP [42,48,49].
The reactivity of the superoxide radical is controlled by endogenous enzymes, superoxide
dismutases, catalase, and glutathione peroxidase, which help to cope with oxidative stress
by effectively quenching free radicals [50,51]. Substantial evidence links increases in
oxidative stress [52] with the decline of enzyme regulation of the superoxide anion during
aging. Leakage of this radical anion during oxidative stress creates conditions for attack on
DNA, proteins, and other important biological molecules, leading to disease states [53].
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Due to the lipidic character of vitamin E with its long saturated hydrophobic side
chain, α-tocopherol is recognized as the major antioxidant in membrane-rich fractions
such as mitochondria and microsomes [54,55]. This strategic position makes vitamin E
an important means of scavenging the superoxide radical inside the cell membrane [56].
It is, therefore, important to describe the initial interaction between the 6-hydroxyl in
vitamin E-model and superoxide. Using computational methods, the reaction, with the
minimized structures of reagent, transition state (TS), and product, shown in Figure 2, has
∆G of −0.4 Kcal/mol and an easily attainable E(barrier) of 0.8 Kcal/mol. Figure 3 shows
details of the transition state search. These results demonstrate that vitamin E-model can
intercept and neutralize superoxide. A potential ensuing step on the product shown in
Figure 2 is described in Figure 4, where a proton is placed at van der Waals separation
from the added superoxide, 2.60 Å. The minimization of Figure 4 arrangement (Figure 5)
shows H2O2 formation and separated 1.654 Å from the O(polyphenol) in position 6, which
is longer than the initial input conditions, 1.498 Å. Therefore, hydrogen peroxide was
eliminated, and the residual semiquinone vitamin E-model was minimized. The next
step in this study involves the π-π interaction with an additional molecule of superoxide.
This process was shown to mimic superoxide dismutase action by some natural organic
molecules and is described in previous studies and a recent review [57].
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Figure 2. Superoxide scavenges H(hydroxyl) in position 6 of vitamin E-model. Minimized structures
of reagent (left), transition state (center), and product (bottom right) are shown. This reaction has
∆G of −0.4 Kcal/mol and E(barrier) of 0.8 Kcal/mol. The transferred H atom is equidistant from
both moieties in this TS: O(superoxide)—H = 1.219 Å, O6—H = 1.209 Å. O atoms, red; C atoms, black;
H atoms, light grey.
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O(polyphenol) in position 6, which is longer than the initial condition, 1.498 Å, shown in Figure 4.

Therefore, the semiquinone vitamin E-model was minimized, and a superoxide radical
was π-π placed above its aromatic ring (van der Waals distance, 3.50 Å). Upon geometry
minimization, there is a shortening of the distance between both centroids, 2.899 Å, indi-
cating bond formation. In the meantime, the initial superoxide bond distance of 1.373 Å
shortens to 1.302 Å, which implies that some electron density becomes directed toward the
ring (Figure 6). This overall arrangement is non-radical due to its even number of electrons,
arising from two superoxides (each one contributing with an odd number of electrons), and
it is negatively charged (−1), resulting from two negative charges of the two superoxides
(from Figures 2 and 6) and one proton (from Figure 4).
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Figure 6. After elimination of H2O2 from the previous arrangement (Figure 5), the remaining species,
semiquinone vitamin E-model, was minimized, and a superoxide radical was π-π placed above the
aromatic ring (van der Waals distance, 3.50 Å). Its geometry minimization shows shortening between
both centroids, 2.899 Å, indicating bond formation. Meanwhile, the initial superoxide bond distance
of 1.373 Å shortens to 1.302 Å, which indicates some electron density was directed toward the ring.

It can be expected that a cation will react with this arrangement, and so a proton was
van der Waals placed near O6 of the anion arrangement, with an O6-proton distance of
2.60 Å. Its DFT optimization shows O6-H6 bond formation, 0.976 Å (Figure 7). This reaction
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has a small energy barrier, as observed after a TS search, and the resulting structure is shown
in Figure S1. The C6-O6 bond length, 1.378 Å, is characteristic of a single bond (Figure 7) and
is longer than the partial double bond in the initial species, 1.295 Å (Figure 6). The effects of
proton addition to O6 are also evident in the aromatic ring, with four bond lengths becoming
more similar, range 1.42–1.43 Å, than those in the reacting species, range 1.42–1.46 Å,
while the remaining two bond lengths in the ring continue to be shorter and unaltered
(1.398–1.399 Å). These effects are related to the shorter distance between superoxide and
ring centroids, 2.664 Å, compared with the initial species, 2.899 Å. Thus, the approach
of a positive charge, a proton, to the reacting species makes the π-π bound superoxide
shift more electron density toward the ring. This forms a neutral and non-radical species,
η-O2-vitamin E-model, and H2O2, resulting from the interaction of vitamin E-model with
two superoxide molecules (one π and one σ added to the polyphenol), plus two protons,
shown in Reaction (1).

2O2•− + vitE-model + 2H+ → H2O2 + η-O2-vitE-model (1)
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Figure 7. DFT optimization result after a proton was placed near O6 of the previous arrangement,
Figure 6, at O6-proton distance 2.60 Å. It shows O6-H6 bond formation, 0.976 Å; the C6-O6 bond
length, 1.378 Å, is a typical single bond and is longer than the partial double bond in the reacting
species shown above, 1.295 Å (Figure 6). This reaction has a small barrier, observed after a TS search,
whose resulting structure is shown in Figure S1.

Earlier studies using UV–Vis and ESR techniques involving the scavenging of DPPH
and galvinoxyl radicals by a vitamin E derivative, IRFI005, describe a “two electrons
and/or 2 H-atoms” donation mechanism for each molecule of the scavenger [58].

Our mechanism is shown in Scheme 1. The scavenging mechanism here described for
superoxide, a biologically relevant radical, includes partial π-π donation of an electron to
the aromatic ring of vitamin E and capture of a H atom by another superoxide. In a related
excellent theoretical study about vitamin E, π-π interactions have not been considered for
scavenging superoxide [59].

We compare the energy barriers for the higher-quality B3LYP functional and the
BLYP used in Figure 2. A TS Optimization for the TS shown in Figure 2 shows equal
energy for both systems BLYP and B3LYP, suggesting no underestimation of the energy
barrier by BLYP: energy of transition state: −806.5218885 Ha (BLYP), −806.521889 Ha
(B3LYP). In addition, Figure 2 TS for the transferred proton has O(superoxide)-H = 1.219 Å,
O(VitaminE)-H = 1.209 Å, and the corresponding distances are very similar to those ob-
tained using B3LYP calculation (1.211 Å and 1.204 Å), as shown in Figure S1.
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proton is captured by [HO2]−, forming H2O2; (D) an additional superoxide interacts π-π with the 
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model. 

3.1.2. Vitamin C Restores Vitamin E-Model 
As shown in Figure 7, a reacting proton is needed to accomplish Scheme 1. Therefore, 

the interaction between the semiquinone vitamin E-model and vitamin C, with an initial 
separation of 2.60 Å (Figure 8), was studied with DFT, resulting in a proton transfer to the 
semiquinone (Figure 9). This reaction is possible as shown by ΔG = −2.7 Kcal/mol and 
E(barrier) = 0.7 Kcal/mol. Since the total charge of the system is zero, the result of this 
interaction is an ascorbate radical and vitamin E-model.  

Scheme 1. Vitamin E scavenges superoxide. (A) Superoxide approaches vitamin E hydroxyl in
position 6; (B) H is captured by superoxide, forming [HO2]− plus vitamin E semiquinone; (C) a proton
is captured by [HO2]−, forming H2O2; (D) an additional superoxide interacts π-π with the aromatic
ring; (E) an additional proton interacts with the semiquinone, forming η-O2-vitamin E-model.

3.1.2. Vitamin C Restores Vitamin E-Model

As shown in Figure 7, a reacting proton is needed to accomplish Scheme 1. Therefore,
the interaction between the semiquinone vitamin E-model and vitamin C, with an initial
separation of 2.60 Å (Figure 8), was studied with DFT, resulting in a proton transfer to the
semiquinone (Figure 9). This reaction is possible as shown by ∆G = −2.7 Kcal/mol and
E(barrier) = 0.7 Kcal/mol. Since the total charge of the system is zero, the result of this
interaction is an ascorbate radical and vitamin E-model.
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Figure 9. Vitamin C transfers a hydrogen atom to vitamin E-model semiquinone. Left: Minimum
of energy after approaching H(vitamin C) to vitamin E-model semiquinone (obtained after DFT
minimization of Figure 8). Right: Product of reaction. Center: Transition state showing H located
midway between both O atoms, 1.215 Å from vitamin C and 1.229 Å from vitamin E. This reaction is
characterized by ∆G = −2.7 Kcal/mol and E(barrier) = 0.7 Kcal/mol.
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3.1.3. Antioxidant Vitamin C Scavenges Superoxide

Our DFT calculations support that vitamin C is an antioxidant, as seen in Figures 10–13 and S2.
Figure 10 shows the initial σ approach of superoxide to the acidic proton of vitamin C.
Figure 11 shows the result of DFT minimization using an n-hexane solvent effect, whose
low dielectric constant is closely related to the lipidic environment in the membrane cell,
the natural location of vitamin E. Figure S2 applies a DFT DMSO solvent effect, which
is related to the experimental aprotic solvent used in RRDE, vide infra, and the structural
results of Figures 11 and S2 are similar. The expected subsequent step for Figure 11 is a
proton addition to obtain H2O2, which is then a substrate in the catalase enzymatic reaction
to yield H2O plus ½ O2. H2O2 is obtained after a second ascorbic acid approaches the
most exposed O atom of superoxide in Figure 11. The separation between H2O2 and both
ascorbates is 1.680 Å and 1.698 Å (Figure 12).
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Figure 10. Vitamin C scavenging superoxide. Initial state, superoxide is placed at van der Waals 
separation, 2.60 Å, from the acidic proton of vitamin C. 

 

Figure 10. Vitamin C scavenging superoxide. Initial state, superoxide is placed at van der Waals
separation, 2.60 Å, from the acidic proton of vitamin C.
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Figure 11. Superoxide forms a HO2 moiety, well separated from the remaining species. DFT 
calculation performed in n-hexane, an organic environment that can mimic the membrane cell. Bond 
distances within HO2, O-H = 1.027 Å, O-O = 1.398 Å; separation between both units = 1.617 Å; within 
the vitamin C derivative C-O = 1.277 Å. 

 
Figure 12. A 2nd vitamin C molecule, stick style, was placed near the most exposed O(superoxide) 
of the product arrangement shown in Figure 11. DFT showed formation of H2O2 well separated from 

Figure 11. Superoxide forms a HO2 moiety, well separated from the remaining species. DFT
calculation performed in n-hexane, an organic environment that can mimic the membrane cell. Bond
distances within HO2, O-H = 1.027 Å, O-O = 1.398 Å; separation between both units = 1.617 Å; within
the vitamin C derivative C-O = 1.277 Å.

Since one of the two remaining vitamin C derivatives is a radical (Figure 12), this can
easily react with an additional superoxide and yield a quinone-like vitamin C derivative
(see Figure 13). This can be considered part of the quenching action of stopping lipid
peroxidation. The alternative reaction involving a π-π interaction, instead of the σ su-
peroxide attack on the quinone vitamin C derivative of Figure 10, was shown not to be
feasible in performing DFT calculations. Therefore, a vitamin C quinone formation is
suggested, along with H2O2, for superoxide scavenging of vitamin C. A detailed theoretical
mechanism for vitamin C oxidation by the superoxide anion radical reveals the presence of
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radical vitamin C quinone derivatives. These compounds have also been modeled with
water molecules [60]. However, in the RRDE method used here, water molecules do not
play a role as they react with superoxide when they arrive at the disk electrode. We use
anhydrous DMSO solvent to have minimal water solvation for vitamins C and E, using the
disk electrode where superoxide is generated.
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Figure 12. A 2nd vitamin C molecule, stick style, was placed near the most exposed O(superoxide) of the
product arrangement shown in Figure 11. DFT showed formation of H2O2 well separated from two vita-
min C species, 1.680 Å and 1.698 Å. Therefore, H2O2 is a product of vitamin C scavenging superoxide.
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NADH, and molecular oxygen [62]. A third non-enzymatic option to generate superoxide 
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protons. Thus, for KO2 use, it is necessary to operate either in an anhydrous solution or a 
strongly basic water environment [65]. Once generated, the superoxide concentration is 
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indirectly measure superoxide concentration as they consist of measuring a product 
generated through superoxide consumption, whose concentration is decreased with the 
addition of an antioxidant.  
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Figure 13. Interaction between superoxide and the vitamin C radical shown in Figure 12 (right).
Superoxide gives its electron to the scavenger, which becomes a monoanionic quinone-like species.
Meanwhile, the short O-O bond distance of the incoming radical, 1.296 Å, may be associated with
a leaving O2 molecule, as shown by the separation between both units, 3.713 Å, longer than the
van der Waals separation, 2.80 Å.

3.2. Hydrodynamic Voltammetry (RRDE)

The superoxide radical must be generated experimentally to measure its scavenging.
There are several methods to do this: (1) an enzymatic reaction with xanthine dehydroge-
nase [61] and (2) a non-enzymatic option using phenazine methosulphate, NADH, and
molecular oxygen [62]. A third non-enzymatic option to generate superoxide is by dissolv-
ing potassium superoxide, KO2, in a given solvent [63,64]. However, this method suffers
from complex starting conditions since superoxide reacts readily with protons. Thus, for
KO2 use, it is necessary to operate either in an anhydrous solution or a strongly basic
water environment [65]. Once generated, the superoxide concentration is followed using
spectrophotometric, colorimetric, chemiluminescence, and fluorescence methods. Also,
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the superoxide can be trapped with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), and the
resultant DMPO-OH adduct is detectable by ESR. These methods all indirectly measure
superoxide concentration as they consist of measuring a product generated through super-
oxide consumption, whose concentration is decreased with the addition of an antioxidant.

A simpler method to generate the superoxide radical is provided by classical cyclic
voltammetry in a voltaic cell. Increasing the concentration of antioxidants in the voltaic
cell detects the decrease in the current intensity of the superoxide signal [66]. However, the
differences among several voltammograms, obtained after successive additions of scav-
enger, are not well distinguished, and a quantitative measure of superoxide is difficult [41].
We improved this system by splitting reduction and oxidation using a rotating ring–disk
electrode (RRDE). At the disk, reduction will produce superoxide following Reaction (2)
(lower part of Figure 14), while at the ring, the opposite oxidation reaction will be per-
formed (upper part of Figure 14). This RRDE method measures superoxide scavenging
directly, e.g., a real superoxide concentration is detected. A recent review describes several
natural polyphenols analyzed with the RRDE technique [57].

O2 + e− → O2
− (2)
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Our first experiment (Figure 14) shows voltammograms of vitamin E in which the 
different runs are not easily distinguished; that is, the measurements in the variation in 
superoxide concentration destroyed at the ring electrode, upper part, are almost all 
similar, which suggests that the vitamin E is not a strong antioxidant in this experiment. 
This is more clearly and quantitatively indicated in Figure 15, showing the efficiency 
collection. The estimated line equation, y = −0.0018x + 18.391, R2 = 0.8981, has a slope of 
−1.8 × 103, which is associated with vitamin E antioxidant capability. Even so, the vitamin 
E slope is slightly better than that of the previously measured commercial antioxidant 
butylated hydroxytoluene, BHT (−1.6 × 103) [57]. Vitamin E is a component of olive oil, 
previously analyzed by us [67], and both show closely related scavenging of superoxide. 

Figure 14. RRDE voltammograms of vitamin E. Each run is associated with a specific color (e.g., red)
and corresponds to the red oxidation curve (top, positive current) detected at the ring electrode and
the red reduction curve detected at the disk electrode (bottom, negative current). These individual
voltammograms show almost no variation; that is, the superoxide destroyed at the ring electrode has
a similar value for all runs, suggesting that vitamin E is not a strong antioxidant.

Our first experiment (Figure 14) shows voltammograms of vitamin E in which the
different runs are not easily distinguished; that is, the measurements in the variation in
superoxide concentration destroyed at the ring electrode, upper part, are almost all similar,
which suggests that the vitamin E is not a strong antioxidant in this experiment. This is
more clearly and quantitatively indicated in Figure 15, showing the efficiency collection.
The estimated line equation, y = −0.0018x + 18.391, R2 = 0.8981, has a slope of −1.8 × 103,
which is associated with vitamin E antioxidant capability. Even so, the vitamin E slope
is slightly better than that of the previously measured commercial antioxidant butylated
hydroxytoluene, BHT (−1.6 × 103) [57]. Vitamin E is a component of olive oil, previously
analyzed by us [67], and both show closely related scavenging of superoxide.
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We were interested in analyzing a potential interaction between both vitamins 
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aliquots of vitamin C were added, and measurements were taken (Figures 17, 18, S3, and 
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Figure 15. Collection efficiency of vitamin E cyclovoltammetry, y = −0.0012x + 18.352, R2 = 0.8969
considering all points; y = −0.0018x + 18.391, R2 = 0.8981, excluding the 640 µL data. In experiments
at high concentrations of some antioxidants, for instance, quercetin [41], a related decreasing pattern
in efficiency is seen, and the last data point is not included.

RRDE vitamin C results (Figures 16 and S3), with slope −2.6 × 104, indicate a stronger
scavenging activity than that of vitamin E alone. The voltammograms (Figure 16) are much
more separated from each other than those shown in Figure 14 for vitamin E. The vitamin C
slope of the efficiency graph, −2.6 × 104, is like eriodictyol (−2.2 × 104), weaker than
butein (−11.2 × 104) and stronger than the commercial antioxidant BHT (−0.16 × 104) [57].
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Figure 16. Voltammograms for 0.03 M vitamin C. They are much more separated from each other than
in Figure 14, indicating a stronger antioxidant activity with increasing concentration of vitamin C
than vitamin E.

We were interested in analyzing a potential interaction between both vitamins regard-
ing superoxide scavenging. Thus, to a fixed concentration of vitamin E, 640 µL, aliquots of
vitamin C were added, and measurements were taken (Figures 17, 18, S3 and S4). Both vita-
mins are more effective together than individually. Therefore, combining vitamins E and C
produces a steeper slope, −7.2 × 104 (Figure 18), than that of vitamin E alone, −1.8 × 103

(Figure 15), or vitamin C alone, −1.3 × 104 (Figure 18). This supports earlier studies
describing a cooperative association between the two antioxidant vitamins [1,14,68].
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Figure 18. Different slopes of vitamin C and vitamins C plus E. Vitamin C (red line):
y = −13,359x + 20.573 R2 = 0.9947; vitamin E + vitamin C (blue line): y = −71,724x + 17.833 R2 = 0.99.

4. Conclusions

The antioxidant vitamins C and E are essential nutrients that participate in cru-
cial immune system reactions, and they mitigate the results of many diseases related
to oxidative stress [6].

In this work, we use the RRDE method to measure the presence of superoxide radicals
in a voltaic cell directly and have shown that when administered together, vitamin C
and vitamin E antioxidant activity is enhanced. The described superoxide scavenging
mechanisms for vitamin C alone and together with vitamin E show marked differences.
Vitamin C reacts through its acidic proton and primarily produces H2O2, while vitamin
C is transformed into a quinone derivative (Figure 13). In contrast, vitamin E possesses
an aromatic ring that is also susceptible to π-π interaction (not feasible for vitamin C)
with a second superoxide radical, and, in fact, the second superoxide remains trapped
by vitamin E to form a molecular complex, η-O2-vitamin E-model (Figure 7). Moreover,
in Scheme 1, the antioxidant action of vitamin E includes the interaction of vitamin E
semiquinone with an acidic reagent. This process has been studied in depth using DFT
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when the acidic compound is vitamin C (Figure 8) and involves the transfer of an H atom to
vitamin E semiquinone (Figure 9) to produce an ascorbate radical plus restored vitamin E.
This concurs with the results of earlier studies that ascorbic acid can donate a hydrogen
atom to a tocopheroxyl radical at the rate of 2 × 105 Mol/s because of the difference
of 1-electron reduction potential between ascorbic acid (282 mV) and a tocopheroxyl
radical (480 mV) [69].

Also, an ESR study in plasma of vitamin C and vitamin E reacting with superoxide [70],
in which ascorbate and tocopheroxyl free radicals were subjected to oxidative stress, showed
an immediate increase in the concentration of ascorbate radicals, which then steadily
declined. Only after the virtual disappearance of the ascorbate radical was the tocopheroxyl
radical detected. This seems consistent with our study, where the role of vitamin C is to
reform vitamin E, and provides an explanation as to why the ESR signal [70] for the
vitamin E radical shows up only when vitamin C is exhausted. In conclusion, these
results are important to enhancing our understanding of the synergistic features of these
two antioxidant vitamins in different disease states and aging effects in humans.

Supplementary Materials: The following supporting information can be downloaded at
https://www.mdpi.com/article/10.3390/biophysica4020022/s1, Figure S1. TS (B3LYP calculation):
O(superoxide)-H = 1.211 Å, O(VitE)-H = 1.204 Å; Figure S2. The TS structural model after approach-
ing a proton near O6 (Figure 7), which determines O6-H6 formation. E(barrier) = 1.1 Kcal/mol
∆G = −82.2 Kcal/mol. We name the related product η-O2-vitamin E-model; Figure S3. Same calcu-
lation of Figure 11 but including the DMSO solvent effect, used in the RRDE experimental section.
Distances have similar relevant distances seen in Figure 11. They are 1.025 Å, 1.417 Å, 1.611 Å, and
1.278 Å, respectively; Figure S4. Collection efficiency for Vit C, y = −26,555x + 21.433, R2 = 0.986, all
data included; Figure S5. Collection efficiency of vitamins C and E, referred to Figure 17; all data
included (y = −63,236x + 17.502, R2 = 0.9913).
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