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Abstract: This study presents a quantum well model using the transfer matrix technique to analyze
the charge transfer characteristics of nanostructure sequences in both DNA and superlattices. The
unconfined state, or unbound state, above the quantum well is used to investigate carrier behaviors
in a semiconductor nanostructure. These analytical approaches can be extended to enhance the
understanding of charge transfer in DNA nanostructures with periodic and aperiodic sequences.
Experimental validation was conducted through photoreflectance spectroscopy on nanostructures
within the semiconductor superlattices. Furthermore, the study’s findings were compared with
earlier research by Li et al. on the thermoelectric effect and its dependence on molecular length and
sequences in single DNA molecules. The results showed agreement, offering novel insights into
charge transfer and transport in DNA nanostructures across various sequence types.
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1. Introduction

DNA plays a crucial role in the development of life on Earth because it holds the
library of information that is critical for the “software” operation within all living organ-
isms. Charge transfer [1–4] within DNA enables efficient information assessments and
communication necessary for normal cellular function. Analogous to a faster CPU and
higher data transfer rate within a computer, the functionality of DNA can be enhanced by
increasing the signal speed transmitted along the DNA sequence. Researchers worldwide
have extensively investigated the biochemical mechanisms, charge transfer processes, and
semiconducting characteristics within DNA [5,6]. Classical mechanical analysis can be
extended to quantum mechanical analysis as the dimensions of DNA and semiconductor
nanostructures are on a microscopic scale, where quantum modeling can be used. Contin-
ued research on DNA through quantum mechanical theory and experiments can enhance
our understanding of DNA [7–13].

DNA’s structure, initially viewed as periodic, was reinterpreted by Schrödinger as an
aperiodic crystal, showing the relationship between symmetry, asymmetry, and informa-
tion [14]. DNA’s biological computations are much more efficient than supercomputers,
with supercomputers being about eight orders of magnitude less efficient than the Landauer
bound and six orders of magnitude less efficient than biological translation [15,16]. Symme-
try and order, both periodic and aperiodic, enhance biological computation efficiency, as
single computations act on multiple spots in biological patterns. The informational model
of biology is closely related to the Landauer principle, bridging the theory of information
to physics and suggesting the thermodynamic equivalent of information, showing the
lower theoretical limit of energy consumption of physical and biological computation [15].
Understanding the impact of the periodic and aperiodic sequences of DNA on life requires
fundamental studies in mathematical and physical analysis of the basic constituents of
nature [16,17]. Two major factors influencing the signaling rate and charge transfer within
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DNA sequences relate to quantum tunneling in the short range of the under-barrier effect
and hopping in the extensive range of the above-barrier effect. Research has focused on
the tunneling region, where electrons or holes transport through molecules via coher-
ent tunneling. Li et al. [1] studied the hopping region in double-stranded DNA, where
electrons or holes hop along a molecule sequentially. Their study reveals that DNA thermo-
electricity can be tuned by its sequences and length, offering insights for applications in
programmable DNA nanostructures and two- and three-dimensional superlattices [18–20].

The hopping mechanism of charge transfer is related to the unconfined energy states or
unbound states [21]—those lying above the conduction band barriers or below the valence
band barriers—which significantly influence carrier capture and optical transitions [22,23].
The quantum effect extends even into the region above the barriers. The unconfined energy
state exhibits continuum characteristics in the quantum well system, unlike the discrete
levels of bound states in the confined energy region inside the quantum well.

DNA charge transport (CT), where charges efficiently travel through the interior of
the DNA double helix, can conduct charge longitudinally through the π-stacked base pairs.
Its unique features extend into various scientific disciplines, including quantum chemistry,
quantum physics, and its significance in molecular research and genomic communication.
Nanostructured DNA sequences often involve interactions between DNA molecules, metal-
lic nanoparticles, quantum dots, or other nanomaterials. Charge transfer dynamics in these
systems are governed by principles of quantum mechanics, molecular physics, and elec-
trochemistry. The fundamental studies aim to reveal the mechanisms and rates of charge
transfer processes, including electron and electron hole transfer, across DNA sequences
and between DNA and other nanostructured materials. Electronic properties that enable
charge transport along the π-stacking interactions facilitate the delocalization of π-electrons,
allowing for efficient charge transport over long molecular distances. Therefore, the studies
investigate how the sequence, length, conformation, and environment of DNA affect charge
transport dynamics. Understanding DNA-mediated charge transport is essential for DNA-
based electronic devices, sensors, and nanoelectronics. In general, charge transfer is used
when a carrier, created (e.g., by oxidation or reduction) or injected at a specific location,
moves to a more favorable location without the application of external voltage. A similar
term, “charge transport”, is used when the system is held between electrodes and a voltage
is applied between these electrodes [24]. DNA is especially sensitive to disruptions, such as
environmental change and DNA damage, that alter the dynamics of base pair stacking [25].
To understand the effect of DNA sequencing, environmental factors are usually kept under
control in ideal cases (temperature < 295 K) for comparison studies.

The relationship between charge transfer, semiconductors, and computing spans sev-
eral scientific disciplines, including quantum chemistry, physics, and molecular biology.
At its core, charge transfer (CT) involves the movement of charges, such as electrons or
electron holes, through a medium of materials, a process central to semiconductor technol-
ogy and DNA-based nanostructures. The charge transfer dynamics are governed by the
principles of quantum mechanics and electrochemistry. The improvement of the carrier’s
mobility has profound implications for nanotechnology and nanostructures, where the
charge transfer in DNA can be applied to develop DNA-based electronic devices, sensors,
and components for nanoelectronics [19]. By integrating DNA with other nanostructured
materials, such as metallic nanoparticles or quantum dots, scientists can create hybrid
systems for three-dimensional DNA-programmable nanoparticle superlattices [26].

In this work, I studied the charge transfer in periodic, Fibonacci, and Thue–Morse
DNA sequences by applying transfer matrix techniques to the quantum well model. This
quantum well model was validated by comparing the results published in the study on
thermoelectric effects and its dependence on molecular length and sequence in single DNA
molecules [1].

This paper is organized as follows. The Kronig-Penney model, the transfer matrix
method of the quantum wells, and the thermoelectric effect (Seebeck coefficient) in DNA
sequences are presented in Section 2. DNA with periodic sequences is simulated to com-
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pare with the charge transfer characteristics of aperiodic sequences in Sections 3.1–3.3. The
validation of the model by comparing the published results of the thermoelectric effect
in DNA sequences is presented in Section 3.4. Bloch wave vector and photoreflectance
measurements on different quantum well superlattices (Appendix A) are presented in
Section 3.5 to experimentally validate the quantum well model in semiconductor superlat-
tice sequences. The discussion and proposal of future works in both computer simulations
and experimental measurements for charge transfer and transport in DNA are presented
in Section 4. The conclusion of this study is presented in Section 5. The final session in
Appendix A reviews some of the earlier work on the experimental techniques of photore-
flectance spectroscopy used to investigate optical transitions between the unconfined states
in different superlattice systems.

2. Materials and Methods
2.1. Quantum Wells Modelling of DNA

Kronig and Penney used a one-dimensional square well with periodic potential to
calculate the energy band of a general periodic bulk crystal. The same principle can be
applied to the quantum well system with periodic sequences and extended to the non-
periodic sequence using the effective mass approximation and the transfer matrix technique.
The transfer matrix technique takes advantage of the convenience of applying computer
methods to solve matrices numerically. The transmission coefficient can then be found to
determine the unconfined electron subband energies in the above-barrier region and the
confined electron subband energies within the quantum wells.

Referring to Figure 1, the positions of the barriers and wells are located at xm and xn
respectively, on the x-axis, where the series 1, 2, 3, 4 . . ., m, n. . . are integers in ascending
order. The effective mass m* in region M(well) and region N(barrier) are mw and mb
respectively, where the series 1, 2, 3, 4 . . .M, N. . . are integers in ascending order.
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Figure 1. The DNA nanostructure sequence along the x-axis, where the index m, n; M, N are any
integer number.

The solutions of the Schrodinger equations in the various regions are:

(well) ψM( x) = Ameikx + Bme−ikx for xm−1 < x < xm (1)

where k =
(

2m∗ E
h2

)1/2
corresponds to the wave number in the well region.

(barrier) ψM+1( x) = Am+1eiqx + Bm+1e−iqx for xm < x < xm+1 (2)

where q =
(

2m∗ (E−V)
h2

)1/2
corresponds to the wave number in the barrier region.



Biophysica 2024, 4 414

E is the energy above the bottom of the well and V is the potential at the top of the
barrier. By employing the boundary conditions for the continuity of the wavefunctions and
their derivatives, we can form a sequence of 2 × 2 transfer matrices.

The transfer matrix corresponding to the boundary located at xm is:

T(xm) =

 (
q+k
2k

)
ei(q−k)xm −

(
q−k
2k

)
e−i(q+k)xm

−
(

q−k
2k

)
ei(q+k)xm

(
q+k
2k

)
e−i(q−k)xm

 (3)

The transfer matrix corresponding to the boundary located at xm+1 is:

T(xm+1) =

(
q+k
2q

)
e−i(q−k)xm+1

(
q−k
2q

)
e−i(q+k)xm+1(

q−k
2q

)
ei(q+k)xm+1

(
q+k
2q

)
ei(q−k)xm+1

 (4)

The final transfer matrix is given by the product,

↔
T = ∏

i
Ti i = 1, 2, 3 . . . m, m + 1, . . . (5)

and the corresponding transmission coefficient, t = 1/T11, where T11 is the final diagonal

component of the matrix
↔
T .

2.2. Simulation of DNA Sequences

Using the above theoretical model, three different sequences were simulated based
on the four types of nucleotides found in DNA: adenine (A), thymine (T), guanine (G),
and cytosine (C) for the unconfined states in the above-barrier region using the transfer
matrix techniques described in Section 2.1. First, periodic sequenced DNA was simulated,
and then two aperiodic sequences, or quasiperiodic DNA sequences, namely the Fibonacci
sequence and the Thue–Morse sequence were simulated.

To show relationships between the charge transfer of DNA and the simulation model,
I used a one-dimensional sequence with 1 or 0 to simulate the sequence of quantum wells
and barriers, respectively, for the corresponding nucleotides. The DNA sequences under
study are composed of repeated stacks of nucleobases formed by either G-C/C-G as the
well (1) or A-T/T-A as the barrier (0). The energy levels between G-C and A-T base pairs
are shifted by about 0.4 eV [27]. This difference in energy levels forms the quantum wells
and barriers, as shown in Figure 2. Both base pairs have the same nucleotide length of
3.4 Å for each basic unit of 0 or 1 and are counted as 1 layer in the simulation parameters.
The helical chains of nucleotides in DNA are bound to each other by hydrogen bonds that
coil into tight loops to form different shapes of polymers. Conductivity has been found
to be dependent on sequence, hydration, length, temperature, and hybridization in some
experiments. Environmental and helical factors are not considered and are assumed to
be constant among different DNA sequences for comparison under this basic 1-D model.
Table 1 shows the effective masses of electrons and holes along directions perpendicular
to the stacking planes (in units of the free electron mass m0) [28]. The effective mass of
electrons me of 5 is used for the simulation of charge transfer based on the average of G-C
combinations in Table 1. Note that the me and mh (effective mass of holes) have the same
order of magnitude for the DNA nucleotides. The me is an empirical value determined by
experiments and the calculated lattice parameters. This value can be adjusted for changes
in environmental factors to match the simulation results and experiments, as discussed in
future work in Section 5.
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Figure 2. Schematic representation of the energy profile in DNA with 7 base pairs. (a) Ionization
potential for G-C base pairs differs from A-T base pairs by about 0.4 eV. (b) System (a) can be treated
as a series of quantum wells and barriers systems in different positions.

Table 1. Anhydrous crystals of DNA nucleobases with effective masses of electrons and holes along
directions perpendicular to the stacking planes (in units of the free electron mass m0) are shown [28].

DNA Nucleobases me mh

G 4.0 4.0

A 5.4 3.8

C 5.8 3.5

T 6.3 15

2.3. Seebeck Coefficient and Transmission Coefficient

The Seebeck effect is a thermoelectric phenomenon that generates voltage due to
temperature differences, caused by the movement of charge carriers. The thermoelectric
effect, a fundamental property of materials, is essential for energy conversion, temperature
sensing, and regulation. In single molecules, this effect differs significantly from that in
bulk materials. Studying the thermoelectric effect in single molecules not only has potential
applications but also aids in understanding molecular orbital level alignment and energy
conversion mechanisms associated with charge transport. The Seebeck coefficient of a
material is a measure of the magnitude of an induced thermoelectric voltage in response to
a temperature difference across that material, as induced by the Seebeck effect.

Li et al. [1] explore the thermoelectric effect in double-stranded DNA (dsDNA)
molecules. By selecting different DNA sequences, the study examines the thermoelec-
tric effect in both the tunneling regime and the hopping regime. In the hopping regime,
electrons or holes move sequentially via multiple steps, resulting in a linear dependence
of molecular resistance with length. The findings reveal that DNA thermoelectricity can
be adjusted based on its sequences and length, offering new insights into the thermoelec-
tric effect in single molecules and laying the groundwork for potential applications with
programmable DNA nanostructures, a rapidly advancing field.

Using their results on the thermoelectric effect in different DNA sequences [1], I
compared qualitatively their results with the simulation of the transmission coefficient on
the same DNA sequences to validate the model. The Seebeck coefficient is proportional to
the slope of the transmission probability T(E) at Fermi energy EF, where kB, T, and e are the
Boltzmann constant, temperature, and electron charge, respectively [16].

S(EF, T) ≈ π2 (kB )2 T
3e

(
∂ln(T(E))

∂E

)
E=EF

(6)
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3. Results
3.1. Periodic DNA

We first simulated the periodic sequence of DNA, with alternating layers of 0 and
1, for the energy states above the quantum well, as shown in Figure 3. The periodic
structure is arranged in a repeating fashion like 011011011011011011011. . . 44 boundaries
and 172 boundaries are selected to compare with other types of DNA using a similar
number of layers. Each layer of nucleotides corresponds to either 1 or 0 according to
the periodic sequence. Each barrier (0) or well (11, well width of 3.4 Å × 2 = 6.8 Å) has
two boundaries on the left and right sides, as shown in Figure 3. We used the analytical
approach described in Section 2 to formulate this simulation.
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form different boundaries of DNA, where the index m, n; M, N are any integer number.

The simulation results in Figure 4a,b show the transmission coefficient vs. energy
level for 44 boundaries and 172 boundaries, respectively, in meV above the bottom of the
quantum well in the conduction band structure of a DNA sequence. Our focus is on the
region above the barrier height of 400 meV, where there is a gap from 400 meV to 515 meV,
followed by a band up to 764.1 meV. Subsequent gaps and bands appear after the first band,
depending on how far into the continuum of the unconfined region the simulation extends.
The number of peaks oscillating in the band increases with the number of boundaries,
rising from 44 boundaries to 172 boundaries, as calculated by the computer simulation.
However, the corresponding positions of gaps and bands remain the same when compared
between the two simulation results in Figure 4a,b.
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3.2. Fibonacci Sequenced DNA

A quasiperiodic sequence of DNA, with layers arranged according to the Fibonacci
sequence, is shown in Table 2.

Table 2. Fibonacci sequenced DNA in 0 and 1 sequence.

layer 1–32 01011010110110101101011011010110
layer 33–64 11010110101101101011010110110101
layer 65–96 10110101101011011010110110101101
layer 97–128 01101101011010110110101101101011
layer 129–160 01011011010110101101101011011010
layer 161–192 11010110110101101101011010110110
layer 193–224 10110101101101011011010110101101
layer 225–256 10101101101011010110110101101011

Note that in the sequence limit, the ratio of the (majority 1) basis over the (minority 0) basis will approach the
golden mean value or golden ratio τ = (1 + sqrt(5))/2∼1.618.

The Fibonacci sequence formula for “Fn” is defined using the recursive formula setting
F0 = 0, F1 = 1, and using the formula below to find Fn. The Fibonacci formula is given
as follows:

Fn = F(n – 1) + F(n – 2), where n > 1.

Fn represents the (n + 1)th number in the sequence, and
F(n – 1) and F(n – 2) represent the two preceding numbers in the sequence.
The Fibonacci sequence formula is used to compute the terms of the sequence to obtain

a new term. In this Fibonacci sequenced DNA, the 0 and 1 are grouped together instead of
being mathematically added. For example, the first two terms of the Fibonacci sequence
are 0 and 1, and the third term is obtained by grouping the above formula as follows:

F3 = F1 + F2 = 0 + 1 = 01.

F4 = F2 + F3 = 101

F5 = F3 + F4 = 01101

F6 = F4 + F5 = 10101101

F7 = F5 + F6 = 0110110101101

In the same way, the other terms of the Fibonacci sequence using the above formula
can be combined as shown in the sequence below:

layer 1–32 (0)(1)(01)(101)(01101)(10101101)(011011010110

layer 33–64 1)(101011010110110101101)(0110110101. . .

In this Fibonacci sequence of 0 and 1, there are wells with only one layer of “1”
and a maximum of two layers of “1” together to form smaller and larger quantum wells,
respectively. Each large and small quantum well has two boundaries, but the large quantum
well has two layers of nucleotides, while the small quantum well has only one layer of
nucleotides. There is only one layer of “0” with two boundaries in between the quantum
wells of the Fibonacci sequenced DNA. Additionally, there is a mirror image at layer 28
with layers 1–27 and layers 29–55, corresponding to the 44th boundaries of the quantum
well and barrier sequence.

The simulation results in Figure 5a–c show the transmission coefficient vs. energy
level for (a) me = 5 with 44 boundaries, (b) me = 5 with 100 boundaries, and (c) me = 3.5
with 44 boundaries, respectively, in meV above the bottom of the quantum well (QW) in
the conduction band structure of the Fibonacci sequenced DNA. There are distinct and
narrow transmission peaks separated from each other inside the quantum well region
(<400 meV) and in the initial band in the unconfined region (>400 meV). When the simula-
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tion boundaries increase from (a) 44 to (b) 100 for me = 5, the transmission peaks inside
the quantum well decrease. However, the transmission peaks, increase in the unconfined
region. The corresponding positions of gaps and bands remain the same when comparing
the two simulation results in Figure 5a,b. In Figure 5c, me = 3.5 with 44 boundaries is used
in a simulation to see how the change in me affects the transmission peaks. The results
of the simulation show that the relative positions of the band and gaps are shifted to the
right. Additionally, some transmission peaks appear just above the quantum well in the
unconfined region.
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Figure 5. Computer simulation of transmission coeff. vs. energy for Fibonacci sequenced DNA,
quantum barrier = 400 meV and (a) me = 5 with 44 boundaries, (b) me = 5 with 100 boundaries, (c)
me = 3.5 with 44 boundaries.

3.3. Thue–Morse Sequenced DNA

Thue–Morse [29] DNA, with layers of barriers and wells arranged according to a
special sequence called the “Thue–Morse” sequence, is shown in Table 3. The purpose is to
form a sequence that is the opposite (barrier becomes well; well becomes barrier) of the
entire sequence before it.

Table 3. Thue–Morse sequenced DNA in 0 and 1 sequence.

layer 1–32 01101001100101101001011001101001
layer 33–64 10010110011010010110100110010110
layer 65–96 10010110011010010110100110010110
layer 97–128 01101001100101101001011001101001
layer 129–160 10010110011010010110100110010110
layer 161–192 01101001100101101001011001101001
layer 193–224 01101001100101101001011001101001
layer 225–256 10010110011010010110100110010110

Note that the arrangement of layers 1–64 is the same as layers 193–256; layers 65–128 are the same as layers
129–192.

For example:
The first layer is 0 (barrier), the second layer is 1 (well),
the third and fourth layers will be 10 (well and barrier),
the fifth to eighth layers will be 1001 (well, barrier, barrier, and well).
Therefore, the sequence will be:
0 1 10 1001 and so on.
The simulation results in Figure 6a,b show the transmission coefficient vs. energy

level for (a) me = 5 with 44 boundaries and (b) me = 5 with 172 boundaries, respectively,
in meV above the bottom of the QW in the conduction band structure of the Thue–Morse
sequenced DNA. There are distinct and narrow transmission peaks separated from each
other inside the quantum well region (<400 meV) and in the initial band in the unconfined
region (>400 meV). When the simulation boundaries increase from (a) 44 to (b) 172 for
me = 5, the transmission peaks inside the quantum well stay in the same position, but
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the number of transmission peaks increases (in oscillation) in the unconfined region. The
corresponding positions of gaps and bands remain the same when comparing the two
simulation results in Figure 6a,b.
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3.4. Validation of the Model

The quantum well model is initially used to determine whether the simulation of DNA
sequences can exhibit agreement with related experimental results. Although the quantum
effect on the nanostructure of superlattices is quite similar to that on the DNA structure,
various factors, such as chemical composition and environment, can generate different
results in simulation. Therefore, this study focuses on the intrinsic effects on DNA by
comparing different DNA sequences, while all other key parameters are treated as constant.
All the simulations and experiments are conducted under the same environmental and
thermal conditions, with the varying factor being the different DNA sequences.

The results published by Li et al. [1] are utilized to compare the simulations obtained
from the quantum well model in this study. The Seebeck coefficients of DNA in the hopping
regime (in A(CG)nT) are small and weakly dependent on molecular length compared to
other organic molecules. Inserting a short AT block (shorter than 5 AT base pairs) into the
middle of A(CG)nT leads to a much greater Seebeck coefficient, which increases with the
AT block length. However, when the AT block is longer than 5 AT base pairs, the Seebeck
coefficient drops to the level of A(CG)nT and becomes less sensitive to the AT length. This
transition coincides with the tunneling-hopping transition near 4–5 AT base pairs observed
from a conductance measurement, strongly suggesting that the thermoelectric effect is large
in the tunneling region and small in the hopping region.

Figure 7a–d shows the computer simulation of the transmission coefficient vs. energy
for different DNA lengths: (a) A(CG)3T, (b) A(CG)5T, (c) A(CG)6T, and (d) A(CG)7T, with
a quantum barrier of 400 meV and an electron effective mass of 5. All the plots show
distinct peaks in both the quantum well regions (<400 meV) and the unconfined regions
(>400 meV). The transmission peaks inside the quantum wells correspond to the tunneling
region, based on the theory of quantum mechanics. The transmission peaks outside the
quantum wells in the unconfined region correspond to the hopping region. These results
qualitatively show that there are combinations of both tunneling and hopping transitions
in the DNA sequences.
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tron effective mass = 5.

Figure 8a–g shows the computer simulation of transmission coefficient vs. energy
for different DNA lengths: (a) ACGCAGCGT, (b) ACGCATGCGT, (c) ACGCATAGCGT,
(d) ACGC(AT)2GCGT, (e) ACGC(AT)2AGCGT, (f) ACGC(AT)3GCGT, and (g) ACGC(AT)4GCGT,
with a quantum barrier of 400 meV and an electron effective mass of 5. By inserting a short
AT block (a–d, shorter than 5 AT base pairs) into the middle of A(CG)nT, the transmission
peaks inside the quantum wells (E < 400 meV) progressively reduce to a smaller peak
in Figure 8d (4 AT base pairs). With 5, 6, and 8 AT base pairs, the transmission peaks
inside the quantum wells (E < 400 meV) gradually disappear (t < 0.08), but the unconfined
region (E > 400 meV) retains some well-defined transmission peaks (t = 1), as shown in
Figure 8e–g.
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ACGC(AT)2AGCGT, (f) ACGC(AT)3GCGT, and (g) ACGC(AT)4GCGT; quantum barrier = 400 meV 
and electron effective mass = 5. 
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Figure 8. Computer simulation of transmission coeff. vs. energy for different DNA
lengths: (a) ACGCAGCGT, (b) ACGCATGCGT, (c) ACGCATAGCGT, (d) ACGC(AT)2GCGT,
(e) ACGC(AT)2AGCGT, (f) ACGC(AT)3GCGT, and (g) ACGC(AT)4GCGT; quantum
barrier = 400 meV and electron effective mass = 5.

The computation results of the quantum well model for different DNA length samples
show that the prediction appears to be valid in both the tunneling regime and the hopping
regime (unconfined region). For DNA with the inserted A, AT, ATA, or ATAT as a barrier
in the middle of A(CG)3T, the experimental results of a large Seebeck coefficient (S: 5
to 7.9 µVK−1) agree with this quantum well model of transmission peaks regarding the
tunneling effect within the quantum well regions formed by the barriers. For DNA with
the inserted AT base pairs > 4 as a barrier in the middle of A(CG)3T, the experimental
results of a smaller Seebeck coefficient (S: 4.9 to 2 µVK−1) also agree with this quantum
well model of transmission peaks regarding the hopping transport above the barriers.
Figure 8f,g show that there are only narrow transmission peaks with t = 1 appearing above
the barrier of E > 400 meV, while there are no transmission peaks for E < 400 meV. These
results demonstrate agreement between the experiments [1] and the simulation of varying
the AT block combinations for the charge transfer of both tunneling and hopping in the
DNA sequences. This agreement and application will be further discussed in Section 5.

3.5. Experimental Validation of the Model in Semiconductor Superlattice Sequences

Aperiodic (or quasiperiodic) quantum wells in a superlattice structure can produce
resonance states resembling bound states inside the quantum well [30]. The sequence of
the aperiodic quantum well, generated by certain mathematical equations, modulates the
unconfined region or above-barrier region, resulting in energy states with very narrow
peaks in the transmission coefficient spectrum. Unlike periodic quantum wells, which
produce broader peaks, narrow peaks in aperiodic quantum wells show increased carrier
stability during traversal in the above-barrier region. When a carrier enters the unconfined
region of a quantum well system with a transmission coefficient equal to unity, the corre-
sponding unconfined energy state adopts a resonance state. The “quasibound” resonant
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state above the quantum well behaves similarly to bound states inside the quantum well.
According to the Uncertainty Principle [31] of δtδE∼h, the discrete-like energy state above
the quantum wells can persist in the energy state used for charge transfer longer than those
in other energy states with smaller transmission coefficients and broader peaks. Studies
of resonant states in quantum wells and barriers show that transmission coefficient pat-
terns with narrow peaks or smaller bandwidths have physical significance in superlattice
semiconductors.

Additionally, experimental techniques, specifically photoreflectance spectroscopy
(Appendix A) were used to investigate optical transitions between unconfined states
in different superlattice systems [21]. The spectra results reveal that these transitions
are significantly enhanced in Fibonacci superlattices and some aperiodic superlattices
compared to periodic and random systems of a similar composition. The experimental
results are then compared with transition energies computed using the quantum well
transfer matrix technique to obtain the transmission coefficients in different energy states.
When the transmission coefficient peaks are narrow and approach 1, the charge transfer of
the carriers was found to have also increased. The same computational method was used
to calculate the functionality of the charge transfer in DNA systems.

4. Discussion

The investigation of charge transfer and transport mechanisms in molecular DNA
structures and nanoelectronic devices can lead to a greater understanding of their com-
munication processes. However, environmental and chemical factors give rise to many
challenges that affect carrier motion in communication for short-range and long-range
charge transport. Minimizing the known factors affecting the physical sequences, I propose
that quantum well (QW) analysis be applied to the unconfined region of nanostructures for
both periodic and quasiperiodic systems. The quantum well semiconductor superlattice is
typically on the scale of nm, about ten times the DNA unit, where a similar application of
Quantum Mechanics can be found. By focusing on quasiperiodic sequences and comparing
them with the periodic and random sequences of quantum well structures in superlattices,
the unconfined states are verified through experiments (see Appendix A) to enhance charge
transfer and transport [30]. The quantum well Transfer Matrix Method (TMM) was used to
demonstrate that the basic model facilitates the computational process of the transmission
coefficient and the corresponding energy positions of transitions. Similar approaches can
be used to compare and model different sequences of DNA. The computer simulation
presented here is just a starting point to provide more future experiments to calibrate and
refine the model, such as the variation of the effective mass of the carrier. This assumes that
the environmental and chemical factors influencing charge transfer (CT) can be stabilized
and maintained in a constant state. The stability condition allows for the comparison of
relative CT values among different types of sequences.

Quantum wells in a superlattice can simplify the investigation of similar sequences in
DNA, which have more variance in factors that can influence the outcomes. Cross-checking
and optimizing beforehand can complement the results of using DNA molecules. Com-
pared with DNA sequences, the quasiperiodic sequence of non-periodic and non-random
arrangements can be generated in a semiconductor superlattice to investigate whether
certain DNA sequences can impact the characteristics of CT. Many factors (e.g., aqueous-
ness, counterions, extraction process, electrodes, purity, substrate, structural fluctuations,
geometry) influence carrier motion along DNA. These factors are either intrinsic or extrinsic.
Here, the focus is on the most important intrinsic factors, i.e., the effect of alternating the
base-pair sequence, which affects the overlaps across the π-stacked base pairs. The aim of
this work is a comparative examination of the influence of base-pair sequences on CT in
aperiodic and quasiperiodic sequences [24].

Utilizing theoretical analysis for the unconfined region of superlattices, a similar in-
vestigational model is applied to simulate the transmission coefficient spectrum for the
unconfined region in DNA sequences, with the analysis to be verified through experiments
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presented in this paper. Both the presence and absence of water have been demonstrated
to influence the band structure of DNA base stacks. However, the primary goal of com-
putational studies is to understand the impact of different DNA sequences on CT within
the DNA. The simulated results of DNA sequences providing enhanced CT functions are
proposed for use in future experiments. The verification and further studies of different
aperiodic DNA sequences will offer more insights into DNA CT and optimizing electronic
transfer rates concerning energy states in the above-barrier unconfined regions of the QW.

Based on the agreement between this quantum well model and the experimental
studies by Li et al. [1], my hypothesis is that transmission peak simulation is an effective
tool to supplement the analysis utilizing the hopping mechanism and other transport
theories [32] in DNA sequences. The application of TMM can be employed not only for
a few DNA base pairs but also for thousands or more base pairs, such as those in the
human genome. The computation time is usually less than 1 min, depending on the type
of computer used. The complexity of the quantum well model can also be expanded to
include extrinsic factors, further increasing the computation time. The transmission peaks
and their bandwidths in the transmission coefficient simulation can correlate with the
tunneling/hopping resistance and thermoelectric effect in DNA molecules. The following
steps can be used to obtain optimized DNA sequences that facilitate CT between the
donor and acceptor of the carrier, proceeding through the fastest pathway available in the
unconfined region for longer-range DNA CT:

(1) Utilize the quantum well model presented here for simulation to obtain the trans-
mission coefficient vs. energy for different quasiperiodic and random sequences of
quantum well nanostructures.

(2) Select narrower bandwidths that produce a transmission peak = 1 as the criterion for
choosing optimal sequences in DNA and superlattices.

(3) Build both superlattices and DNA for the samples below (3a and 3b) or, if resources
for step 3a are not available, build the samples based on step 3b.

a. Construct the quantum well superlattice (see examples in Appendix A) accord-
ing to step 2 and use Photoreflectance or other techniques to identify quantum
well sequences with optimal CT characteristics.

b. Prepare DNA molecules (see the example studies by Li et al. [1]) according to
step 2 and use STM, conductivity measurement, or other techniques to identify
the quantum well sequences with the best CT characteristics. Measure the
hopping resistance and Seebeck coefficient to determine which DNA sequences
have the smallest values or cause the thermoelectric effect to become negligible.

(4) Systematically study the above steps and use the experimental results as feedback to
optimize the quantum well model and its simulation based on empirical values of the
effective mass, barrier height and other related parameters.

The advantages of the above studies are the application of the validated quantum
well model for the intrinsic characteristics of DNA molecules with different sequences
and lengths, leading to effective approaches to search for sequences optimized for CT in
nanostructures. The examples in Appendix A demonstrate that quantum well sequencing
has a special influence on the unconfined states in quantum mechanics. I have simulated
hundreds to thousands of different combinations of sequences to choose the Thue–Morse
and Fibonacci sequences as appropriate sequences to be built into actual superlattices [30].
These quasiperiodic sequences have unique mirror-like symmetry at certain locations and
may be suitable for facilitating CT in DNA molecules. The double-stranded structure in
DNA runs in opposite directions to each other and is thus antiparallel. Studies of Thue–
Morse sequences of DNA with antiparallel characteristics can provide more insight into
CT behaviors.

Other compelling studies [33] by Xiang et al. include applying an electrochemical (EC)
gate voltage to a DNA molecule, leading to the reversible switching of DNA conductance
between two discrete levels. Only basic DNA sequences were used in the experiments
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together with theoretical calculations to demonstrate the change in energy level switch-
ing related to the Fermi level of the contact electrodes. In this study, I propose different
quasiperiodic DNA sequences that can undergo similar tests and experiments. The Elec-
tromodulation spectra of Thue–Morse superlattice with different modulating voltages
are shown in Figure A2 of Appendix A. The different levels of carrier states in the un-
confined region increase when the modulating voltage is increased. Along with similar
research goals, studies of Thue–Morse sequences of DNA with different EC gate voltages
can provide more insight into CT behaviors. In particular, quantum computers require
sophisticated nanostructures to carry out quantum computing. Controlling the switching
of different levels effectively with less energy consumption also requires a high CT rate in
the unconfined region of quantum wells. Therefore, the proposed Thue–Morse sequence
could be a candidate that meets the demands of quantum computing.

Recent advancements in DNA technology have led to the construction of innovative
nanoscale structures such as DNA origami, a technique that involves folding a long DNA
strand into predefined shapes. This method has been applied to create three-dimensional
DNA-programmable nanoparticle superlattices [26]. Researchers [18,19,34–37] have com-
bined DNA-based assembly with lithography to fabricate reconfigurable nanoparticle
structures on gold surfaces. By using specific DNA sequences and polymer pores, the
arrangement of nanoparticles can be precisely controlled, resulting in highly ordered
structures with tunable distances between particles [34]. These unique DNA sequence
designs give rise to further functionality for advanced technologies like biosensors [38,39],
microelectronics, nanosuperconductors [40], and semiconductor devices.

Finally, I want to draw attention to my studies of DNA simulation and nanostruc-
tures/superlattices using the quantum well model, which can provide synergy with the
latest developments in real-world applications. I use a paper titled, “Building superlattices
from individual nanoparticles via template-confined DNA-mediated assembly” * as an
illustration. The paper details a method for arranging nanoparticles into precise structures
on a surface using electron-beam lithography and DNA-mediated assembly. First, a layer
of poly(methyl methacrylate) (PMMA) with tiny pores is patterned onto a gold-coated
silicon surface. The gold at the bottom of each pore is then coated with DNA sequences,
and complementary DNA-modified gold nanoparticles are added, building up layers in
a specific order using the “sticky ends” of DNA and modified “locked” DNA bases [19].
This technique can generate uniform superlattices of nanoparticles in different layers. Even
though the experiments recorded in the supplemental material (my PhD thesis) are 1-D
superlattices and use different materials, the investigation of mathematical sequences can
shine light in the direction of furthering the studies in the following proposals:

(1) Referring to the paper’s processing steps for “gold at the bottom of each pore is then
coated with DNA sequences”, these sequences can be Fibonacci, Thue–Morse, and
other DNA sequences with different layers, as shown in my simulations.

(2) The generality and functionality of this integration will be explored by identifying
broadband absorption with a solvent polarity response that allows dynamic tuning of
the distance between nanoparticles. The new DNA sequence design, together with the
robust structures made by the new DNA-mediated assembly techniques, will advance
technologies in biosensors, microelectronics, and semiconductor devices.

(3) Photoreflectance studies have the potential to be used to study these three-dimensional
superlattices when proper selection of materials in a semiconductor superlattice and
DNA-mediated assembly are investigated and optimized.

(4) The first 44 boundaries of the Fibonacci sequenced DNA correspond to the first
symmetric sequence, i.e., the left half sequence is the mirror image of the right half
sequence. This appears to be the criterion for generating a unity transmission peak.
At the other boundaries, one or more units in the sequence do not meet the mirror
image requirement, which could result in a reduced transmission peak. However,
the corresponding position of the transitions remains the same even though the
number of boundaries is changed. This preservation of the transmission coefficient of
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aperiodic superlattices is especially advantageous in the study of optical transitions.
This, therefore, gives rise to consistent transition energies among the peaks of the
transmission coefficients, in which the combined effect can increase the total transition
strength. When the transmission coefficient peaks are narrow and approach 1, the
charge transfer of the carriers was found to have also increased, as demonstrated in
Section 3.5.

(5) The optical transition strengths of the unconfined states were enhanced for Thue–
Morse sequenced DNA and superlattices when compared with samples having peri-
odic or random sequences. The alignment of the unconfined states in different types
of DNA-mediated assemblies and superlattices could be yet another interesting area
for further exploration and investigation.

(6) This study of aperiodic DNA and superlattices assumes, essentially, a one-dimensional
structure. This approach, however, could be extended to a study of other aperiodic
systems using three-dimensional structures such as quasiperiodic DNA and superlat-
tices. The majority of the latest research on the self-assembly of DNA nanoparticles is
related to the formation of diverse 2D periodic nanopatterns [41], such as tetragonal,
hexagonal, rectangular, and oblique structures. There is a need for more explorations
in aperiodic nanoparticles, where, for instance, fivefold symmetry [42] in an X-ray
diffraction pattern has been seen only in quasiperiodic crystals [43] which are related
to the Fibonacci sequence [44]. It would be impossible to generate such patterns with
regular, periodic crystals. This research work lays a foundation for exploring the
physical behaviors of unconfined states in aperiodic DNA and superlattices. New
characteristics and new applications can be discovered when further investigation of
aperiodic systems continues.

The Fibonacci sequences and related ratios were also found to have an interest-
ing connection with the nucleotide frequencies in single-stranded DNA of the human
genome [45–47]. Investigation of the golden ratio 1.618 and quasiperiodic sequences in
nature can provide insight into some of the physical characteristics of aperiodic systems.
Although studies of the quantum walk on protein-DNA target search [48] and in an ape-
riodic space-inhomogeneous system can provide insight into localization properties and
enhancement of entanglement [49] in quantum systems, the quantum well model presented
in this study can facilitate and complement the investigation of DNA interaction and
nanoelectronics.

5. Conclusions

In conclusion, we have conducted theoretical studies using the quantum well model on
the quasiperiodic sequences of Fibonacci and Thue–Morse samples for DNA nanostructures.
Previous experimental results were used to validate the quantum well model in DNA
molecules and semiconductor superlattices.

Compared with the periodic and random samples, the Fibonacci and Thue–Morse samples
enhance the unconfined transitions by an order of magnitude in strength (Figures A1 and A2
in Appendix A of semiconductor superlattices). The experimental results agreed with the
quantum well model simulation and provide a foundation on which to expand the appli-
cation into DNA nanostructures, which have dimensions of about an order of magnitude
smaller than those of superlattices. The same quantum well model and computational
method were applied to the quasiperiodic sequences of Fibonacci and Thue–Morse sam-
ples for DNA nanostructures. An effective mass value of 5 was selected for the carrier
(electron or hole) transfer in the simulations, as shown in Figures 4–6. When changing the
effective mass values, the simulation results of transmission peaks can be shifted. A more
accurate determination of the effective mass value in DNA nanostructures will improve
the simulation results when compared with the experimental results. The study on the
thermoelectric effect and its dependence on molecular length and sequence in single DNA
molecules [1] was used to compare the simulations using the quantum well model. The
results demonstrate agreement and provide new insights into charge transfer and transport
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in DNA nanostructures with various sequences. Further experiments and analysis are
needed to gain more insight and understanding of the characteristics of the Fibonacci and
Thue–Morse sequences in DNA.

The cellular diagnostic mechanism [32,50] using DNA charge transfer (CT) assists in
scanning the genome to localize the damage and mutational sites, which helps bring in
the DNA repair protein. This process can prevent uncontrolled mutations and improve
cancer treatment. Studying quantum mechanical effects and efficient communication across
DNA can provide more insights into disease healing. Additionally, the theoretical analysis,
computer simulation, and experimental results of quasiperiodic quantum systems can be
applied to the development of nanoelectronic circuits for quantum computing, information
storage [51,52], and other quantum devices [17].

Semiconductors, the backbone of modern computing, rely on controlled charge trans-
fer, where charge carriers (electrons or holes) move across materials with an applied
voltage, enabling the functioning of transistors, diodes, and other electronic components.
The integration of DNA with semiconductor technology opens possibilities for creating
biocompatible computing devices that operate at the nanoscale. These studies have the
potential to revolutionize computing by integrating biological molecules into electronic
circuits, paving the way for innovations in bioelectronics and nanodevices [53]. By con-
trolling factors such as temperature, chemical processes, and DNA sequences, researchers
can explore the potential of DNA in various electronic applications. Thus, the exploration
of DNA charge transfer and transport with different mathematical sequences proposed
by this research paper is not only a fundamental scientific endeavor but also a pathway
toward innovative technological applications in quantum computing and biotechnology.

Despite significant progress in DNA research since its discovery [54], much remains to
be explored about the characteristics of DNA sequences [15,55–57]. The material world,
from atoms to stars, predominantly exhibits periodic structures. However, the DNA of life
on Earth consists largely of aperiodic structures that not only store genetic information but
also relate to the efficiency of charge transfer within DNA. Understanding the impact of
aperiodic DNA sequences on life requires fundamental knowledge of the basic mathemati-
cal sequences of DNA. The more we learn from this essential investigation, the more we
can piece together the puzzle that reveals the entire picture of the mystery of DNA.
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Appendix A

We review some of the previous work [30] on the experimental techniques of pho-
toreflectance spectroscopy used to investigate the optical transitions between unconfined
states in various superlattice systems. The experimental results are compared with tran-
sition energies computed by the quantum well Transfer Matrix Method (TMM) to obtain
transmission coefficients in different energy states. When the transmission coefficient peaks
are narrow and approaching 1, the charge transfer of the carriers is increased. The same
computational method was used to calculate the functionality of charge transfer in the
DNA systems.

Three different superlattice samples [58] were grown on GaAs substrates in the (100)
orientation using a VG-V80H MBE system under similar growth conditions:

(i) Periodic, with alternating layers of AlGaAs (A) and GaAs (B);
(ii) Quasiperiodic, with layers deposited according to the Fibonacci sequence;
(iii) Random, with layers A and B selected by a random-number generator.

In all samples, the Al mole fraction, x, = 0.3; the AlGaAs (A) barrier width = 40 Å; and
the GaAs (B) well width = 28.3 Å. In each instance, the total of barrier and well widths are
made up of 600 layers (either A or B), resulting in a film thickness of approximately 2 µm.
The periodic sample was prepared to serve as a comparison with the other samples.

To build relations between the charge transfer of a superlattice semiconductor and
DNA, a one-dimensional sequence with 1 or 0 will be used to simulate the sequence of a
quantum well and barrier, respectively. The superlattice samples were prepared on GaAs
(undoped) substrates using an MBE system with the basic unit length of an AlGaAs barrier
(0) = 40 Å, and that of a GaAs well (1) = 28.3 Å. In contrast, the helical chains of nucleotides
in DNA are bound to each other by hydrogen bonds that coil into tight loops and form
different shapes of polymers.

The existence of localized unconfined energy states in multiple periodic GaAs-AlGaAs
quantum wells has been observed by photoluminescence spectra [59] and by photore-
flectance spectroscopy [60]. Several material and system parameters were found to influ-
ence the transition probability within the unconfined regions. In the periodic GaAs-AlGaAs
system, for example, wider barrier widths [59] and smaller Al mole fraction [60] have been
found to enhance these transitions. Similar studies, however, of the unconfined energy
states in the quasiperiodic and random quantum well structures have not received much
attention [61]. The optical transitions involving the unconfined states of GaAs-AlGaAs in
quasiperiodic, periodic, and random superlattices are compared. In the random superlat-
tice, the well widths and/or the barrier widths are varied according to an arbitrary random
pattern. In contrast, the Fibonacci superlattice [62] is made up of an arrangement of layers
of type A and type B following the Fibonacci sequence S1 = A, S2 = B, S3 = AB, S4 = BAB,. . . ,
Si = (Si − 2)(Si − 1). This leads to a quasiperiodic sequence of wells and barriers. Its band
structure and wavefunction localization in the confined states region have been shown to
be dependent on the order of quasiperiodic modulation.

Photoreflectance is an optical and contactless technique for investigating the material
and electronic properties of thin films that include semiconductor multiple quantum wells.
Photoreflectance uses periodic pulses of strongly absorbed light (“pump” beam) to excite
electron-hole pairs, which, upon diffusion, create a field in the sample modifying the
dielectric function synchronously with the optical excitation. Simultaneously, the sample
is scanned spectrally with a “probe” beam. Synchronous detection of the reflected (or
transmitted) probe light separates the modulated signal from the strongly reflected (or
transmitted) steady-state background, resulting in greatly improved spectral contrast
compared to that of the static reflection or transmission spectrum. It measures the change
in reflectivity of a sample in response to the application of an amplitude-modulated light
beam. In general, a photo-reflectometer consists of an intensity-modulated “pump” light
beam used to modulate the reflectivity of the sample, a second “probe” light beam used to
measure the reflectance of the sample, an optical system for directing the pump and probe
beams to the sample, and for directing the reflected probe light onto a photodetector, and a
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signal processor to record the differential reflectance. The pump light is typically modulated
at a known frequency so that a lock-in amplifier may be used to suppress unwanted noise,
resulting in the ability to detect reflectance changes at the ppm level. Both experimental
and theoretical details of the photoreflectance technique may be found in several review
papers and books, the most comprehensive of which is “Modulation Spectroscopy” by M.
Cardona [63]. Pollak et al. used photoreflectance to characterize the interband transitions
in GaAs-GaAlAs multiple quantum wells [64]. From their observations of the line widths
of the transition, they obtained direct information concerning the Al content and the width
and quality of the multiple quantum well structure.

As shown in Figure A1a, only weak transitions are observed in the unconfined region
for the periodic sample. In Figure A1b, two conspicuous features appear in the unconfined
region for the Fibonacci superlattices. In Figure A1c, overlapping features are observed,
with the unconfined transition magnitude lying between those of periodic and Fibonacci
superlattices for the random superlattices.

The corresponding computed results [30] were compared with the experimental results,
and they agree well, indicating:

(i) Periodic sample: A wide gap appears between the top of the barrier and the first
unconfined energy band above the barrier;

(ii) Fibonacci sample: Distinct features of the unconfined states appear very close to
the barrier;

(iii) Random samples: Overlapping features of unconfined states appeared above the barrier.

The strong signals obtained in the unconfined region of the Fibonacci sample observed
in the photoreflectance spectra match with the theoretical calculation. The narrow energy
bandwidth corresponding to the unconfined transition implies a longer time spent in the
well due to the uncertainty principle. The longer time the electron spends in the well, the
higher the probabilities for the electron to be captured by the well. Therefore, the transition
strength is enhanced. The Anderson localization [65] effect shows that the wavefunctions
form the wave packet to become a localized state. The carrier transport efficiency decreases
along the growth axis of purposely disordered or random GaAs/GaAlAs superlattices.
On the other hand, the carrier transport efficiency increases when the bandwidth of the
transmission peaks is distinct and narrow in the simulation of the Fibonacci sample. The
large signals of “A” and “B” in Figure A1b validate the theory and simulation of this study.
When compared with the periodic and random samples, the Fibonacci sample enhances
the unconfined transitions by an order of magnitude in strength.
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(a) 4Vp-p, (b) 10Vp-p, and (c) 20Vp-p. The measurements were performed at room temperature with
the bias at 0 V.

The transmission peak is sensitive to the number of layers considered in the calculation.
For the quasiperiodic superlattice (Fibonacci sequence, Table 2), the general patterns remain
the same when the number of boundaries is changed. In particular, the superlattice with
44 boundaries has unity transmission peaks, while the others do not quite have these
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unity transmission peaks. The resolution of the calculated transmission coefficients is the
same and equal to 0.1 meV. We find that the 44 boundaries of the Fibonacci superlattice
correspond to the first symmetric sequence, i.e., the half-left sequence is the image of the
half-right sequence. This is the criterion for generating a unity transmission peak. At
the other boundaries, the half-left sequences do not form a perfect mirror image of the
corresponding half-right sequence. There exist one or more units in the sequence that
do not match the image requirement. These result in generating transmission peaks less
than unity besides the slight shift of their energy position. These can be further supported
by the transmission plot in the “Thue-Morse” superlattice (Table 3). The sequence that
forms the superlattice meets the image matching requirement at layers 1 to 64. This
results in unity transmission peaks. Another image matching occurs at layers 1 to 256
(172 boundaries), which give rise to unity transmission peaks in the simulations (Figure 6b).
These are some of the characteristics of quasiperiodic superlattices that cannot be found in
random superlattices. This preservation of the transmission coefficient of quasiperiodic
superlattices is especially advantageous for the study of optical transitions [66–68] and
transport properties [69,70]. The corresponding positions of the transitions remain the
same even though the penetration depth of the probe and pump light is changed, i.e., the
number of layers is changed. Therefore, this gives rise to consistent transition energy, in
which the combined effect can increase the transition strength.

The unconfined state transition of the superlattices belongs to the band-to-band tran-
sition. Hence, the application of a large electric field can generate the Franz-Keldysh
effect [71]. The depletion layer of the superlattice is estimated to be in the order of 10,000 Å.
The strength of the electric field is in the order of 106 V/m when 10 V is applied across
the sample. This large electric field can result in the Franz-Keldysh effect. As shown in
Figure A2a–c, the relative amplitude of the unconfined transition signal to the GaAs signal
of the Thue–Morse superlattice increases almost two-fold when the modulation voltage
increases from 4Vp-p to 20Vp-p. There are six peaks in the unconfined region at 4Vp-p.
While the voltage increases, two of the peaks shrink and the total peaks end up in four
large peaks at 20Vp-p. The unconfined state transition strengths were enhanced for the
quasiperiodic sample (Thue–Morse superlattice) when compared with samples having peri-
odic and random sequences. The experimental results of the measured extended transition
energies agree qualitatively with theoretical Transfer Matrix (TMM) calculations. Better
agreement can be achieved through the application of a more sophisticated multi-band
model. Further experiments and analysis will be performed to gain more insight and
understanding concerning the characteristics of the Thue–Morse sample with respect to
superlattice and DNA nanostructures.
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