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Abstract: Lomami National Park, located in the Democratic Republic of the Congo (DR
Congo), is renowned for the integrity of its forest ecosystems, safeguarded by the absence
of agricultural activities and limited road access. However, these ecosystems remain under-
researched, particularly in terms of forest cover dynamics. This research gap poses a
significant challenge to establishing rigorous monitoring systems, which are essential for
ensuring the long-term preservation of these valuable ecosystems. This study utilized
Google Earth Engine to preprocess Landsat images from 2008, 2016, and 2024, employing
techniques such as atmospheric correction and cloud masking. Random Forest classification
was applied to analyze land cover changes, using training datasets curated through ground-
truthing and region-of-interest selection. The classification accuracy was evaluated using
metrics such as overall accuracy, producer’s accuracy, and user’s accuracy. To assess
landscape configuration, metrics such as class area, patch number, largest patch index,
disturbance index, aggregation index, and edge density were calculated, distinguishing
between the park’s core and peripheral zones. Spatial transformation processes were
analyzed using a decision tree approach. The results revealed a striking contrast in forest
cover stability between Lomami National Park and its surrounding periphery. Within the
park, forest cover has been preserved and even showed a modest increase, rising from
92.60% in 2008 to 92.75% in 2024. In contrast, the peripheral zone experienced a significant
decline in forest cover, decreasing from 79.32% to 70.48% during the same period. This
stability within the park extends beyond maintaining forested areas; it includes preserving
and enhancing the spatial structure of forest ecosystems. For example, edge density, a key
indicator of forest edge compactness, remained stable in the park, fluctuating between
8 m/ha and 9 m/ha. Conversely, edge density in the peripheral zone exceeded 35 m/ha,
indicating that forest edges within the park are considerably more cohesive and intact than
those in the surrounding areas. The spatial transformation processes also underscored these
contrasting dynamics. In the park, the primary process was the aggregation of primary
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forest patches, reflecting a trend toward continuous and connected forest landscapes.
By contrast, the peripheral zone exhibited dissection, indicating fragmentation and the
breakdown of forest patches. These findings highlight the park’s critical role in maintaining
both the extent and structural integrity of forest ecosystems, setting it apart from the more
degraded periphery. They underscore the resilience of forest ecosystems in the face of
limited anthropogenic pressures and the crucial importance of effective land management
and rigorous conservation strategies in addressing the challenges posed by urbanization
and rural expansion. Additionally, the results emphasize that well-adapted conservation
measures, combined with specific demographic and socio-economic conditions, can play a
pivotal role in achieving long-term forest preservation and ecological stability.

Keywords: primary forest; spatial structure; ecosystem conservation; remote sensing/GIS;
ecological resilience; land-use planning; protected area

1. Introduction
Tropical forests, covering only ~10% of Earth’s surface, harbor ~50% of known species,

making them critical reservoirs of terrestrial biodiversity [1]. They provide essential
ecosystem services, including carbon sequestration, water regulation, and soil protection,
crucial for ecological health and climate stability [2]. Studies, such as those by Ian et al. [3]
and Yang et al. [4], emphasize their role in supporting biodiversity, ecosystem stability, and
ecological processes like pollination and seed dispersal, which are vital for maintaining
ecosystem integrity and combating climate change. Additionally, tropical forests are home
to complex interactions between species and ecosystems, fostering essential ecological
processes such as pollination and seed dispersal, which are crucial for maintaining the
integrity of these environments [5]. These forests also play a key role in reducing the impact
of torrential rains by slowing runoff and mitigating soil erosion [2,6]. Additionally, they
store substantial amounts of carbon (247 gigatons) while generating a significant portion of
the world’s annual oxygen (20% to 30%) [7,8]. In Central Africa, these ecosystems provide
livelihoods for nearly 60 million people living near or depending on these forests [9–11].

Despite their critical importance, tropical forests are under unsustainable pressures.
Deforestation and degradation, primarily from logging, agriculture, and mining, severely
threaten tropical forests. Between 2015 and 2020, global forest loss averaged 10 million
hectares annually, with tropical forests accounting for over 40% of this loss [12]. The
Amazon Basin exemplifies this trend, with deforestation rates rising by 30% from 2018 to
2020, culminating in the clearance of nearly 11,000 square kilometers in 2020 [13]. Africa
loses approximately 3.9 million hectares of forest annually, endangering the unique bio-
diversity and ecosystem services provided by these regions [9,10,13–15]. Unlike other
tropical regions where deforestation is often driven by large-scale exploitation projects,
in Central Africa, it is primarily caused by small-scale activities such as subsistence agri-
culture, charcoal production, and fuelwood collection, leading to the loss of nearly 18
million hectares of forest since 2000 [10]. While these practices are driven by immediate
economic needs, they compromise resource sustainability and increase the vulnerability of
ecosystems to degradation. The significance of understanding land-use changes in tropical
forests and their impacts on biodiversity, ecosystem services, and carbon storage has been
well documented in the literature [16–18].

In Central Africa, countries are implementing policies to combat deforestation and
promote sustainable forest management. The Republic of Congo’s national forest strategy
aims to sustainably manage 30% of its forests by 2030 through reforestation and community
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forestry programs. Cameroon’s Forestry and Environmental Sector Program enforces
strict logging regulations, supports community-based management, and participates in the
REDD+ program. Gabon has protected over 10% of its land and, in 2018, became the first
African nation to issue carbon credits for forest preservation. Regional initiatives like the
Congo Basin Forest Partnership further integrate conservation and economic development
goals [12].

The DR Congo aims to protect 17% of its territory through a conservation policy
focused on establishing national parks, nature reserves, and wildlife zones. Key protected
areas, such as Virunga, Salonga, and Kahuzi-Biega National Parks, are home to endan-
gered species like mountain gorillas, okapis, and forest elephants. In partnership with
organizations like WWF, the DR Congo has improved park management, implemented
anti-poaching measures, and promoted eco-tourism to support local communities. How-
ever, challenges remain, including poaching, illegal logging, and armed conflict, which
increase pressure on protected areas. The policy’s success depends on stronger enforcement,
sustainable funding, and ongoing collaboration with local and international stakehold-
ers [19]. This initiative led to the creation of the Lomami National Park in 2016, covering an
impressive area of 8879 km2, complemented by a buffer zone of 22,000 km2 [20]. This park
consists primarily of lowland tropical moist forests, with emergent islands of edaphic and
hydromorphic savanna in its southern part. Located in a region characterized by extremely
low population density, this protected area is known for the integrity of its relatively undis-
turbed forest ecosystems due to the absence of significant agricultural activities, logging,
and road inaccessibility [20,21]. However, this assertion is not supported by empirical
data. Research gaps in tropical forest studies stem from several factors [1,5,8]. Remote
and inaccessible locations make fieldwork logistically challenging and costly. Political
instability further hampers long-term research efforts. Moreover, inadequate infrastruc-
ture and limited funding for scientific research in these regions restrict data collection on
forest cover changes, species composition, and ecosystem services. No detailed studies
have yet been conducted to illuminate this essential dimension of forest ecosystem health
and resilience.

In the Congo Basin, home to the DR Congo’s extensive forests, limited data on for-
est carbon stocks hampers efforts to quantify the region’s contribution to global carbon
sequestration [8]. This data deficiency obstructs the effective implementation of REDD+
programs, which depend on accurate carbon measurements for funding and mitigation
planning. Without reliable data, assessing the effectiveness of conservation initiatives
remains a significant challenge. This situation also restricts access to available funding and
the mobilization of initiatives in favor of the park by organizations and policymakers [22].
Furthermore, this data insufficiency makes it difficult to identify threats early, hinders the
optimal implementation of preventive measures, and may result in the delayed detection
of changes, making corrective interventions more challenging and costly [23]. Finally, it
leads to an inefficient allocation of available resources and the implementation of inade-
quate plans, thus compromising the ability of managers to make informed decisions based
on accurate and up-to-date data [24,25]. The spatial and temporal dynamics of primary
forest ecosystems within parks in Africa, particularly in Gabon and Cameroon, are well
documented. Studies highlight the complexity and stability of these ecosystems in the face
of natural and anthropogenic disturbances. However, gaps remain in understanding the
specific dynamics of less studied or newly established parks, such as the Lomami National
Park. The rationale for conducting a study on deforestation in Lomami National Park lies
in the observed research gap in the existing literature. Previous studies have primarily
quantified deforestation at the provincial level [26], while investigations focused on Lo-
mami National Park since its establishment have predominantly centered on characterizing
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its fauna [27–30] or composition, structure, and the sustainability of the use of its forests by
local communities in buffer zones [31]. Despite growing recognition of the importance of
accurate monitoring methods, including remote sensing, for forest management, detailed
studies of forest dynamics in Lomami remain scarce [32]. The absence of detailed quantita-
tive data on forest dynamics in parks like Lomami restricts our ability to effectively assess
the impacts of conservation measures and potential threats. Studying and quantifying the
forest dynamics of the Lomami National Park will fill this gap by providing essential data
on spatial and temporal changes in an unexplored context. Consequently, these studies
have largely overlooked the critical analysis of the spatiotemporal dynamics of habitats
within the park. By addressing this oversight, this study seeks to analyze deforestation
trends and their impacts on habitat integrity to enhance conservation strategies in this
critical ecological zone. It combines remote sensing techniques, including satellite imagery
and GIS analysis, to monitor forest cover changes over time. Field-based assessments will
validate satellite data and provide insights into biodiversity and ecosystem health in key
areas, ensuring a comprehensive understanding of deforestation dynamics.

Furthermore, it is also recognized that even ecosystems considered intact can undergo
subtle modifications and long-term changes [33]. Monitoring these evolutions is crucial
for ensuring biodiversity preservation, assessing human impact, and identifying potential
threats before they become critical [34]. To meet these needs, various complementary
approaches to data acquisition and analysis, such as remote sensing and landscape ecology,
are employed. Remote sensing, particularly through satellite imagery, has been extensively
applied to track changes in forest extent, detect deforestation, and assess habitat fragmen-
tation, offering a cost-effective and large-scale alternative to traditional methods [35,36].
Landscape ecology analyzes the spatial structure of landscapes to understand how it influ-
ences biodiversity and population dynamics [37,38]. The combination of these approaches,
their being less time-consuming and resource-intensive than traditional methods such
as forest inventories, weather stations, and environmental sensors, proves particularly
effective for monitoring the health of forest ecosystems within protected areas [38–40]. It
allows for the design of integrated management strategies aimed at ensuring the long-term
preservation of forest biodiversity [41–43].

This study aims to fill a significant gap in understanding the evolution of forest
cover in Lomami National Park and its surroundings by conducting a comprehensive
spatial analysis of these forest ecosystems dynamics from 2008 to 2024 using Landsat
satellite imagery and landscape ecology analysis methods. We hypothesize that due to low
population density, geographical isolation, and the absence of agricultural and forestry
activities, the forest ecosystems of Lomami National Park have remained relatively intact.

2. Materials and Methods
2.1. Study Area

The study area encompasses the Lomami National Park and its periphery (Figure 1).
Located approximately at 2◦32′42′′ S and 25◦42′20′′ E, Lomami National Park spans across
the Maniema and Tshopo provinces, covering an area of 30,879 km2. The park is predomi-
nantly covered by lowland equatorial rainforest, with hydromorphic savannas localized
in its southern part. This forest is rich in floristic biodiversity, hosting species such as
Milicia excelsa (Welw.) C.C. Berg, Gilbertiodendron dewevrei (Linnaeus), Entandrophragma spp.,
Pycnanthus angolensis (Linnaeus), and Musanga cecropioides (R.Br. ex Tedlie) [20,44]. Despite
this diversity, the region remains one of the least botanically explored areas in tropical
Africa [45,46]. Previous research in Lomami National Park has faced challenges such as
limited species inventory data due to difficult access and political instability. Additionally,
studies on flora have been hindered by inadequate funding and a lack of comprehensive
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baseline data on plant diversity and distribution [20,44,47]. Since 2007, research conducted
by the Lukuru Foundation under the TL2 project has revealed notable faunal richness,
including 59 species of large mammals and 240 species of birds. A significant discovery
was the Cercopithecus lomamiensis [47], a newly identified primate species endemic to the
forests between the Tshuapa and Lomami rivers [47]. The region’s climate is equatorial,
with an average annual rainfall of 1600 mm and monthly temperatures ranging between
23 ◦C and 26 ◦C. The short dry season occurs from June to July [31]. The soils are ferralitic,
composed of sand and clay [44]. Approximately a hundred small hamlets border the park,
where local communities primarily engage in subsistence agriculture, hunting, and fishing,
mainly within the park’s buffer zone [44].
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Figure 1. Geographical location of the Lomami National Park (protected area). The park is in the
Maniema and Tshopo provinces, in DR Congo (A). The park covers a total area of 30,000 km2 and
is attached to a densely populated peripheral zone, including the city of Kindu (B). The red box
indicates the location of the study area in DR Congo.

2.2. Data

The landscape under study was derived from three satellite images obtained via the
geospatial analysis platform Google Earth Engine (GEE), sourced from the USGS/Google
site. These images were acquired using Landsat sensors, specifically from 2008 (Enhanced
Thematic Mapper Plus sensor), 2016, and 2024 (Operational Land Imager sensor), all with a
spatial resolution of 30 m. The choice of these sensors was based on the availability of the
images. The images were acquired during the dry season (June–July).

The images were taken during the dry season (June–July) to standardize the spectral
response across different vegetation types. This period is crucial because it impacts vege-
tation phenology, with many plants entering dormancy or experiencing reduced canopy
cover, resulting in more stable and distinct spectral signatures. Additionally, lower moisture
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content in vegetation during this time reduces variability in water-sensitive reflectance
bands (e.g., near-infrared), facilitating clearer differentiation between forest, shrubland,
and agricultural areas [48,49].

The three Landsat images, captured in 2008, 2016, and 2024, represent three distinct
periods: (a) before the park’s creation in 2016, (b) during its establishment, and (c) after
its creation. This temporal selection enables a comparative analysis of conditions before
and after the establishment of Lomami National Park in 2016, offering insights into the
environmental changes and impacts resulting from its creation.

The correction and preprocessing of Landsat images were critical steps in ensuring
accurate analysis, as variations introduced by calibration methods, atmospheric conditions,
and sensor discrepancies could significantly affect the results [50]. The process typically
began with geometric correction, which aligned the image to a map projection, removing
distortions caused by sensor and Earth movement. Next, radiometric calibration adjusted
the image to reflect true radiance values, compensating for sensor-specific biases and
ensuring that the data accurately represented surface conditions. Atmospheric correction
followed, removing interference caused by factors such as aerosols or water vapor, thus
enhancing the accuracy of surface reflectance values [51]. Finally, image enhancement
techniques, such as contrast stretching or filtering, were applied to highlight specific
features and improve visual interpretation.

Throughout this process, careful attention to calibration methods—whether based on
pre-flight radiometric coefficients or on-the-ground field data—was crucial, as variations
in these methods could introduce discrepancies in the final results. The FilterMetadata
(“CLOUD_COVER”, “less_than”, 20) filter, based on the image metadata, was used to select
images with cloud cover less than 20% [51]. This approach reduced the number of cloud-
affected images, thereby enhancing the reliability of the results and the understanding of
observed surface variations [52].

For the analysis, Google Earth Engine was utilized for Landsat image preprocessing
and land cover classification. Additionally, ArcGIS Pro 3.3 software was employed for map
layout design.

2.3. Landsat Images’ Classification

Using the preprocessed data, a false-color composite of the Landsat images was created
by combining the red (Red), green (Green), and near-infrared (NIR) bands. The NIR and
Red bands are crucial for effective vegetation discrimination. Healthy vegetation strongly
reflects in the NIR and absorbs in the Red spectrum, making it easily distinguishable from
other land cover types. The NIR band is particularly sensitive to chlorophyll content and
leaf structure, providing valuable insights into vegetation health and density. The Red
band enhances the contrast between vegetated and non-vegetated areas, as non-vegetated
surfaces (e.g., water, bare soil, urban areas) reflect less in the Red spectrum. Adding the
Green band further improves the composite, enhancing the differentiation of vegetation
types and the detection of non-vegetated surfaces [53,54]. Using a GARMIN 64S GPS
device (accuracy ±3 m), 500 training zones representing various land cover classes of
the Lomami National Park and its peripheral zone were collected. These zones included
forests, savannas, and water bodies, as well as mixed urban and agricultural land. The data
collection was carried out during a field mission in the park in October 2023. Subsequently,
these data were merged into a single, unified collection.

We used selected zones to train the Random Forest (RF) algorithm for land cover
classification. The RF algorithm relied only on the three spectral bands from Landsat
images (Red, Green, and NIR). RF is a supervised learning model that combines multiple
decision trees. Each tree is trained on a random subset of data (bagging) and a random
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subset of features (“random projections”). For classification tasks, the algorithm aggregates
predictions through a majority vote, enhancing accuracy and reducing errors [55,56]. Four
land cover classes were identified: forest, savanna, water, and mixed urban–agricultural
land (Table 1).

Table 1. Description and illustration of land cover classes and the number of training zones used in
analyzing the landscape dynamics of Lomami National Park and its peripheric zone.

Land Cover Class Description Illustration Number of Training
Zones (Polygon)

Forest

Natural land cover class
representing areas

predominantly covered
with trees and dense

vegetation.
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To assess classification accuracy, we adhered to the best practices outlined by Olofsson
et al. [57]. This involved employing unbiased area estimators and estimating uncertainty
using reference observations derived from land cover change maps for the periods 2008–
2016 and 2016–2024. The samples were stratified based on stable and changing (losses and
gains) land cover classes for each period, with sample sizes determined using Cochran’s
method [58]. This method was selected for its ability to yield statistically valid sample
size estimates in stratified sampling, particularly when population variance information is
limited. Cochran’s method is well suited for heterogeneous populations, ensuring adequate
representation of each stratum while minimizing sampling bias.
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The sample size was calculated using key factors such as population size, desired
confidence level (typically 95%), estimated proportions within each stratum, and the
acceptable margin of error. This stratified sampling approach ensured comprehensive and
reliable coverage of both stable and dynamic land cover classes, thereby enhancing the
accuracy and representativeness of the study results.

Stratification improved estimation accuracy by optimizing spatial coverage and en-
hancing the statistical representation of various classification categories. Its robustness lies
in its ability to control sampling variance and reduce systematic errors while enabling the
proportional or optimal allocation of validation points. Using a variance estimator, the
total sample size required to achieve the target accuracy was determined. A z-score of 1.96,
corresponding to a 95% confidence level, and a 5% margin of error were applied.

The strata included stable categories such as Forest, Water, Savanna, and mixed
urban and agricultural land, as well as dynamic categories like forest gain, mixed urban
and agricultural land gain, water gain, and savanna loss. These strata were derived
by overlaying land cover maps from the periods 2008–2016 and 2016–2024. A total of
1040 points were sampled across these two periods, with proportions allocated based on
the relative size of each stratum.

Error matrices were generated using QGIS version 3.26.1 (developed by the global
QGIS community, Buenos Aires, Argentina), providing accuracy measures such as user’s
accuracy (UA), producer’s accuracy (PA), confidence interval (CI), and overall accuracy
(OA). UA reflects the proportion of pixels correctly classified in a category from the user’s
perspective, while PA indicates the proportion of pixels belonging to a real category
that are correctly represented on the map. CI provides a range around an estimated
value, representing uncertainty at a given confidence level, and OA measures the total
proportion of correctly classified pixels across all categories, offering a comprehensive
performance metric.

It should be noted that the classification validation process for detecting gains and
losses followed the methodologies described by Olofsson et al. [57]. This robust approach
allows for a precise assessment of both stable and dynamic land cover categories. To
ensure that the model is not disproportionately influenced by the more dominant land-use
types, a uniform number of training areas was allocated across all land cover classes. This
decision was made to provide equal representation of each class in the training data, thereby
improving the model’s ability to generalize and ensuring a more balanced and accurate
classification.

2.4. Assessment of Landscape Dynamics

To analyze the relationships between landscape configuration and ecological pro-
cesses, it is crucial to quantify landscape structures using landscape metrics [59,60]. Since
landscape measurements often exhibit high correlations [61,62], it is important to select
diverse metrics to avoid redundancy and achieve a more accurate assessment. Therefore,
six metrics were calculated for Lomami National Park and its periphery, enabling a detailed
analysis of anthropization levels and the underlying ecological processes (Table 2).
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Table 2. Synthesis of computed landscape metrics within the Lomami National Park and its sur-
rounding zone.

Index Ecological Signification

Class area (CA)

This index measures the total area of all patches within a given land-use class. A high total
area in natural zones indicates continuity and integrity of ecosystems, whereas a reduced
area suggests fragmentation due to anthropogenic activities [63,64]. An intact landscape
will have a high total area for natural classes, reflecting minimally disturbed ecosystems.

Patch number (PN)

This index counts the number of distinct patches or fragments of a class within the
landscape. An increase in the number of patches, coupled with a decrease in total area,

reveals heightened fragmentation, often resulting from agricultural or urban activities [64].
A high number of patches in a disturbed landscape indicates division into smaller

fragments, which reduces habitat connectivity.

Largest patch index
(LPI)

It represents the proportion of the area occupied by the largest patch of a class relative to
the total area of all patches of that land cover class. A high value indicates low

fragmentation, suggesting that the land cover class is relatively continuous [65,66]. This
reflects a predominant presence of large patches in a minimally disturbed landscape.

Disturbance index (U)

This ratio between the cumulative area of anthropogenic classes and that of natural classes
measures the predominance of anthropogenic pressure in the landscape [67,68]. A value
less than 1 indicates dominance of natural classes, while a value greater than 1 reveals a

strong anthropogenic influence. This index helps to understand the impact of human
activities on the landscape pattern.

Aggregation index (AI)

It measures the degree of aggregation or dispersion of patches within a class. A high index
value indicates that the patches are closely grouped and form continuous blocks, whereas a
low index value suggests greater dispersion and fragmentation [69]. This index provides

insights into habitat continuity and ecological connectivity.

Edge density (ED)

This index quantifies the total length of patch edges per hectare, measuring the roughness
of the patches. A high edge density indicates greater complexity of the patches, often

associated with increased fragmentation [70]. Edge density provides information on patch
structure and the extent of fragmentation.

The validation of the metrics likely involved consulting ecological literature on land-
scape metrics, where these indicators are commonly employed to assess fragmentation,
habitat quality, and human impacts on ecosystems [64]. Previous studies have demon-
strated their relevance in similar ecological contexts, thereby justifying their selection for
this research [32,35,36]. Additionally, a deforestation rate, derived from changes in the
forest class area, provided insight into the intensity of human impacts on forest ecosystems.
This rate was calculated using the equation proposed by Puyravaud [71] (Appendix A).
The “Landscapemetrics” package in R (version 4.2.3) was used to quantify these landscape
aspects [72,73]. The uniform spatial resolution and consistent land cover class morphology
ensured that the default settings in the “Landscapemetrics” package were sufficient for
accurate analysis, with no need for adjustments. This consistency enabled the precise
capture of landscape structure and fragmentation patterns, ensuring robust results.

Furthermore, the decision tree algorithm developed by Bogaert et al. [74] was applied
to identify spatial transformation processes in the landscape between two specific dates
(Figure 2). This algorithm compares the patch number (PN), class area (CA), and total
perimeter of land-use patches to detect changes in landscape configuration. A decrease in
PN and CA indicates patch attrition, while an increase in CA suggests patch aggregation.
If CA increases while PN remains constant, it signals patch enlargement. Conversely, a
simultaneous increase in both CA and PN indicates the creation of new patches, while a
decrease in CA with an increase in PN suggests landscape dissection. Fragmentation is
characterized by an increase in PN and a significant loss in CA.
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Figure 2. A diagram representing the ten processes of spatial transformation derived from thirteen
common types of spatial configurations or geometries in a binary landscape. Adapted from Bogaert
et al. [74]. (1) Fragmentation: landscape conversion through the disruption of continuity into five
disconnected patches of unequal sizes and shapes; (2) Perforation: transformation by the formation
of four holes; (3) Dissection: subdivision of a continuous area by uniformly wide lines of small
dimensions; (4) Shrinkage: reduction in patch size; (5) Attrition: disappearance of one of the patches
present in the original landscape; (6) Creation: transformation of the landscape by the formation of a
new patch, in-creasing the number of patches from two to three; (7) Deformation: transformation
characterized by the change in shape of two patches into a rectangular form without a change in
area; (8) Shift: translocation of one of the two patches; (9) Enlargement: transformation through the
increase in size of both patches; (10) Aggregation: merging of patches.

To differentiate between fragmentation and dissection, a ratio of total areas between
the two time points was calculated, with a ratio greater than 0.75 indicating dissection and a
ratio of 0.75 or less suggesting fragmentation [75]. A decrease in CA can lead to perforation
if the total perimeter increases, or a reduction in patch size if the perimeter remains constant.
If both PN and CA are stable, a constant total perimeter suggests displacement, while a
variable perimeter indicates deformation.

Displacement, the movement of patches within the landscape, can disrupt ecological
processes such as species migration and resource access, contributing to habitat frag-
mentation. Deformation, which involves changes in patch shape without altering their
area, can negatively affect habitat connectivity and ecosystem quality by increasing edge
effects [74]. Finally, fragmentation occurs when a landscape is divided into several dis-
connected patches of unequal sizes and shapes, while perforation involves the creation of
gaps within patches. Dissection refers to the subdivision of a continuous area into smaller
sections by narrow lines. Shrinkage results in a reduction in patch size, while attrition leads
to the disappearance of an existing patch. Creation refers to the formation of new patches,
increasing the overall number of patches in the landscape. Deformation alters the shape
of patches without changing their area, and shift refers to the relocation of patches within
the landscape. Enlargement occurs when patch size increases, while aggregation happens
when separate patches merge into a single one. These processes illustrate the dynamic
evolution of landscapes through changes in patch configuration, including the number,
size, shape, or arrangement of patches (Figure 2).

3. Results
3.1. Classification and Mapping

Table 3 provides a summary of the accuracy results for the supervised classifications
of Landsat 7, 8, and 9 images, obtained using the Random Forest classifier for the periods
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from 2008 to 2024. The classifications exhibited an overall accuracy exceeding 80% for each
analyzed period, demonstrating remarkable reliability in differentiating various land cover
types (Appendix B). User and producer accuracy values, ranging from 82% to 89%, further
attest to the high quality of the results. Additionally, the 95% confidence interval for the
stratified area estimates of each land cover class remains below 5% for all studied periods,
reinforcing the robustness of the conclusions drawn from this analysis.

Table 3. Summary of indices illustrating the accuracy assessment of Landsat classified images on the
Google Earth Engine geospatial analysis platform for the periods 2008–2016 and 2016–2024, following
good practices of Olofsson et al. [57]. MUAL: mixed urban and agricultural land.

2008–2016

Forest MUAL Water Savanna Forest
Gain

MUAL
Gain

Water
Gain

Savanna
Loss

PA [%] 84.22 84.25 83.22 83.34 83.12 84.23 83.55 85.22
UA [%] 85.25 85.22 83.56 83.46 85.12 83.12 84.38 83.34
95% CI 0.42 0.44 0.47 0.45 0.46 0.46 0.39 0.43

OA 85.33

2016–2024

Forest MUAL Water Savanna Forest
Gain

MUAL
Gain

Water
Gain

Savanna
Loss

PA [%] 84.33 84.55 86.33 84.52 84.22 84.66 84.33 83.44
UA [%] 84.88 83.46 85.56 83.23 84.75 82.23 84.66 88.24
95% CI 0.36 0.41 0.42 0.48 0.38 0.47 0.42 0.46

OA 85.82

The visual analysis of land cover maps for Lomami National Park and its peripheral
zone reveals, on one hand, relative stability in the spatial structure of the protected land-
scape and, on the other hand, notable transformations in the peripheral zone (Figure 3).
Indeed, the stability observed in the protected area is reflected by the absence of significant
and perceptible dynamics within different land-use classes between the periods 2008–2016
and 2016–2024. In contrast, the peripheral zone shows centrifugal spatial changes, marked
by a regression in forest cover, replaced by mixed urban and agricultural land, mainly
around settlements along the Congo River and its tributaries.
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3.2. Dynamics of Land Cover Composition in Lomami National Park and Its Periphery Between
2008 and 2024

The evolution of land cover in Lomami National Park reveals a general trend towards
landscape stability, with a slight increase in forest cover observed between 2008 and 2024
(Figure 4). This does not necessarily imply the complete absence of change but rather
that the overall landscape structure has remained relatively constant, with no significant
shifts from one land cover type to another. In contrast, the adjacent peripheral zone has
experienced a relative regressive dynamic in its forest ecosystems (the loss of forest cover
mainly due to human activity). In 2008, forests covered 92.06% and 79.32% of the areas
in the protected zone and the peripheral zone, respectively. By 2016, these proportions
had changed, reaching 92.24% for the protected zone, while the peripheral zone saw a
decrease to 75.91% due to urbanization, agriculture, and logging. This trend continued
until 2024, with forest cover reaching 92.75% in the protected zone, while it reduced to
70.48% in the peripheral zone (Figure 4). There is a general trend of increasing forest
cover in the protected zone at the expense of savannas and mixed urban and agricul-
tural land. This expansion of forest cover, replacing savannas, contributes positively to
biodiversity conservation by supporting higher species diversity and providing essential
ecosystem services.
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Meanwhile, the water class area showed a marginal increase in both the protected
and peripheral zones between 2008 and 2016. However, these changes are minimal and
may not be statistically significant due to classification errors. The slight increase in water
area could reflect a shift toward wetter conditions or changes in hydrological dynamics.
These changes may be driven by factors such as increased rainfall, reduced deforestation,
changes in agricultural activities, or alterations in water management practices. Although
small, this change could have implications for local ecosystems, potentially influencing
species distribution, habitat availability, and water quality. For example, increased water in
the peripheral zone may enhance biodiversity by expanding aquatic habitats, while in the
protected zone, it may indicate the stabilization of natural hydrological processes.

Conversely, savannas experienced a slight regression, with their area decreasing
from 4.29% to 4.21% in the protected zone and from 3.60% to 2.97% in the peripheral
zone, primarily due to land conversion for agriculture and settlement expansion. The
loss of savannas may reduce habitats for species adapted to open ecosystems. While
forest expansion supports conservation goals, it is crucial to preserve a mosaic of habitats
to maintain the full spectrum of biodiversity, including species that depend on savanna
environments.
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The dynamics of urbanization and agricultural land use varied, with a slight decrease
in the protected zone and an increase in the peripheral zone. However, given the uncer-
tainty associated with these classifications, these observed changes may not be statistically
significant. Therefore, while trends are apparent, the extent of change across these land
cover types should be interpreted cautiously, considering the classification uncertainty
(Figure 4).

The increased urbanization and agricultural expansion in the peripheral zone from
2008 to 2024 indicate intensified human activities that exert pressures such as deforestation,
habitat fragmentation, pollution from agricultural runoff, and infrastructure expansion.
These threats undermine ecosystem integrity, heighten the risk of encroachment, and
challenge the park’s conservation objectives (Figure 4).

However, with an annual deforestation rate of 0.03%, which is significantly lower than
the national average of 0.40%, these dynamics highlight the effectiveness of conservation
efforts within the park. They also underscore the need for continuous monitoring and
management, particularly in areas where anthropogenic pressures are on the rise (Figure 4).
Conservation strategies include strict law enforcement to prevent illegal logging and
poaching, community engagement programs that promote sustainable practices, and
targeted reforestation efforts to restore degraded areas. These measures, together with
the park’s protected status, have been essential in preserving forest cover and minimizing
human impact, demonstrating the effectiveness of integrated conservation approaches.

Additionally, the transition matrices presented in Table 4 show a notable consistency
in the landscape matrix with few significant conversions between land cover classes for
the protected area. In contrast, relatively significant conversions were observed in the
periphery zone adjacent to the park. Between 2008 and 2016, only 1.97% of forests in the
protected area and 6.13% of those in the periphery zone were converted to other land cover
types. Conversely, 2.15% and 2.73% of areas occupied by mixed urban and agricultural
land, water bodies, and savannas were reconverted to forests. The main changes include
the conversion of 2.08% of mixed urban and agricultural land to forests and 1.80% of forests
to mixed urban and agricultural land in the protected area, as well as 5.86% of forests
converted to mixed urban and agricultural land in the adjacent zone of the park (Table 4).

Table 4. Transition matrix of land cover classes in Lomami National Park and its peripheral zone
between 2008 and 2016 and 2016 and 2024. Rows represent the proportions of land cover classes at the
initial date, and columns at the final date, and the bold values indicate the proportions that remained
stable. The values in the table are expressed as percentages (%) of the total area of the protected zone
(30,879 km2) and the peripheral zone (12,686.05 km2). MUAL: mixed urban and agricultural land.
Values in boldface referring to the stability proportions.

Protected Area

MUAL Forest Water Savanna Total 2008
MUAL 1.29 2.08 0.00 0.03 3.40
Forest 1.80 90.09 0.02 0.15 92.06
Water 0.00 0.00 0.25 0 0.25

Savanna 0.19 0.07 0 4.03 4.29
Total 2016 3.28 92.24 0.27 4.21

UAC Forest Water Savanna Total 2016
MUAL 1.56 1.46 00.0 0.26 3.28
Forest 1.48 90.68 0.01 0.07 92.24
Water 0.00 0.03 0.24 00.0 0.27

Savanna 0.06 0.28 0.00 3.87 4.21
Total 2024 3.10 92.45 0.25 4.20
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Table 4. Cont.

Protected Area

Periphery
MUAL Forest Water Savanna Total 2008

MUAL 12.81 2.44 0.06 0.05 15.36
Forest 5.86 73.18 0.08 0.19 79.32
Water 0.01 0.01 1.70 00.0 1.71

Savanna 0.59 0.28 0.01 2.72 3.6
Total 2016 19.27 75.91 1.85 2.97

MUAL Forest Water Savanna Total 2016
MUAL 17.04 2.02 0.01 0.20 19.27
Forest 7.97 67.67 0.01 0.26 75.91
Water 0.12 0.11 1.59 0.03 1.85

Savanna 0.6 0.68 0.01 1.67 2.96
Total 2024 25.73 70.48 1.62 2.16

Between 2016 and 2024, 1.56% of forests in the protected area and 8.24% in the buffer
zone were converted to other land cover classes, while 1.77% and 2.81% of areas occupied
by mixed urban and agricultural land, water bodies, and savannas were reconverted to
forests. Land cover changes were minimal, with low forest losses and gains between 2008
and 2016 and 2016 and 2024 in the protected area. In contrast, forests experienced notable
conversions in the periphery zone adjacent to Lomami National Park (Table 4).

The disturbance index measures anthropogenic impacts on the landscape. In this
study, the disturbance index values revealed a general trend towards low values (Figure 5),
indicating a predominance of natural land cover types. However, an increasing trend was
observed in the peripheral zone adjacent to the park. In 2008, the index was 0.08 in the
protected zone and 0.23 in the peripheral zone. By 2016, both zones showed values of 0.08
and 0.23, respectively; in 2024, the values increased to 0.75 and 0.38 for the protected and
peripheral zones, respectively. The rising disturbance index in the peripheral zone points
to growing human activities, such as deforestation and infrastructure development, which
contribute to habitat fragmentation and reduce the effectiveness of the buffer zone. These
pressures threaten ecological integrity, hinder species movement, and disrupt connectivity
between forest areas, isolating populations and limiting their reproduction and dispersal.
While the protected zone remains largely unaltered, the increasing anthropization of the
peripheral zone highlights a significant trend of natural habitat loss, replaced by human-
modified landscapes. This underscores the need for targeted interventions to mitigate these
pressures and safeguard the park’s ecological functions.
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Figure 5. Evolution of the disturbance index in the Lomami National Park and its peripheral zone
between 2008 and 2024. Disturbance index quantifies human-induced disturbances, providing insight
into anthropogenic pressure.
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3.3. Dynamics of Forest Configuration in Lomami National Park and Its Periphery Between 2008
and 2024

In the protected area, the largest patch index (LPI) shows a steady increase from 55.27
in 2008 to 56.58 in 2024 (Table 5). This upward trend indicates enhanced ecological stability
as larger forest patches provide more contiguous habitats, supporting greater biodiversity
and improving resilience to external disturbances. The decrease in edge density (ED) from
8.62 m/ha in 2008 to 8.57 m/ha in 2024 further supports this trend (Figure 6). Lower
edge density is generally associated with reduced edge effects, such as microclimatic
fluctuations, invasive species intrusion, and human–wildlife conflict, thereby enhancing
the ecological integrity of the forest. Similarly, the consistent increase in the aggregation
index (AI) from 98.12% in 2008 to 98.51% in 2024 underscores a trend toward more clustered
and consolidated forest patches (Figure 6). A decrease in the aggregation index indicates
increased fragmentation, with habitat patches becoming more dispersed and less connected.
This loss of connectivity disrupts wildlife movement, limits resource access, and isolates
species populations, threatening genetic diversity and long-term viability. Fragmentation
also worsens habitat loss, undermining ecosystem stability and conservation efforts.

Table 5. Indices calculated to characterize the spatial configuration of forest in the Lomami National
Park and its periphery between 2008, 2016, and 2024. CA: class area (km2); PN: patch number; LPI:
largest patch index (%); ED: edge density (m/ha); AI: aggregation index (%). Class area represents the
total area covered by a specific land cover class, reflecting its spatial extent. Patch number represents
the total count of distinct patches, indicating landscape heterogeneity. Largest patch index indicates
the proportion of the landscape occupied by the largest patch, assessing habitat dominance.

Metrics
Date

2008 2016 2024

Protected area
CA 28,189.21 28,279.63 28,317.68
PN 17,934 16,546 161,400
LPI 55.27 56.22 56.58

Periphery
CA 10,062.11 9629.98 8941.13
PN 30,161 35,274 35,354
LPI 48.10 46.60 46.49
ED 36.65 36.92 38.84
AI 83.99 82.25 81.64

Conversely, in the peripheral zone adjacent to the park, the largest patch index (LPI)
has decreased from 48.10 in 2008 to 46.49 in 2024. This decline indicates a fragmentation of
large forest patches, potentially threatening the ecological health of these areas by isolating
habitats and reducing their ability to support diverse species (Table 5). The increase in edge
density (ED) from 36.65 m/ha in 2008 to 38.84 m/ha in 2024 suggests that forest fragmenta-
tion is creating more forest edges relative to the total forest area. Higher edge density may
exacerbate edge effects, making habitats more vulnerable to degradation, species loss, and
the encroachment of non-native species. The consistent decrease in the aggregation index
(AI) from 83.99% in 2008 to 81.64% in 2024 further illustrates this fragmentation. Lower
spatial aggregation reduces habitat connectivity, disrupting ecological corridors essential
for wildlife movement and increasing the likelihood of ecosystem instability (Figure 6).

In summary, while the protected area of Lomami National Park shows positive trends
in forest consolidation and ecological health, the surrounding peripheral zone is experienc-
ing increased fragmentation, declining connectivity, and ecological degradation. Smaller,
more fragmented forest patches with higher edge density indicate habitat loss, disrupted
ecological interactions, and reduced biodiversity. Anthropogenic activities in the peripheral
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zone could exacerbate these issues by altering microclimates, promoting invasive species,
and intensifying human–wildlife conflicts, leading to economic losses and retaliatory ac-
tions. These contrasting dynamics underscore the urgent need for targeted conservation
strategies to restore connectivity and mitigate fragmentation in the peripheral areas.

Ecologies 2025, 6, x FOR PEER REVIEW 16 of 30 
 

 

Figure 6. Evolution of aggregation index and edge density in the Lomami National Park and its 
peripheral zone between 2008 and 2024. Edge density measures the total edge length of patches per 
unit area, highlighting fragmentation levels. Aggregation index reflects the degree to which similar 
patches are clumped together, indicating landscape connectivity. 

Table 5. Indices calculated to characterize the spatial configuration of forest in the Lomami National 
Park and its periphery between 2008, 2016, and 2024. CA: class area (km2); PN: patch number; LPI: 
largest patch index (%); ED: edge density (m/ha); AI: aggregation index (%). Class area represents 
the total area covered by a specific land cover class, reflecting its spatial extent. Patch number rep-
resents the total count of distinct patches, indicating landscape heterogeneity. Largest patch index 
indicates the proportion of the landscape occupied by the largest patch, assessing habitat domi-
nance. 

Metrics 
Date 

2008 2016 2024 
Protected area 

CA 28,189.21 28,279.63 28,317.68 
PN 17,934 16,546 161,400 
LPI 55.27 56.22 56.58 

Periphery 
CA 10,062.11 9629.98 8941.13 
PN 30,161 35,274 35,354 
LPI 48.10 46.60 46.49 
ED 36.65 36.92 38.84 
AI 83.99 82.25 81.64 

Conversely, in the peripheral zone adjacent to the park, the largest patch index (LPI) 
has decreased from 48.10 in 2008 to 46.49 in 2024. This decline indicates a fragmentation 
of large forest patches, potentially threatening the ecological health of these areas by iso-
lating habitats and reducing their ability to support diverse species (Table 5). The increase 
in edge density (ED) from 36.65 m/ha in 2008 to 38.84 m/ha in 2024 suggests that forest 
fragmentation is creating more forest edges relative to the total forest area. Higher edge 
density may exacerbate edge effects, making habitats more vulnerable to degradation, 
species loss, and the encroachment of non-native species. The consistent decrease in the 
aggregation index (AI) from 83.99% in 2008 to 81.64% in 2024 further illustrates this frag-
mentation. Lower spatial aggregation reduces habitat connectivity, disrupting ecological 
corridors essential for wildlife movement and increasing the likelihood of ecosystem in-
stability (Figure 6). 

0
10
20
30
40
50
60
70
80
90

100

Protected area Peripheral zone

In
de

x v
al

ue
 (%

) 

Aggregation Index 

2008 2016 2024

0
5

10
15
20
25
30
35
40
45

Protected area Peripheral zone

Ed
ge

 D
en

sit
y 

(m
/h

) 

Edge Density 

2008 2016 2024

Figure 6. Evolution of aggregation index and edge density in the Lomami National Park and its
peripheral zone between 2008 and 2024. Edge density measures the total edge length of patches per
unit area, highlighting fragmentation levels. Aggregation index reflects the degree to which similar
patches are clumped together, indicating landscape connectivity.

The evaluation of structural dynamics within Lomami National Park, using a decision
tree approach [74], identified aggregation as a key spatial transformation process (Table 5
and Figure 7). In contrast, dissection (tobs = 0.92 > t = 0.75) was recognized as the primary
spatial transformation process in the peripheral zone adjacent to the park. Between 2008
and 2024, the reduction in the number of forest patches, coupled with an increase in class
area, indicates a trend toward larger and more consolidated forest areas in the protected
zone, enhancing ecological coherence and potentially improving habitat quality. Conversely,
in the peripheral zone, the increase in the number of patches, combined with a reduction in
class area, suggests habitat degradation, likely due to growing anthropogenic activities,
which can lead to biodiversity loss and reduced ecological resilience.
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4. Discussion
4.1. Methodological Approach

Six landscape metrics were employed to evaluate the extent of anthropization in
Lomami National Park and its periphery. These indices are pivotal for understanding
ecological processes by quantifying landscape complexity, spatial organization, and the
interaction between natural and anthropogenic influences across different scales—patches,
classes, and entire landscapes [76]. By assessing landscape composition, shape, and config-
uration, these metrics provide valuable insights into the degree and type of human impact
on ecological systems [60,74,77].

The selected indices are effective for detecting structural transformations and under-
standing how human activities influence landscape morphology. For instance, changes
in patch size, shape, and distribution can reflect alterations in habitat connectivity and
fragmentation, which are critical for species movement and ecosystem health. The speed of
the applied method, in terms of data processing efficiency and frequency of data acquisition,
is crucial for adaptive management and conservation strategies [54,74].

The “Classifier” tool within Google Earth Engine (GEE) was used to categorize satellite
imagery into distinct land cover classes based on spectral signatures. GEE’s integration of
temporal satellite data also facilitated the calculation of landscape metrics, such as edge
density and patch number, providing a detailed assessment of landscape fragmentation
and changes over time. This capability is particularly valuable for ecological studies, where
accurate and timely data are essential for understanding dynamics and planning effective
conservation efforts [52].

However, challenges such as cloud cover and limited connectivity were encountered
in this study. Cloud cover was addressed by applying the “CLOUD_COVER” filter in GEE,
selecting images with less than 10% cloud coverage to enhance classification reliability.
For areas with limited connectivity, data processing was carried out on cloud platforms,
enabling remote access to high-performance computing resources and minimizing delays.
These strategies helped maintain classification accuracy by reducing data interference and
ensuring consistent access to tools for processing large datasets [40].

The integration of remote sensing and landscape metrics in this study supports eco-
logical health management in Lomami National Park by providing detailed, spatially
explicit data on land cover changes and habitat fragmentation. This approach highlighted
key trends, such as increasing fragmentation in peripheral zones and stabilizing forest
cover within the park, offering valuable insights for targeted conservation strategies and
monitoring efforts [32,48].

This study is the first to quantify the evolution of forest cover in Lomami National
Park and its peripheral zone using satellite imagery and landscape ecology indices. It
provides valuable information on the composition and configuration of the landscape,
highlighting an important aspect of the health of this forest ecosystem. Despite the advan-
tages of the chosen imagery, several preprocessing limitations could still impact the results.
Atmospheric conditions, such as haze or aerosols, may not be fully corrected, potentially
distorting reflectance values and affecting spectral analysis. The spatial resolution of the
images might limit the detection of small-scale land cover changes or finer vegetation types,
particularly in heterogeneous landscapes. Additionally, the temporal resolution of satel-
lite data may miss short-term variations, such as seasonal changes or rapid deforestation
events. Finally, classification accuracy could be compromised by shadowing or mixed
pixels, especially in areas with complex topography or dense vegetation, necessitating
further post-processing for improved precision [50,51].
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4.2. Spatial Dynamics of Lomami National Park and Its Periphery Between 2008 and 2024

Between 2008 and 2024, forest cover in Lomami National Park increased slightly,
largely due to the low population density, which limits the demand for agricultural and
residential land [78,79]. Additionally, local populations primarily rely on hunting and
small-scale subsistence farming rather than large-scale agriculture, which helps to maintain
forest preservation at over 90% [80]. The park’s remote and challenging access conditions
further reduce activities like logging and charcoal production, which are significant factors
in forest conservation [81].

The absence of industrial logging and charcoal production can also be attributed to
the region’s difficult access, making wood harvesting and transportation costly and, thus,
discouraging these activities [20,21]. The low local demand for timber, combined with
traditional building practices, also supports this preservation. Remote and difficult-to-
access areas generally experience less disturbance from logging and urban expansion, which
helps to maintain ecological integrity [82,83]. Research indicates that isolated, protected
areas tend to have higher rates of biodiversity preservation [81,84–86].

Protective measures initiated before the park’s official establishment, and further
reinforced by its legal designation, also contribute to the trend of forest preservation [87].
Initiatives by the Lukuru Foundation, including the creation of provincial parks and public
awareness efforts, have fostered forest conservation. Similarly, conservation strategies such
as park delineation and increased eco-guard numbers have contributed to increased forest
cover in other reserves [88]. These proactive measures demonstrate the effectiveness of
legal frameworks in forest preservation.

Land governance also plays a crucial role, especially in curbing pressures from agri-
culture and urban expansion that threaten ecological stability [26]. Clear land-use regu-
lations can help prevent harmful practices leading to deforestation and biodiversity loss,
with support from international organizations through funding and capacity-building
for sustainable resource management [28]. These organizations support initiatives such
as reforestation, sustainable agriculture near the park, and environmental education to
improve community engagement [40].

The main land cover changes involve rural areas gradually reverting to forests, al-
though some forest areas transitioned back to non-forest states. This mosaic landscape
reflects dynamic interfaces between forests and agricultural areas, where human activities
can expand into forests and fallow land can regenerate forest cover [89]. Ecological distur-
bances, such as fires and selective logging, may initially promote non-forest vegetation,
followed by gradual forest recovery [90]. These dynamics underscore the importance of
spatial configuration in landscape changes, particularly in low-disturbance areas [54]. The
area’s disturbance index, under 1, reflects the predominance of natural ecosystems and
highlights effective ecological preservation despite some human impact [91]. Furthermore,
protected areas like Virunga and Salonga enhance ecosystems by preserving habitats for
species such as mountain gorillas and forest elephants while supporting ecological pro-
cesses like pollination and carbon sequestration. However, anthropogenic pressures in
surrounding zones, including logging and agriculture, fragment habitats, reduce biodiver-
sity, and disrupt ecosystems [39,48]. This leads to issues like inbreeding, soil erosion, and
disruptions in the water cycle. Effective conservation, therefore, requires targeted strategies
beyond park boundaries to balance ecological benefits and mitigate human impact.

The analysis of spatial transformations revealed trends toward forest parcel aggre-
gation within protected areas, contrasting with land fragmentation on the periphery.
Lower deforestation rates in the park’s periphery, where population density remains low
(12 inhabitants/km2 compared to the national average of 24 inhabitants/km2), suggest
relative ecological stability, paralleling similar conservation outcomes in areas like Salonga



Ecologies 2025, 6, 2 19 of 29

National Park [48]. However, Kindu, the capital of Maniema Province, adds pressure on
forest resources, as the local population relies heavily on fuelwood for energy, despite
intermittent electricity from the Kalima–Kindu line, which is frequently disrupted by cop-
per cable thefts [92]. The continued use of fuelwood as an energy source threatens forest
conservation, as seen in similar scenarios in Burundi [93].

Further complicating conservation, customary land governance often bypasses direct
state control, leading to fragmented land regulations that intensify land pressure around
the park [94]. This fragmentation contrasts with the park’s strict protective laws, which
help to maintain or even increase forest cover, demonstrating effective conservation in
areas governed by stringent policies [95]. However, unplanned urban expansion in Kindu
increases deforestation around the park, with extensive forest clearing to meet construction
demands, similar to findings in the Lubumbashi plain [96], Kisangani [97] in DR Congo, and
Bujumbura in Burundi [98]. Shifting cultivation also intensifies forest pressure, involving
slash-and-burn practices for short-term soil fertility gains [99]. Over time, such areas often
transform into grassy savannas, reducing biodiversity [100], as observed in Cameroon’s
Doume Communal Forest [101]. This transition from forest to savanna-type ecosystems
represents a net loss in biodiversity and a gradual ecological degradation process around
the park.

Provincial-level data align with this trend, showing a 2.8% forest cover loss in Maniema
between 2000 and 2010, highlighting the impact of even low population density on defor-
estation trends [26]. Differences in land management between the park and its periphery
illustrate the challenges of balancing conservation with human needs. In less regulated
peripheries, human activities like agriculture and logging persist, while the park’s stricter
regulations restrict such activities [102,103]. Additionally, the periphery’s proximity to the
Congo River facilitates access, attracting populations and increasing forest fragmentation
due to economic and transportation opportunities [104].

This situation, however, introduces potential threats to Lomami’s protected areas.
The strong local reliance on hunting resembles cases in areas like Campo-Ma’an National
Park in Cameroon, where poaching pressures increased following local conflicts [105].
Similarly, post-conflict areas like Kundelungu National Park in the DR Congo continue to
face threats from illegal hunting, challenging forest preservation [40]. Limited infrastructure
in parks like Salonga National Park has temporarily stabilized forests, but risks of expansion
remain [48].

These pressures could lead to two primary consequences. Human-inhabited areas may
face resource scarcity, affecting food security and exacerbating human–wildlife conflicts, as
documented near Loango National Park in Gabon [106]. Furthermore, the protected area
itself may face gradual ecosystem degradation, as seen in Virunga National Park, where
uncontrolled human expansion has damaged natural habitats [107]. Species conservation
is also at risk, with apex predators facing declines due to increased human activities, as
observed in the former Central African Republic [108].

4.3. Implications for Conservation and Management of Lomami National Park and Its Periphery

The spatial dynamics of Lomami National Park and its surrounding areas between
2008 and 2024 reveal significant land-use changes, particularly the rise in urbanization
and agricultural expansion in the peripheral zone, which increased from 15.36% in 2008 to
25.73% in 2024. This trend is most evident in areas surrounding the park, where agricultural
activities such as small-scale farming and logging have contributed to habitat fragmentation.
The creation of new roads and settlements has further exacerbated edge density and
disturbed surrounding ecosystems.
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To balance human needs with environmental conservation, several solutions are pro-
posed. These include strengthening community-based conservation programs, such as
agroforestry and sustainable farming practices, to reduce pressure on the park’s resources.
In addition, enhancing law enforcement against illegal logging and undertaking reforesta-
tion efforts in degraded areas could mitigate the negative impacts of expansion. Improving
land-use planning through the involvement of local communities in decision-making
processes and expanding buffer zones around the park could also help to preserve biodi-
versity while supporting local livelihoods. These measures could foster a more sustainable
coexistence between human activities and ecological conservation in the Lomami region.

The observed aggregation of forest patches suggests a positive trend toward enhanced
ecosystem connectivity, which facilitates species movement and maintains genetic diver-
sity [109,110]. However, to ensure the long-term sustainability of these forested areas,
proactive conservation measures are required. Continuous monitoring using advanced
technologies, such as drones and satellite systems, is critical to effectively detect and address
threats like agricultural and forestry expansion. Platforms such as Global Forest Watch
provide real-time deforestation data, enabling timely and informed interventions [111,112].
In the DR Congo, forest monitoring platforms have successfully identified and mitigated
illegal deforestation through coordinated information sharing, highlighting the potential of
these technologies to strengthen forest conservation [113,114]. Drones represent a crucial
advancement in monitoring efforts, particularly in regions with frequent cloud cover or
rugged terrain, which complicates satellite imagery [115,116].

Equipped with high-resolution cameras and thermal imaging capabilities, drones
offer precise, real-time visuals, enabling conservationists to detect encroachments, illegal
logging, and land-use changes even in dense or remote forests. In Gabon, drones have
successfully mapped previously inaccessible areas, providing actionable intelligence for
forest management [117,118]. Similarly, in the Amazon, drones have been deployed to
monitor vast landscapes, producing detailed imagery that supports ongoing deforestation
assessments and rapid responses to threats [119,120]. Unlike traditional methods, drones
operate with minimal ecological disturbance, preserving habitat integrity while collecting
data [117].

Satellites complement these efforts by offering large-scale, long-term monitoring
capabilities. Modern satellite systems equipped with high-resolution sensors, such as those
used by NASA’s Landsat program or the European Space Agency’s Sentinel missions, can
detect forest loss, vegetation health, and illegal activities with remarkable accuracy. In
conjunction with platforms like Global Forest Watch, satellite data provide an overarching
view of deforestation trends, enabling stakeholders to prioritize areas for intervention and
conservation planning. These technologies are particularly useful in identifying patterns of
agricultural expansion and assessing the cumulative impacts of infrastructure development
over time.

Integrating these monitoring tools with the study’s practical recommendations could
significantly improve conservation outcomes. For instance, drones and satellites could
help to establish and enforce buffer zones by providing near-real-time data on land-use
changes and encroachments, ensuring these areas remain protected. These technologies
could also guide agroforestry projects, ensuring they align with ecosystem stability and
sustainable land-use goals. Moreover, data from monitoring technologies can help to
identify socio-economic drivers of deforestation, such as population growth and market
pressures, allowing for tailored interventions, including sustainable livelihood programs
and incentives for conservation-friendly practices.

In addition to technological tools, community engagement remains essential for effec-
tive forest conservation. Educational initiatives in Kenya have raised awareness about forest
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benefits and sustainable agriculture, reducing harmful practices and fostering support for
conservation [121,122]. In Ecuador, community participation in managing resources has
safeguarded the Amazon rainforest, while agroforestry projects in Tanzania and Bolivia
have harmonized local development with forest conservation by improving livelihoods
and promoting sustainable land use [123–126]. Monitoring tools can complement these
efforts by providing accessible, localized data, empowering communities to take proactive
roles in conservation.

Enforcing forestry regulations is also critical. In Indonesia, stricter regulations and
penalties have significantly reduced illegal logging [127,128]. Similarly, the enforcement
of the forestry code in the DR Congo has curbed illegal deforestation in protected areas,
underscoring the importance of strong regulatory frameworks [12,129–131]. Drones and
satellites can enhance enforcement by providing irrefutable evidence of illegal activities,
enabling authorities to act swiftly and ensure accountability.

The future of protected areas hinges on proactive development management. Salonga
National Park in the DR Congo exemplifies successful conservation programs involving
local communities to protect biodiversity, an approach adaptable to regions like Maniema,
where threats from hunting and agricultural expansion are prevalent [52]. Infrastructure
planning is equally vital; unchecked road construction near Virunga National Park has
accelerated deforestation and habitat loss due to unplanned urbanization and agriculture.
Monitoring technologies can evaluate the environmental impacts of infrastructure projects,
supporting comprehensive land-use planning and helping to mitigate risks. Drawing on
lessons from the Niokolo-Koba Conservation Corridor in Senegal, which successfully inte-
grates sustainable development with conservation [132], similar approaches can enhance
the effectiveness of conservation strategies in DR Congo. Initiatives such as national parks
like Virunga and Salonga have demonstrated success in preserving biodiversity and forest
cover through measures like anti-poaching, community-based conservation, and REDD+
programs [133,134]. For example, strict enforcement in Virunga has increased mountain go-
rilla populations, while Salonga has maintained high forest integrity. Additionally, projects
like hydroelectric initiatives in Virunga provide alternative livelihoods, reducing reliance
on deforestation-driven activities and supporting broader landscape integration [19,44].
However, these efforts often displace activities like logging and farming to park boundaries,
causing deforestation in buffer zones (“leakage effect”). Limited benefit-sharing, such as
from ecotourism, fosters local resentment, leading to illegal resource use. Addressing these
issues requires integrating conservation with community development and sustainable
land-use practices for long-term stability [19,44]. In parks like Kahuzi-Biega, stricter en-
forcement has protected core areas but failed to prevent encroachment for agriculture in
surrounding regions. To address these challenges, integrating conservation with commu-
nity development and sustainable land-use practices around parks is essential for long-term
ecological and social stability [135].

5. Conclusions
This study mapped and quantified the landscape dynamics of Lomami National Park

and its surrounding areas using Landsat imagery (2008, 2016, and 2024) and landscape
ecology analysis tools. The results emphasize the urgent need to update land-use planning
and promote sustainable practices in the regions surrounding Lomami National Park. The
findings highlight a clear contrast between the stability of the park and the increasing
pressures on its surrounding areas. The park itself has demonstrated remarkable resilience,
maintaining its forest cover and preserving contiguous forest patches with minimal frag-
mentation. In contrast, the surrounding peripheral zones are increasingly fragmented due
to the expansion of agriculture and urban development. This fragmentation is marked by
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higher edge density and reduced patch aggregation, reflecting the growing human impact
in these areas.

The contrast underscores the park’s ability to sustain its ecological structure, while the
surrounding landscape faces significant threats that compromise its integrity and biodi-
versity. These results confirm our hypothesis that factors such as Lomami’s geographical
isolation, low population density, and limited logging activities contribute to the preserva-
tion of its forest structure. However, they also highlight the vulnerability of the surrounding
ecosystems, where forest integrity is being compromised by increasing human activity.

The fragmentation of forests in the peripheral zones presents a tangible risk to both bio-
diversity and long-term ecosystem stability, underscoring the critical need for conservation-
focused land-use policies. Effective policy updates should include continuous monitoring
using advanced technologies and engage local communities through awareness and educa-
tion initiatives. Furthermore, conservation efforts would benefit from stricter enforcement
of land-use regulations and increased community participation in sustainable practices to
support both human and environmental needs.

In light of mounting anthropogenic pressures, these integrated approaches are es-
sential to ensure the continued resilience of Lomami’s unique ecosystems. Finally, the
study emphasizes the urgent need for protected area policies to address agricultural ex-
pansion in peripheral zones. Integrated approaches should prioritize ecosystem protection
and community well-being by establishing buffer zones with strict land-use regulations
and promoting agroforestry and sustainable farming practices. Policies must address
socio-economic drivers such as population growth and market pressures by offering con-
servation incentives and sustainable livelihood programs. Embedding these strategies
in participatory governance can enhance both environmental and social resilience. Effec-
tive agricultural management is crucial for preserving Lomami’s ecological integrity and
ensuring that surrounding landscapes function as sustainable buffers.
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Appendix A
Deforestation rate equation proposed by Puyravaud et al. [71]

Td = 1 +
(

1
t2 − t1

)
ln
(

A2
A1

)
∗ 100

With Td (the annual deforestation rate in percentage); A1 (forest area in the initial
year in hectares); A2 (forest area in the final year in hectares); t1 (the initial year of image
acquisition); and t2 (the final year of image acquisition).
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Figure A1. Spectral signature (average of classified Landsat images of 2008, 2016, and 2024) of land
cover classes within the Lomami National Park and its surrounding areas across the green, red, and
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