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Abstract: Marine Protected Areas (MPAs) require efficient monitoring tools to assess
habitats and biodiversity, particularly in remote or understudied regions. This study
demonstrates the utility of the towed video-diver technique combined with high-resolution
video for rapidly surveying benthic habitats and associated taxa. Applied in Arredondo, a
shallow bay within an MPA in Atlantic Patagonia, the method covered 14,000 m2 through
eight transects, utilizing just 180 min of dive time and ~300 min of video analysis. Substrate
types and their associated taxa were classified using the CATAMI framework, yielding
a list of 28 taxa and density estimates of mobile organisms. Additionally, the percentage
cover of Gracilaria sp.—a commercially valuable macroalga historically overexploited in the
region—was estimated for the bay. The invasive crab Carcinus maenas was found across all
substrate types on the bay, underscoring its ecological tolerance and the need for ongoing
monitoring. This cost-effective, rapid methodology is highly effective for detecting and
describing areas of ecological or conservation interest, providing critical baseline data for
targeted, detailed studies. Its simplicity and efficiency make it ideal for initial surveys in
remote regions, supporting the conservation and management of MPAs.

Keywords: GIS; MPAs; software BIIGLE; simplified taxonomic categories (CATAMI);
Patagonia; SDG14

1. Introduction
Sampling the seafloor is essential for marine conservation, management efforts, and

ecological research. Benthic evaluations, combining physical and biological data, serve to
allow us to better understand biodiversity [1], habitat quality [2,3], bioresources [4] and
the dynamics of marine ecosystems [5], among other things. These evaluations provide
tools for management and protection of marine habitats, many of which are threatened
by human activities and environmental changes [6,7]. By exploring and documenting the
seafloor, scientists can identify vulnerable species and habitats, track changes over time,
and develop strategies to mitigate impacts and preserve biodiversity. Such efforts contribute
valuable data that supports the objectives of the United Nations Decade of Ocean Science
for Sustainable Development (2021–2030) and Sustainable Development Goal 14 (SDG
14), “Life Below Water”, which aim to advance scientific knowledge, drive technological
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innovation, and promote international collaboration to address the significant challenges
facing our oceans [8–10].

A wide range of techniques have been designed to map and study the seafloor, with
the choice of method primarily depending on the scale of implementation, the level
of detail required, the study’s objectives, and the available resources, technology and
time [2,11]. Among the techniques used for small- to medium-scale surveys, the towed
diver technique involves towing a diver with a rope connected to a small boat, allowing
the diver to sample large areas without having to propel themselves [12–21]. Initially
utilized in the 1960s, it has since been employed and refined in numerous monitoring
programs. Notable examples include the Long-Term Monitoring Program (LTMP) of the
Australian Institute of Marine Science (AIMS), the Global Coral Reef Monitoring Network
(GCRMN), and the Coral Reef Ecosystem Division (CRED) of the Pacific Islands Fisheries
Science Center (PIFSC-NOAA) in Hawaii, following the methods of Kenyon [19]. This
technique can be performed in two ways: one where the towed diver uses a snorkel and
conducts the survey from the surface, normally known as manta tow, e.g., [13], and another
where the towed diver uses SCUBA equipment, allowing for surveys at different depths,
e.g., [19,21]. Traditionally, this technique has not included a photographic or videographic
component, and divers annotated registers underwater [15]. The inclusion of photography
or video in towed diver surveys has provided a permanent record, reduced observer
bias [22], and more recently, enabled the use of artificial intelligence tools to streamline the
analysis process [23–25].

In regions of the world with clear waters and warm temperatures, such as the
Caribbean, traditional manta-tow surveys allow easy observation of the seafloor from
the surface. However, in Atlantic Patagonia, water visibility may be reduced to a few
meters, so it is necessary to include SCUBA equipment in the tow so that the diver can
reach depths where the seafloor can be clearly observed (generally no more than 2 m
above the bottom). Additionally, the cold waters in Patagonia reduce dive times, requiring
techniques that minimize bottom time while maximizing survey distance. Although divers
can conduct large transects over rocky reefs swimming under their own power [26–28],
the towed diver technique becomes a more suitable option when larger areas with
diverse habitats need to be surveyed. This technique was successfully implemented in
the Atlantic Patagonian region, particularly for estimating the stock of commercially
important bivalve and gastropod species [29,30]. The data derived from these surveys
have played a crucial role in fisheries management decisions by the Fisheries Secretariat
of Chubut, Argentina; however, they lack spatial distribution information or provide
only low-resolution data. Furthermore, these surveys focus solely on target fisheries’
resources, without offering broader estimates or records of other taxa, macroalgae, or habitat
types. Despite its widespread use, the integration of video cameras, low-cost georeferencing
tools, and standardized data processing protocols have not yet been incorporated into
this method.

In this study, we employed the novel towed video-diver (TVD) technique for a
comprehensive survey of Arredondo Bay within the MPA Interjurisdictional Marine Coastal
Patagonian Austral Park (PIMCPA) as a case of study. We integrated video capabilities into
the towed diver method to produce a detailed map of the bay’s seabed sediment types,
quantified mobile invertebrate density, estimated the coverage of macroalgae (Gracilaria
sp., which is of commercial interest), and compiled a species list for the area. The article
includes a detailed protocol illustrating data analysis procedures using open-source tools.
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2. Materials and Methods
2.1. Site Sampling

The study was conducted in March 2020 in Arredondo Bay, Atlantic Patagonia
(S 45.02◦, W 65.8◦), situated within the MPA Interjurisdictional Marine Coastal Patagonian
Austral Park (PIMCPA), in the northern zone of the San Jorge Gulf, Chubut, Argentina
(Figure 1). Arredondo is an enclosed bay, with only a small 450 m opening to the south. It
covers an area of 1.3 km2 with a maximum depth of 8 m. The site was selected due to
its suitability for mapping its entire area with the chosen method, its challenging access,
which makes it impractical to map using other large-scale methodologies (not suitable
for large vessels), and its historical significance as one of the key wave-protected bays
in southern Chubut for Gracilaria sp. extraction, along with Bustamante Bay and Caleta
Malaspina [31]. Since 1995, Gracilaria sp. populations in these areas have experienced a
drastic decline in beachcast quantities, reaching nearly zero by 2000 [32]. Now included
within a national park, Arredondo Bay holds considerable conservation value and is a focal
point for Gracilaria sp. repopulation initiatives.
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Figure 1. Location of Arredondo Bay in the national park PIMCPA. The park boundaries are shown
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2.2. Technic and Equipment Setup

During the study, a total of 8 video transects, each approximately 900 m in length, were
conducted, spaced ~100 m apart, as illustrated in Figure 1. Throughout these transects, a
diver equipped with a towboard and camera was towed at a speed of 2.8 km/h, maintaining
an approximate height of 1 m above the seabed, controlled by the diver using the towboard
and a diving computer (Figure 2). The fieldwork was executed by two divers (Gonzalo
Bravo and Gaston Trobbiani, four transects each) in two consecutive diving sessions,
amounting to a total of 180 min of immersion at an average depth of 6 m.
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Figure 2. Diagram of the sampling TVD system, where the diver is towed by a small vessel
(towboat). Illustration by Candelaria Belén Piemonte.

We used a PARALENZ video camera (Paralenz Group, Copenhagen, Denmark) for
video transects. This camera was one of the most compact, complete, and robust options
among the action cameras we found on the market, suitable for our budget and applications
when carrying out this work (March 2020). It has a LiPo battery that lasts more than 3 h while
recording (1080p—60 fps) in water temperatures between 11 and 18 ◦C, with the possibility
of submerging up to 250 m depth (26 atmospheres) without additional seals. However, the
most relevant point of this camera is the associated temperature and pressure sensors. The
camera continuously records data that can be downloaded as a plain text file or displayed
as overlaid information on the video. Since the completion of this work, the manufacture
of this camera has been discontinued, but to carry out this work any other action camera
could be used. For example, GoPro® HERO models (GoPro, Inc., San Mateo, CA, USA) are
widely used in marine research due to their versatility, durability, and high-resolution video
capabilities, e.g., [20,33]. If obtaining environmental data such as depth or temperature is
of interest, additional sensors could be mounted on the towboard to complement video
recording. The camera was mounted on a towboard (rigid rectangular wooden frame of
approximately 60 cm × 40 cm,) as shown in Figure 2. This structure provides support for
the camera and allows a diver to hold onto it and use it as a guide to maintain direction and
depth (towboard diagram available in the Supplementary Materials, Figure S1). A plastic
slate was mounted on the same structure, allowing the diver to record important events for
post-processing the videos (e.g., start, end of transect, relevant objects on the bottom, etc.)
as the transect was performed.
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2.3. Georeferencing Video Samples

To georeference all data collected during towing, the GPS (Garmin® Gpsmap 79 S,
Garmin Ltd., Olathe, KS, USA) on the towboat was set to continuous tracking mode,
recording a trackpoint every 5 s (Enough detail for the proposed trawl speed). The GPS
unit used in this study is a handheld device that relies solely on satellite signals for
positioning, without the use of differential correction systems. Under standard conditions,
this device has a typical horizontal accuracy of approximately ±3.65 m. However, certain
environmental factors can influence this accuracy. For instance, in areas with limited
satellite visibility, such as narrow channels or regions with tall cliffs, or in locations
where atmospheric conditions interfere with signal quality, the positioning error may
increase [34,35]. These limitations are inherent to handheld GPS units. Nevertheless, for
the scale of the mapping conducted in this study, an error of approximately 4 m is not
critical and remains acceptable for generating reliable large-scale maps of substrate types
and marine organism distributions.

The GPS time and camera were synchronized by aligning the clocks of the two devices
before each dive (if the devices cannot adjust the schedule manually, it is enough to know
the difference between them). GPS positioning layback arises from the distance or time
delay between the GPS unit on the boat and the diver, typically around 30 s (see the video
of the towing maneuver in the dataset section). This layback time difference was estimated
during practice tows by timing the passage of a buoy observed from both above and below
the surface. The correlation between the events (bottom types, organisms or objects) in
the video and the geographical position obtained by the GPS was established using time
stamps through an R code built ad hoc for this work.

2.4. Image Analysis

The videos were analyzed by two authors of this work (Gonzalo Bravo and Gaston
Trobbiani) using the free software BIIGLE 2.0 [36], accessible online from any device,
allowing multiple operators to collaborate on the same project. This platform facilitates
the specific labeling of events such as fish, bottom substrate type, invertebrates, and algae
within the videos. Species identification and counts were conducted on a 2 m band estimated
visually along the video transect on the bottom, following methods similar to those used in
Underwater Visual Census (UVC) [37]. The expertise of the observers and divers conducting
the UVC methods played a crucial role in the accuracy and reliability of the transect surveys
and video analyses [28,38]. We adopted the CATAMI categories [34] for taxa and bottom type
classification. The CATAMI classification scheme is a standardized framework developed to
annotate categories of benthic substrates and biota in marine imagery. Its versatility allows
it to be applied across various image collection methods, annotation platforms, and scoring
techniques. CATAMI is well-documented, regularly updated, and maintained to ensure
consistency and reliability in benthic classification, promoting data sharing and enabling
comparison across diverse research efforts [39–41] and platforms.

Taxa densities visible in the video transects (>10 cm) were calculated as individuals
per 1000 m2. Since each recorded organism was associated with a specific substrate type,
density estimates were based on the area covered only by that substrate type. Two types
of substrate were considered for this analysis: rock and unconsolidated (soft), with the
latter including three subcategories: fine sand (no shell fragments), coarse sand (with
shell fragments), and gravel (2–10 mm). Regarding macroalgae, the study focused on
three key aspects: (1) the presence of CATAMI categories, (2) the density of forest-forming
macroalgae, such as Undaria pinnatifida and Macrocystis pyrifera, and (3) the estimation of
the percentage cover of Gracilaria sp. For the latter, a systematic approach was used when
frames were observed every 10 s, and in each frame, points from 1 to 5 were assigned
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depending on the percentage cover of Gracilaria sp. (Table 1). This method provided a
precise categorization of the area covered by this algae, contributing to an estimation of its
distribution within the transects.

Table 1. Percentage cover estimates categories, as per Bass [42].

Category Cover Estimate

0 0
1 >0–10%
2 11–30%
3 31–50%
4 51–75%
5 76–100%

2.5. Mapping Production

To characterize the seafloor, the substrate type observed in the video was identified,
followed by labeling all subsequent changes. We categorized the substrate using four
CATAMI classes, allowing us to define intervals along the transects with assigned bottom
types. Since this information was categorical, it was converted into numerical values to
facilitate modeling and map generation of the study area. Each bottom type was assigned a
numerical value corresponding to its grain size or hardness. This transformation enabled
the interpolation of substrate data using the Inverse Distance Weighting (IDW) method
in R software (version 4.3.2) [43]. However, IDW’s effectiveness decreases when data
points are unevenly distributed. Additionally, the maximum and minimum values of the
interpolated surface can only appear at locations coinciding with sample points [44]. This
often produces small, concentric zones around sample points, referred to as “artifacts” of
the technique (Figure 3A). These interpolation artifacts appear as color gradients between
different substrate types (Figure 3A), suggesting that between two contrasting substrates
(e.g., rock and mud), an intermediate substrate (e.g., sand) always exists—an inaccurate
assumption. To address this, we performed raster reclassification. Pixels with values
≥4 (rock) were isolated to generate a rock layer. The rock points were then removed
from the dataset, and a second IDW interpolation was performed using only sedimentary
bottom points (1, 2, 3). The two layers were merged for visualization, resulting in the
high-resolution map of bottom types for the study area (Figure 3B).
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3. Results
The TVD transects covered 7086 m of linear distance with a width of two meters,

resulting in a total sampled area of 14,172 square meters. This represents almost 2% of the
total area of Arredondo Bay (this covered area was achieved by only two divers and in
just 180 min). In total, 3204 annotations were made over the video transects, identifying
27 taxa, 4 substrate types, and 2 bedform descriptions (Table 2). Macroalgae were the
most represented by CATAMI categories (8), followed by true crabs with 5 species. Three
anthropogenic objects were detected along the transects (one plastic bag, a piece of rope
and a concrete block).

The four distinct substrate types are mapped in Figure 3A,B. Coarse sand with shell
fragments dominated the coverage in the bay (49.5%), followed by rock (28.3%), fine
sand with no shell fragments (11.4%) and gravel (10.8%). The rocky bottom areas were
concentrated in the northernmost side of the bay (Figure 3). Near to the mouth of the bay, a
higher occurrence of ripples on the sandy bottom was observed, which gradually decreased
in frequency with increasing distance from the mouth (Figure 3B). When performing a linear
interpolation using all the substrate types, interpolation effects were observed, resulting in
intermediate substrate types that do not actually exist (Figure 3A). This contrasts with the
interpolation performed separately for soft and hard substrates, which were then overlaid,
providing a more accurate representation (Figure 3B).

In Figure 4, the distribution of the most abundant taxa and Gracilaria sp. coverage
across the transects is displayed, overlaid on the recorded bottom types. This representation
highlights spatial patterns of species presence in relation to substrate composition,
providing insights into habitat associations and the extent of algal coverage within the
surveyed area. Among the crab species recorded, there was a noticeable trend in substrate
association. Leucippa pentagona was predominantly observed on rocky substrates (Figure 4A,
Table 2), while Leurocyclus tuberculosus, Ovalipes trimaculatus, and Peltarion spinulosum were
more abundant on sandy substrates (Figure 4C–E, Table 2). The exotic species Carcinus
maenas was present across all substrate types, showing higher densities on rocky bottoms
(Figure 4B, Table 2). Additionally, fish, sea stars, the tunicate Polyzoa opuntia, and the
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anemone Metridium sp. were more commonly associated with rocky substrates, whereas
the anemone Antholoba achates epibiont of Adelomelon ancilla and the snail Odontocymbiola
magellanica showed a stronger association with soft substrates (Figure 4H–K, Table 2).

Table 2. Checklist of CATAMI categories and taxa observed during the sampling in Arredondo
Bay. Densities are presented as individuals per 1000 m2 for organisms that were easily identifiable in
the videos. For organisms that are very small or for macroalgae, the term “present” is used to indicate
the substrate type on which they were observed. Densities are provided separately for unconsolidated
and rock substrate types, as well as an overall density, which represents the density calculated using
the total area sampled.

Density (inv/1000 m2)

CATAMI Group CATAMI Name TAXA Unconsolidated Rock Overall

Ascidians Unstalked: Colonial Polyzoa opuntia 0.5 48.04 8.16
Ascidians Unstalked: Solitary Phlebobranchia 0.08 0.43 0.14

Cnidaria True anemones (associated
with gastropods)

Antholoba achates /Adelomelon
ancilla 0.91 0 0.77

Cnidaria True anemones Metridium sp. 0.5 7.79 1.67
Crustacea Crabs Carcinus maenas 1.66 4.76 2.16
Crustacea Crabs Leucippa pentagona 0.42 13.85 2.58
Crustacea Crabs Leurocyclus tuberculosus 9.56 0.43 8.09
Crustacea Crabs Ovalipes trimaculatus 0.08 0 0.07
Crustacea Crabs Peltarion spinulosum 0.25 0.87 0.35
Echinoderms Sea cucumbers Cucumariidae 0.08 0 0.07
Echinoderms Sea stars Allostichaster capensis 0.08 3.03 0.56
Echinoderms Sea stars Anasterias antarctica 0.33 8.66 1.67
Echinoderms Sea stars Cosmasterias lurida 0 0.87 0.14
Fishes Bony fishes Patagonotothen sp. Present Present
Fishes Bony fishes Sebastes oculatus 0 1.3 0.21

Macroalgae Erect coarse branching:
green Codium sp. Present

Macroalgae Erect fine branching Gracilaria sp. Present Present
Macroalgae Filamentous/filiform: red Rhodophyta Present
Macroalgae Filamentous/filiform: green Chlorophyta Present
Macroalgae Large canopy-forming Macrocystis pyrifera 0 29.0 4.95
Macroalgae Large canopy-forming Undaria pinnatifida 1.33 45.01 8.37

Macroalgae Sheet-like/membraneous:
brown Dictyota dichotoma Present

Macroalgae Sheet-like/membraneous:
green Ulva sp. Present

Molluscs Bivalves Mytilida Present
Molluscs Gastropods Odontocymbiola magellanica 0.42 0 0.35
Sponges Crusts: encrusting Demospongiae 0.08 2.6 0.49
Sponges Massive forms: simple Demospongiae 0 0.43 0.07
Worms Polychaetes Aphrodita sp. 0 0.87 0.14

Anthropogenic object Present Present
Bedforms 2D: Ripples (<10 cm height)
Bedforms 2D: Waves (>10 cm height)

Substrate 1 Unconsolidated (soft): fine
sand (no shell fragments)

Substrate 2
Unconsolidated (soft):
coarse sand (with shell
fragments)

Substrate 3 Unconsolidated (soft):
gravel (2–10 mm)

Substrate 4 Consolidated (hard): rock
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The macroalga Gracilaria sp. exhibited the highest percentage of coverage over the
coarse sand substrates sampled, with the exception of the transect near the mouth of the
bay, where despite the presence of soft substrates, low densities were recorded (Figure 4L).

4. Discussion
The towed diver technique, widely used in tropical regions [18,19,21,45], also proves

to be a robust and effective tool for surveys in areas with lower visibility and colder
waters, such as Atlantic Patagonia, where optimizing dive time is crucial to successful
sampling. In this study, the TVD method successfully documented the distribution and
abundance of benthic taxa, revealing clear patterns associated with substrate types. By
integrating substrate and taxa classifications through the CATAMI framework, this
method provides a cost-effective and detailed approach to understanding ecosystem and
resources dynamics, offering valuable insights into habitat specificity even in remote and
understudied areas. One of the key advantages of this technique is its efficiency: with only
180 min of dive time and approximately 300 min of video analysis, it is possible to rapidly
generate records of substrate types and associated taxa across a broad area. These fast
results-initial data can then be used to plan more detailed studies or target specific taxa.

The substrate map generated here (supported by video evidence) closely aligns with
the patterns described before by Boraso de Zaixso [46], confirming that coarse sand
with shell fragments predominates in the central and southern regions of Arredondo
Bay, while rocky substrates are more common in the northern sectors. This alignment is
particularly noteworthy given the methodological differences: previous substrate maps for
Arredondo Bay required extensive dive hours and sediment sampling in the lab to delineate
substrate types and produce a comprehensive map of the area. In contrast, our approach
achieved similar results with higher resolution and in a significantly shorter time frame,
demonstrating the efficiency and practicality of the TVD technique for mapping substrate
types in shallow waters. Additionally, this method allowed us to infer dynamic processes,
such as water circulation, through the observation of ripples on soft substrates. These
ripples serve as proxies for areas of higher water movement, and the patterns identified by
us coincide with previously determined zones of greater circulation, which were estimated
through mass loss of gypsum blocks [46]. This further underscores the potential of this
technique not only for mapping substrate distribution but also for integrating physical and
biological insights into ecosystem processes.

While towed camera surveys can be conducted without divers, particularly in deeper
or more uniform seafloor environments [47–50], the combination of towed techniques with
diver involvement and filming equipment offers distinct advantages for shallow, irregular
seafloors, such as those in Arredondo Bay. Divers can maintain precise depth control,
ensuring closer proximity to the seafloor compared to cameras alone, which is especially
critical in areas with significant rocky formations. Additionally, the inclusion of in situ
diver observations enhances the accuracy and comprehensiveness of the environmental
description, further validating the utility of this approach for complex habitats. Although
the TVD technique focuses on epifaunal species visible in video footage, potentially
underestimating infaunal diversity, it shows great potential for broader applications, such
as predictions based on associations of species with type of substrate and other taxa. For
instance, the presence of soft bottoms buried species, such as the snail Adelomelon ancilla,
could be inferred through its association with the anemone Antholoba achates, a typical
epibiont of A. ancilla [51]. Observing A. achates on soft substrates—where it does not
typically settle—may indicate the presence of A. ancilla, while the presence of A. ancilla is
associated with bivalve beds and the sympatric sea snail Odontocymbiola magellanica, a fact
that could be corroborated in Figure 4F,G.
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Although there is scarce existing literature for the Patagonian Atlantic region, where
the towed diver technique was employed [29,30], in most cases, the diver recorded
observations underwater without creating a video record of the transects. Furthermore,
those studies did not include detailed substrate type assessments, and density estimates
were often based on the total transect length rather than on distances specific to
the substrate where each species is associated [30]. This approach likely leads to
underestimations in density calculations, as it assumes homogeneity across transects
despite the presence of varied substrate types, even though certain species are associated
with specific substrates. Building on this, the estimation of organism density based on
the substrate type with which they are associated can provide more realistic and useful
estimates of their distribution and abundance. For example, in this study, species such as
Leurocyclus tuberculosus, Antholoba achates/Adelomelon ancilla and Odontocymbiola magellanica
were found exclusively or predominantly on soft substrates, while Leucippa pentagona,
Anasterias antarctica, Allostichaster capensis, Cosmasterias lurida, Polyzoa opuntia, Metridium
sp., Aphrodita sp., Sebastes oculatus and Demospongiae showed a strong association with
rocky substrates. If their densities had been calculated using the total transect length
without accounting for substrate type, the estimates would have been misleading, either
overestimating or underestimating their actual densities on their preferred habitats (see
Table 2). Further highlighting the importance of accurate density estimation, the invasive
crab Carcinus maenas was one species found across all substrate types, demonstrating its
broad ecological tolerance. This, combined with its high voracity [52–54], could potentially
lead to biodiversity losses over time [55]. This information underscores the method’s
potential to inform conservation planning by providing valuable baseline biodiversity data
for monitoring programs in MPAs.

In this study, we used simplified taxonomic categories (CATAMI) to minimize
identification errors, relying only on visible information from the images for classification [56].
Using this approach, we identified eight categories of macroalgae, of which three could
be identified at the species level, three at the genus level, and the remaining categorized
within groups of multiple species that cannot be distinguished from videos. Within all
the macroalgae observed, we decided to focus on density estimates for the giant kelp
Macrocystis pyrifera and the exotic macroalgae Undaria pinnatifida, as well as coverage
estimates for Gracilaria sp. due to ecological or commercial interest. In the case of M. pyrifera
and U. pinnatifida, these species were easily distinguishable in the videos, particularly
when occurring at low densities, which allowed for accurate counts without difficulty. The
estimation of M. pyrifera density in Arredondo Bay is particularly valuable because many
individuals in this area do not reach the surface, making them undetectable via satellite
imagery [57]. This is especially relevant as M. pyrifera kelp forests are a conservation target
within the MPA. In the PIMCPA region, density estimates of M. pyrifera (ind/m2) were
previously reported by Barrales and Lobban [58] using transects conducted via diving, with
densities of 1.41 ind/m2 in Camarones and 1.53 ind/m2 in Caleta Carolina. These values
are notably higher than the 0.03 ind/m2 found in this study, likely due to the sparse nature
of the kelp forest within Arredondo Bay. This low density enabled the use of the TVD
method for M. pyrifera, as dense forests that reach the surface would make it impossible to
tow a diver with a boat through the area. Recording locations where M. pyrifera occurs at
low densities is equally important, as it provides a baseline for monitoring the evolution of
kelp forests in this bay over time. This could be particularly useful for evaluating changes in
forest extent, density, and recovery in response to conservation efforts within the MPA. For
Undaria pinnatifida, an exotic alga present in the park since the 2000s [59,60], a density of
0.05 ind/m2 was recorded during this study. These low densities are primarily explained by
the timing of the sampling, which coincided with the end of the alga’s reproductive cycle, a
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period when most adult sporophytes detach from the substrate [60,61]. Additionally, in this
area, U. pinnatifida has not yet reached the high densities observed in northern regions, such
as Golfo Nuevo, where densities can reach 30 to 200 ind/m2 on average [60]. It is important
to note that when U. pinnatifida reaches such high densities, it becomes impractical to count
individuals, as they can no longer be easily distinguished. In such cases, transitioning to
coverage estimation, as was carried out for Gracilaria sp. using the TVD technique, would
be more appropriate. The estimation of Gracilaria sp. coverage is of critical interest due
to its commercial value and its historical exploitation in the region [62–65]. Currently,
there are projects aimed at restoring Gracilaria sp. populations in the bay, emphasizing the
importance of having updated data on its distribution. However, the analyzed videos have
limitations in distinguishing whether Gracilaria sp. is attached to the substrate or floating
near the bottom, which could introduce significant errors in coverage estimates. Therefore,
we recommend using this technique as an initial tool to map areas of high algal coverage,
followed by complementary methods to obtain more precise estimates of Gracilaria sp.
coverage, density or biomass in selected areas.

The TVD technique demonstrates potential for integration into monitoring plans for
MPAs. Its straightforward implementation means that it could be carried out by park
rangers with diving skills, fostering stronger connections between scientific institutions and
MPA managers, e.g., [66]. This collaboration would enable complementary efforts to rapidly
gather data on benthic environments, supporting the early detection of abrupt changes and
facilitating timely management responses. Moreover, incorporating artificial intelligence for
the rapid detection and identification of taxa in video footage could further accelerate the
processing workflow, improving both efficiency and cost-effectiveness for monitoring across
more relevant spatial and temporal scales [67–69]. For instance, González-Rivero et al. [25]
demonstrated that automated processing of image-based data from coral reefs using
machine learning technologies led to a 99% reduction in costs and increased processing
speed by 200 times compared to traditional methods.

5. Conclusions
In the context of SDG 14, where increasing scientific knowledge is paramount, refining

techniques like the towed video-diver technique (TVD) offers significant potential for
enhancing the monitoring of larger coastal areas. This method increases the capacity
to detect critical changes such as species loss, range shifts or the spread of invasive
species. While ensuring that monitoring methods produce high-quality data is essential, it is
equally important that data collection remains accessible and does not depend on large-scale
infrastructure. The TVD method, relying on basic equipment commonly available in MPAs
(small boats, diving gear, and video cameras), provides a practical and scalable solution for
long-term monitoring. The TVD method could provide local managers and researchers with
the means to monitor ecological changes effectively, enabling informed decision-making
and prompt conservation actions to safeguard marine ecosystems. While the method is
limited to shallow areas and locations where navigation with small boats is feasible, the
TVD is highly versatile and can be applied across a wide range of coastal zones.
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