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Abstract: Mammalian target of rapamycin complex 1 (mTORC1) is an important and promising
alternative biological target for the treatment of different types of cancer including breast, lung and
renal cell carcinoma. This study contributed to the development of mathematical models highlighting
the quantitative structure-activity relationship of a series of piperazine derivatives reported as
mTORC1 inhibitors. Various molecular descriptors were calculated using Gaussian 09, Chemsketch,
and ChemOffice software. The density funcional theory (DFT) method at the level B3LYP/6-31G+(d,
p) was applied to determine the structural, electronic and energetic parameters associated with the
studied molecules. The predictive ability of the built models, which is obtained by two methods (MLR
and MNLR), showed that the built models are statistically significant. The QSAR modeling results
revealed that the six molecular descriptors of lowest unoccupied molecular orbital energy (ELUMO),
electrophilicity index (ω), molar refractivity (MR), aqueous solubility (Log S), topological polar
surface area (PSA), and refractive index (n) significantly correlated to the biological inhibitory activity
of piperazine derivatives. Using QSAR models and in silico pharmacokinetic profiles predictions,
five new candidate compounds are selected as potential inhibitors against cancer.

Keywords: 2D-QSAR; anti-cancer; mTORC1 Inhibitors; piperazine derivatives; DFT; ADME

1. Introduction

Breast, lung and renal cell carcinomas are among the most dangerous cancers, with
rapid metastasis, progression and high mortality, especially when detected late [1]. Al-
though, many therapies for advanced cancers have recently been established, the disease
has not yet been defeated; resistance develops due to cancer heterogeneity, alternative
pathways (signalling) and some severe adverse conditions, which limits the potency of
new treatments [2]. Although therapeutic alternatives are now available and are more
effective than before for patients with advanced cancer, there is still a need to develop new
potent drugs that target melanoma, and several techniques are being used, ranging from
exploring a better delivery system for existing compounds to evaluating new targets [3,4].
The mTORC1 kinase has been identified as a promising target in cancer therapy, it is
inhibited by rapamycin, which disrupts the mTORC1 signaling pathway [5]. A series of
rapamycin is optimized and used in the creation of new natural clinical candidates such
as Everolimus (RAD001), Temsirolimus (CCI-779) and Ridaforolimus (MK-8669) whose
inhibitory activities respectively (8.26, 5.8 and 9.7) (Figure 1) [5], which demonstrated
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significant serine/threonine inhibition of mTORC1 kinase in both in vitro and in vivo tests,
as well as excellent pharmaceutical properties and strong inhibition of cancer and tumor
growth [6]. These larger, natural molecules have been reported as mTORC1 inhibitors, but
they have a high molecular weight, greater than 500 Daltons (Lipinski’s rule states that a
substance must have a molecular weight of less than 500 Daltons to be able to cross the
skin barrier), which deviates from Lipinski’s rule of 5 [7].
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QSAR and DFT approaches have recently been exploited with the aim of investigating
mTORC1 inhibition for the discovery of new potent molecules to be used in the cure
of tumors. Chaube et al. have investigated the binding interactions with the mTORC1
protein, further supported by QSAR studies, highlighting interactions playing a key role
in the design of potent mTORC1 inhibitors [8]. Similarly, Kaavin et al. used DFT and
molecular docking studies to assess the stability and reactivity of a series of novel transition
metal complexes targeting proteins, including mTORC1, which provided an insight into
their high protein-binding affinities [9]. Essentially, such computer-aided studies identify
key molecular features responsible for enhanced mTORC1 inhibition and help guide
drug design.

Piperazine derivatives have recently received great interest in the world of drug discov-
ery due to their antipsychotic, depressant, anxiolytic, antitumor and anticancer abilities [10].
Piperazine derivatives have demonstrated significant biological activity; Piperazine struc-
tures have been successfully used as anti-cancer and anti-tumor drugs. In this work, a
quantitative structure-activity relationship (QSAR) and in silico pharmacokinetics studies
were performed on a series of piperazine derivatives with the aim of discovering more
efficient mTORC1 inhibitors.
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2. Material and Methods

QSAR study was conducted with the dataset available, including 129 piperazine
derivatives, reported to inhibit mTORC1 by Kang, S.A. et al. [10]. This work selected
37 compounds based on such a criterion so that the present work deals with the most
potent inhibitors. The selected compounds had to show high inhibitory activity with a
minimum of pIC50 > 5 to consider only those showing the most intense action. Moreover,
structural consistency was maintained by choosing compounds that possess the same
core of the piperazine skeleton so that homogeneity within the data set would be ensured.
Finally, in order to optimize computational resources because of the high intensity of DFT
calculations, only representative compounds that showed a lot of promise were further
pursued. Derivatives were constructed using ChemDraw Professional V. 16.0. Figure 2
represents the basic skeleton of the studied structures.
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2.1. Calculation of Molecular Descriptors

The data set of investigated compounds was created by calculating the molecular
descriptors of each molecule with ACD/ChemSketch 2016 and ChemOffice Professional V.
16.0 softwares. Furthermore, the density functional theory (DFT) method was used to de-
termine their electronic descriptors by employing Becke’s three-parameter hybrid function
(B3LYP) with a basis set 6-31G+(d, p), which is available with Gaussian 09 software. Other
quantum descriptors, such as the energy gap (Egap), hardness (η), electronegativity (χ), and
electrophilicity index (ω), were added and calculated using the following formulas [9–11]:

Egap = ELUMO − EHOMO; η = (ELUMO − EHOMO)/2; χ = −(ELUMO − EHOMO)/2; ω = χ2/2η

With EHOMO is the Highest occupied molecular orbital energy, ELUMO is the Lowest
unoccupied molecular orbital energy (ELUMO).

2.2. Multiple Linear Regression (MLR)

Multiple linear regression (MLR) is one of the most basic and common modeling
methods for QSAR studies used to date. MLR is preferred for its simplicity and ease of
interpretation because the model assumes a linear relationship between the compound
property Y, and its feature vector, denoted X, which is usually the molecular descriptors [10].
Thus, with the notion of X, the fitted model can predict the property of an unknown
compound. MLR is vulnerable to descriptors that are correlated with each other, making it
unable to decide which correlated sets may be more meaningful for the model [12].

The following equation represents a general expression for an RLM model:

Y = a0 + a1 X1 + a2 X2 + a3 X3 + . . . + an Xn

In the above expression, Y is the response or dependent variable, X1, X2, . . ., Xn are
descriptors (characteristics or independent variables) present in the model with correspond-
ing regression coefficients a1, a2, . . .an, respectively, and a0 is the constant term of the model.
The descriptors present in an MLR model should not be much intercorrelated. An MLR
model that fits the data well will lead to a scatterplot (observed vs. calculated) showing
a minimum deviation of the points from the fit line. The quality of an MLR model is
determined from a number of measures described below.
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2.3. Multiple Non-Linear Regression (MNLR)

The MNLR technique is a nonlinear (exponential, logarithmic, polynomial, etc.) ap-
proach to develop the mathematical model that best expresses the nonlinear variability of
a molecular property or biological activity (Y) with respect to the molecular descriptors
(Xi) [12,13]. In this case, we apply the MNLR approach to generate the QSAR model using
the second-order polynomial model, which is based on the MLR model descriptors. The
following equation is used to calculate the nonlinear connection between the molecular
descriptors and the biological activity.

Y = a0 + a1 X1 + b1 X1
2 + a2 X2 + b2 X2

2 . . . + an Xn + bn Xn
2

where Y is the dependent variable (biological activity to be predicted), Xn are the inde-
pendent variables (molecular descriptors), a0 is the model constant, and an and bn are the
descriptor coefficients in the model equation.

2.4. Drug-Likeness Properties

We perform drug-like scoring of molecules that exhibit the highest potential biological
activity (observed and predicted) in the inhibition of mTORC1. This is due to the importance
of this procedure to identify the favorable structural properties for oral bioavailability of
candidate drugs [14,15]. These predictions were developed based on the Lipinski’s, Veber’s
and Egan’s rules [16]. The drug-like profiles of the candidate molecules were predicted by
the SwissADME webserver [17].

3. Results and Discussion

In this work, we used the XLSTAT 2016.3 software to perform the PCA analysis,
the MLR and MNLR regressions [18,19]. Only 26 descriptors are retained, and they are
introduced after the PCA principal component analysis. The MLR approach was used to
create the QSAR models using 26 descriptors as inputs.

3.1. Multiple Linear Regression

Relationships with the pIC50 inhibitory activity indicator variable will be developed;
multiple linear regression is used [20]. The best model obtained by this method is a linear
combination of six molecular descriptors, namely energy ELUMO, electrophilic index (ω),
molar refractivity (MR), aqueous solubility (Log S), topological polar surface (PSA), and
refractive index (n).

Each of the descriptors has an important role in the interaction of the piperazine
derivatives with the target mTORC1. ELUMO has the capability to accept electrons is one
of the key properties characterizing the ability of a molecule to interact with the target
protein, (ω) shows the ability of a molecule to act as an electrophile, hence to give or
share electron pairs with nucleophilic sites on mTORC1, while (MR) accounts for the
volume occupied by electrons, interacting in any molecule and allowing it to fit into the
binding pocket of mTORC1, (Log S) affects the bioavailability and distribution of the
inhibitor within the biological system and (PSA) is related to cell permeability by passive
diffusion and interaction with the active site of mTORC1, lastly (n) is directly related to
the polarizability of the molecule that is important, by itself, for noncovalent interactions
crucial for effective inhibition.

The following equation provides the QSAR model obtained using the MLR approach:

pIC50 = 32.815 + 19.421ELUMO +10.521ω + 1.428 MR + 1.214 Log S − 3.95.10−2 PSA − 22.888 n

With: N = 30; R = 0.86; R2 = 0.74; R2
Adjusted = 0.67; R2

test = 0.54; MSE = 0.142; MSE = 0.377;

Pr < 0.0001; F = 11.133; R2
CV = 0.56
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It appears from the equation that the six descriptors chosen are linearly related to
the levels of inhibitory activity (pIC50). The equation’s given QSAR model is statistically
credible, as shown by the higher coefficient of determination (R2 = 0.74), mean squared error
(MSE = 0.142) and the high degree of statistical confidence (F = 11.133). Also, the statistical
significance of the QSAR model equation at a level higher than 95% is demonstrated by a
p-value of less than 0.05 (Pr < 0.0001) in the equation.

Additionally, the internal validation correlation coefficient’s value (R2
CV = 0.542),

which is higher than 0.5, demonstrates the MLR technique’s QSAR model’s high accuracy.
When any element from the training set is removed, the model is poor when the value
of R2

CV is less than 0.6 and less than that of R2. The graphical depiction of the observed
activity values and the anticipated values is shown in Figure 3 (pIC50). The MLR model is
used to determine the latter for the molecules in the test and training sets.
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model.

Due to the low MSE value obtained, we can see from Figure 3 that there is a significant
correlation between the distribution of observed and predicted pIC50 values. Therefore, it
is evident that there is a correlation between the empirically determined values and those
anticipated by the MLR model. It follows that the six MLR model descriptors have a strong
linear association with the biological activity of pIC50, which inhibits the activity of the
cancer-causing protein mTORC1.

A novel nonlinear model is constructed utilizing the MNLR to optimize the correlation
between the predicted activities acquired by the QSAR model developed via the MLR
technique and the six molecular descriptors [21,22]. The following descriptors: ELUMO,
electrophilic index (ω), Molecular refractivity, aqueous solubility (Log S), topological
polar surface area (PSA) and refractive index (n) are used as input parameters in these
two techniques.

3.2. Multiple Nonlinear Regression

The resulting QSAR model via the MNLR technique is given by the following equation:

pIC50 = 724.114 + 45.307 ELUMO+ 22.195 ω − 5.736 MR − 0.494 Log S − 0.023 PSA
− 798.318 n + 8.55 (ELUMO

2) − 1.940 (ω2) + 0.222 (MR2) − 0.106 (Log S2) −
9. 10−6 (PSA2)+ 235.124 (n2)

With: N = 30; R = 0.88; R2 = 0.78; R2
test = 0.57; MSE = 0.163; RMSE = 0.404; R2

CV = 0.53

The obtained MNLR model had an excellent statistical performance: R2 = 0.78, show-
ing that the model fitted well with the training set. The cross-validation coefficient-
R2

CV = 0.53-and external validation-R2
test = 0.57-produce evidence that the model is still

predictive for unseen compounds, though with a moderate drop compared to the training
set. This is within acceptable limits for QSAR models, particularly on complex biological
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activities. We realize that the difference between R2 and R2
CV for the same model may

indicate overfitting. Still, our central goal had been to relate the molecular descriptors
linearly with the inhibitory activity. Whereas the MNLR model involved higher-order
polynomial terms, the development of such had been intended to capture a fine nonlinear
relationship among the independent variables without digressing from those basic linear
associations established in the MLR model previously. Furthermore, the close match of the
MLR and MNLR-predicted pIC50 values underlines the coherence of linearity in both of the
modeling approaches. In addition, detailed validation methodologies have been carried
out, including Y-randomization and applicability domain calculations, to ensure the models
do not become an outcome of any dataset artifacts but instead genuine structure-activity
relationships. With this modest difference between R2 and R2

CV, we still believe that the
MNLR model is robust and generalizable enough to predict the inhibitory activity of any
novel piperazine derivatives against mTORC1, we can see from Figure 4 the correlation
between the distribution of observed and predicted pIC50 values. Internal and external
validation is undertaken to ensure the fidelity of the predictive power of the developed
QSAR models [23–28].
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The external validation coefficient of determination (R2
test), which is necessary to

estimate the predictive power of the QSAR models to predict the inhibitory activity of other
molecules that were not involved in the development of these models. Values R2

test of 0.54
and 0.57 were obtained for the models MLR and MNLR, respectively. Values R2

test of the
both models are very similar, and all are greater than 0.5. Therefore, external validation of
QSAR models confirms that these models have acceptable predictive potential.

The results of the internal and external validation of the QSAR models developed in
this work are summarized in Table 1.

Table 1. Comparison of MLR and MNLR validation parameters.

Coefficients R2 R2
test MSE RMSE

MLR 0.74 0.54 0.142 0.377
MNLR 0.78 0.57 0.163 0.404

When the coefficients (R, R2, MSE) of the MLR and MNLR models are compared, it
is clear that the two proposed models are statistically significant and have good internal
and external predictive ability. Accordingly, MLR and MNLR models exhibit a relationship
between molecular descriptors (ELUMO energy, electrophilicity index (ω), molar refractivity
(MR), aqueous solubility (Log S), topological polar surface (PSA), and refraction (n)) and
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the inhibitory activity of the mTORC1 protein (pIC50). Subsequently, these QSAR models
can be used to predict the activity values of additional compounds that can be engineered
by piperazine substitution to produce new molecules with better activities than previously
observed. Rather than developing new compounds and estimating their activities, we
use a series of piperazine derivatives to find the best molecules to inhibit the mTORC1
protein. We chose these candidates based on the high activity values predicted by the QSAR
models. Before choosing compounds with the greatest predicted biological activity, we
perform two critical experiments to ensure that the predicted pIC50 values are accurate [23].
Y-randomization and applicability domain tests were performed. These two tests are
used to eliminate the possibility of selecting one or more molecules whose activities were
incorrectly predicted in this study [24,25]. We use a series of piperazine derivatives to find
the best molecules to inhibit the mTORC1 protein. We chose these candidates based on the
high activity values predicted by the QSAR models [26]. Before choosing compounds with
the greatest predicted biological activity, we perform two critical experiments to ensure
that the predicted pIC50 values are accurate. Y-randomization and applicability domain
tests were performed. These two tests are used to eliminate the possibility of selecting one
or more molecules whose activities were incorrectly predicted in this study. We use a series
of piperazine derivatives to find the best molecules to inhibit the mTORC1 protein. We
chose these candidates based on the high activity values predicted by the QSAR models.

Internal validation of both produced QSAR models has been effective. We execute
an external validation to evaluate the precision and predictive strength of the developed
QSAR models. The outcomes of the test are presented in the paragraph that follows.

3.3. Y-Randomization Test

Y-randomization test is performed on the original QSAR model created by the MLR
approach to ensure the quality of the model. This test is used to eliminate the possibility of
randomly finding a high association between the six molecular descriptors and mTORC1
inhibitory activity [27,28]. The Y-randomization test is carried out by distributing the Y
values (pIC50) 100 times at random without modifying the six descriptors. The development
of the new QSAR models was made possible thanks to the random distribution of the pIC50
values to the six descriptors. Each new model has its own set of parameters (R, R2 and
Q2). The values of R, R2 and Q2 acquired by the randomly created models are lower than
the values produced by the original model. These results confirm the validity of the MLR
model and show that the relationship between the six descriptors and biological activity is
not a coincidence. Therefore, we can be sure that the pIC50 predicted by the MLR models
based on the six descriptors of the original model are not random (Table 2).

Table 2. Résultats du test de randomisation en Y.

Model R R2 Q2 Model R R2 Q2

Original 0.862 0.744 0.561
Random 1 0.249 0.062 −0.497 Random 51 0.449 0.202 −0.371
Random 2 0.536 0.287 −0.076 Random 52 0.560 0.314 −0.207
Random 3 0.636 0.404 −0.065 Random 53 0.546 0.298 −0.305
Random 4 0.339 0.115 −0.406 Random 54 0.488 0.238 −0.313
Random 5 0.373 0.139 −0.568 Random 55 0.434 0.189 −0.411
Random 6 0.429 0.184 −0.458 Random 56 0.158 0.025 −0.574
Random 7 0.286 0.082 −1.218 Random 57 0.251 0.063 −0.688
Random 8 0.415 0.172 −0.514 Random 58 0.426 0.182 −0.388
Random 9 0.590 0.348 −0.096 Random 59 0.233 0.054 −0.538

Random 10 0.463 0.215 −0.534 Random 60 0.588 0.346 −0.171
Random 11 0.605 0.366 −0.054 Random 61 0.464 0.215 −0.450
Random 12 0.355 0.126 −0.465 Random 62 0.420 0.177 −0.381
Random 13 0.391 0.153 −0.420 Random 63 0.627 0.393 0.012
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Table 2. Cont.

Model R R2 Q2 Model R R2 Q2

Random 14 0.272 0.074 −0.596 Random 64 0.541 0.293 −0.327
Random 15 0.370 0.137 −0.603 Random 65 0.528 0.279 −0.136
Random 16 0.428 0.183 −0.480 Random 66 0.459 0.210 −0.360
Random 17 0.484 0.234 −0.235 Random 67 0.480 0.231 −0.424
Random 18 0.407 0.166 −0.411 Random 68 0.409 0.168 −0.383
Random 19 0.707 0.500 0.067 Random 69 0.407 0.166 −0.435
Random 20 0.289 0.084 −0.594 Random 70 0.388 0.150 −0.521
Random 21 0.641 0.411 0.050 Random 71 0.427 0.182 −0.481
Random 22 0.663 0.440 0.044 Random 72 0.392 0.154 −0.402
Random 23 0.630 0.397 −0.064 Random 73 0.559 0.312 −0.024
Random 24 0.435 0.190 −0.235 Random 74 0.543 0.295 −0.225
Random 25 0.487 0.238 −0.295 Random 75 0.357 0.127 −0.429
Random 26 0.497 0.247 −0.312 Random 76 0.604 0.364 −0.293
Random 27 0.352 0.124 −0.442 Random 77 0.497 0.247 −0.437
Random 28 0.693 0.480 0.201 Random 78 0.408 0.167 −0.463
Random 29 0.577 0.333 −0.248 Random 79 0.294 0.086 −0.676
Random 30 0.451 0.203 −0.221 Random 80 0.551 0.303 −0.224
Random 31 0.304 0.092 −0.588 Random 81 0.422 0.178 −0.439
Random 32 0.446 0.199 −0.579 Random 82 0.447 0.200 −0.287
Random 33 0.301 0.091 −0.521 Random 83 0.427 0.182 −0.470
Random 34 0.586 0.344 −0.217 Random 84 0.334 0.111 −0.410
Random 35 0.428 0.184 −0.495 Random 85 0.554 0.306 −0.169
Random 36 0.420 0.176 −0.358 Random 86 0.528 0.279 −0.263
Random 37 0.525 0.276 −0.446 Random 87 0.583 0.340 −0.103
Random 38 0.553 0.306 −0.191 Random 88 0.487 0.237 −0.344
Random 39 0.326 0.106 −0.431 Random 89 0.525 0.276 −0.280
Random 40 0.499 0.249 −0.206 Random 90 0.550 0.302 −0.190
Random 41 0.588 0.346 −0.159 Random 91 0.318 0.101 −0.645
Random 42 0.337 0.113 −0.747 Random 92 0.364 0.133 −0.420
Random 43 0.518 0.268 −0.178 Random 93 0.462 0.213 −0.407
Random 44 0.322 0.104 −0.478 Random 94 0.478 0.228 −0.177
Random 45 0.430 0.185 −0.527 Random 95 0.474 0.224 −0.347
Random 46 0.466 0.217 −0.286 Random 96 0.497 0.247 −0.257
Random 47 0.643 0.414 −0.041 Random 97 0.206 0.042 −0.622
Random 48 0.494 0.244 −0.184 Random 98 0.385 0.148 −0.522
Random 49 0.353 0.125 −0.567 Random 99 0.306 0.093 −0.508
Random 50 0.470 0.221 −0.291 Random 100 0.332 0.110 −0.393

3.4. Applicability Domain

The applicability domain was checked, in accordance with literature [29], by a Williams
plot representing the distribution of the normalized residuals as a function of the leverage
values of the compounds of the dataset. Figure 5 refers to the Williams plot indicating that
all compounds fall within the applicability domain defined by this model, for which the
critical leverage threshold h* was set to 0.58 and the limits of residuals were set at ±2.5.
This confirms that none of the compounds are outliers or undue leverage to the model and
hence the predictions would be valid. This data set indeed represents a diverse library
of piperazine derivatives spanning a wide chemical space relevant to the inhibition of
mTORC1. In contrast, all the well-known mTORC1 inhibitors have larger, more complex
structures compared with Everolimus, Temsirolimus, and Ridaforolimus; the selected
compounds represent simpler yet potent derivatives. The performed AD analysis confirmed
that these molecules fall well within the reliable predictive scope of the model.
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3.5. Identification of Candidate Inhibitors

The close match of the MLR and MNLR-predicted pIC50 values underlines the coher-
ence of linearity in both of the modeling approaches. We chose seven compounds with
high pIC50 values predicted by the MLR model (Table 3) [30,31]. Compared to the drugs
Everolimus, Temsirolimus and Ridaforolimus, these seven compounds all have higher
predicted pIC50 values.

Table 3. Values predicted by developed QSAR models and experimental pIC50 values for Everolimus,
Temsirolimus, and Ridaforolimus.

Compound No.
Pred (pIC50) mTORC1

MLR MNLR

2 8.421 8.5574
29 8.101 7.7738
13 8.078 7.8999
4 7.869 7.813
10 7.77 7.7024
71 7.743 7.6084
25 7.736 7.8294

pIC50 exp.

Everolimus 8.26
Temsirolimus 5.8
Ridaforolimus 9.7

The pIC50 values estimated from both the MLR and MNLR models have reasonable
predictions, as seen in Table 3. This agreement looks promising and therefore underlines
the robustness of our QSAR strategy in identifying potent inhibitors targeting mTORC1. It
is tough to highlight a single best compound, as its pIC50 values all share similar prediction
views. In this regard, an in-silico ADME analysis was conducted for the seven high-pIC50
compounds to further investigate their overall drug-likeness properties.

3.6. Evaluation of Drug-Likeness Properties

Table 4 summarizes the calculated ADME profiles, indicating that five compounds (2,
4, 13, 25, and 71) possess excellent pharmacokinetic properties with high absorption profiles
and complying with the major drug-likeness rules. These parameters provided the rationale
for identifying the five candidates as the most promising ones for further development.
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Table 4. The in silico ADME results of the seven proposed compounds.

Property Absp MW LogP NHD NHA NROT TPSA (Å2) SA

Rule - <500 <5 <5 <10 <10 <140 0 < SA < 10

2 High 627.77 2.27 2 8 9 109.71 5.85
29 Weak 627.77 2.59 2 7 9 106.70 4.45
13 High 573.68 3.74 2 5 7 82.84 4.43
4 High 602.77 2.80 2 6 6 100.09 5.56

10 Weak 585.76 2.21 2 5 7 124.80 4.97
25 High 524.66 2.27 2 4 7 95.73 4.34
71 High 608.70 2.21 1 8 7 122.36 4.21

Everolimus Weak 958.22 6.58 3 14 9 204.66 10
Temsirolimus Weak 1030.2 6.82 4 16 11 241.96 10
Ridaforolimus Weak 990.21 7.10 2 14 8 211.31 10

Property Lipinski’s
Violation

Muegge’s
Violation

Veber’s
Violation

Egan’s
Violation

Rule ≤2 ≤1 ≤1 ≤1

2 1 0 0 0
29 1 0 0 0
13 1 0 0 0
4 1 0 0 0

10 1 0 0 0
25 1 0 0 0
71 1 0 0 0

Everolimus 2 4 1
Temsirolimus 2 4 2
Ridaforolimus 2 4 1

Absp: absorption; MW: Molecular weight; LogP: Lipophilicity; NHA: Number of hydrogen bond acceptors;
NHD: Number of donor hydrogen bonds; NROT: Number of rotatable links; TPSA: Topological polar surface; SA:
Synthetic Accessibility.

The main objective of this study was to predict the drug-likeness of the seven selected
piperazine derivatives (2, 4, 10, 13, 25, 29, and 71) by evaluating their pharmacokinetic
profiles using the SwissADME platform [16]. The in silico ADME analysis (Table 4) showed
that five compounds (2, 4, 13, 25, and 71) exhibit high absorption potential and adhere
to key drug-likeness criteria (Lipinski, Veber, Meugee, and Egan rules), suggesting good
oral bioavailability, we’ve showcased the 3D structures of selected molecules in Figure 6.
In comparison, the marketed drugs Everolimus, Temsirolimus, and Ridaforolimus show
multiple violations of these rules, indicating potentially lower bioavailability. Additionally,
the synthetic accessibility (SA) scores for the proposed compounds (ranging from 4.2 to
5.56) suggest they are simpler to synthesize compared to the more complex marketed drugs
(SA = 10). All the five selected compounds had a TPSA lower than 140 Å2 and less than
10 NROT, which enhanced their molecular flexibility to have better interaction with the
mTORC1 receptor at low energy. This, in turn, contributed to the better cell permeability
and favorable pharmacokinetic profiles. Finally, the synthetic accessibility scores of the
compounds were below that of the marketed drugs; this demonstrates easy and cheap
syntheses. Taken together, these properties imply the selected piperazine derivatives have
increased absorption but perhaps of more importance, the potential for reduced side effects
and improved pharmacokinetics compared to the existing mTORC1 inhibitors.
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4. Conclusions

The experimental study combined DFT, QSAR modeling, and in silico ADME analyses
in investigating a series of thirty-seven piperazine derivatives as potential inhibitors of
mTORC1 for cancer therapy. All molecular descriptors calculated in the present study
were electronic, topological, geometrical, and physicochemical parameters computed using
Gaussian 09 and Chemsketch and ChemOffice software. The PCA, MLR, and MNLR
were employed to develop robust QSAR models. MLR and MNLR models showed good
predictive power with R2 of 0.74 and 0.78, respectively, and with R2CV of 0.56 and 0.53,
respectively. These models pinpointed six important molecular descriptors-ELUMO, elec-
trophilicity index (ω), MR, Log S, PSA, and refractive index (n)-whose values strongly
correlate with the inhibitory activity, expressed as pIC50, against mTORC1. By using these
QSAR models along with in silico pharmacokinetic profiling, we identified five compounds,
2, 4, 13, 25, and 71, to be the most promising mTORC1 inhibitors. These few selected com-
pounds, in addition to having better predicted pIC50 than known drugs like Everolimus,
Temsirolimus, and Ridaforolimus, showed favorable pharmacokinetic properties. More
precisely, they exhibit high absorption potential and follow all the drug-likeness rules of
Lipinski, Muegge, Veber, and Egan’s thus suggesting good oral bioavailability with less
probability for adverse effects. The low scores obtained for synthetic accessibility indicate
that these compounds are easier and less expensive to synthesize compared to the more
complex, advertised drugs. These results enable consideration of the identified piperazine
derivatives as effective and safer alternatives to current mTORC1 inhibitors. Therefore, the
predicted inhibitory activity and pharmacokinetic profile of such compounds need to be
experimentally validated by in vitro and in vivo studies. Thus, future research should be
directed toward synthesizing such candidates and elucidating their biological efficacy and
safety to facilitate further progression toward clinical development.
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