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Abstract: The suitability of different agroecosystems (native forest, soybean, artificial
forest with Eucalyptus sp., mixed horticulture and fruticulture, and dairy prairies) for
settling and managing hives for honey production were appraised via holistic surveys of
the spatial and seasonal occurrence of floral resources. Metadata were obtained from a
project developed by our group, which took place between 2014 and 2017. Species richness,
abundance, growth habit (tree, shrub, stand, scrub or stem, accompanying species), and the
flowering period for each melliferous plant across the different seasons in 120 samplings
were measured. Using the Shannon–Wiener diversity index and the floral characteristics
of the different species in each environment, an Agroecosystem Apibotanical Index was
developed. It revealed that the best agroecosystems for honey production were the most
biodiverse native forest as well as mixed horticulture and fruticulture. Knowledge of the
floral characteristics and species arrangement enabled the categorization of agroecosystems,
aiming for rational management to enhance honey production.

Keywords: Apis mellifera; agroecosystems; apibotanical flora evaluation; indices; beekeeping
management

1. Introduction
The environments where honey bees (Apis mellifera; Apidae) live are not isolated.

Insects take advantage of both fragments (patches) and the entire matrix that surrounds
them [1,2]. Honeybees tend to optimize their foraging [3]. Resource availability and land-
scape structures can affect their foraging behavior [4–6]. The total amount of floral resources
available and the seasonality of these resources likely influence the ability of a landscape
to support bee populations [7,8]. Bees can be influenced by floral resources at both local
and landscape levels [9]. Also, these resources vary over time due to plant phenology as
well as the composition and management of different habitats in the landscape [10,11]. The
scale of the habitat affects bees differently, depending on the ecosystem and their mutual
interactions [2,12]. The connectivity of habitats and landscape composition can affect forag-
ing, population dynamics, interactions within and between habitats between trophic levels,
and finally, their structure [13,14]. To explain this peculiarity within agroecosystems, the
concepts of complementary habitat and supplementary or partial habitats arose [15–17].
According to [14]), landscape complementation occurs when the presence of resources
in one patch is complemented by the proximity of resources in a similar second patch.
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Supplementary habitats involve different resources in different patches. According to this
idea, the attractiveness of the flowering plants in different patches to bees differs from an
apibotanical point of view. There are different methods of evaluating the general availabil-
ity of pollinators of floral resources and their seasonality. From the review of 18 studies
performed by [18], there is currently no consensus on which are the most challenging
months or seasons for pollinators to forage in any region of the world. April (spring in
Europe) was identified in 87% of cases as the most favorable month for foraging. These
results suggest that efforts to improve floral resource supply for pollinators may be more
effective if targeted at the late summer months, particularly August (northern hemisphere).
From a systematic literature review, different indicators were found that integrated seasonal
changes in floral resource availability (indicators of “foraging favorability” hereafter). These
were defined as metrics that incorporate both the supply and demand of pollen and/or
nectar or experimentally examined seasonal changes in exploitative competition [19,20].
Some indicators of foraging conditions are continuous indices, such as honeybee waggle
dance distances or guarding activity, which correlate with local foraging conditions [19].
Other methods can provide a binary indicator of foraging conditions during a period, such
as honeybee colony weight gain versus weight loss [21], or by estimating floral resource
supply against an estimated threshold of resource demand [22].

The floral species in agroecosystems may provide different resource quality from a
beekeeping point of view. The hypothesis in this study was that the same floral species con-
sidered of apibotanical interest would have different values depending on the floristic en-
semble and their location in the different patches of an agroecosystem. A parametric method
based on index calculations is presented for measuring and qualifying agroecosystems.

2. Materials and Methods
2.1. Sampling Design

Metadata were obtained from a project developed by our group, which took place
between 2014 and 2017 [23]. Five apiaries of at least twenty beehives were selected
and placed in five agroecosystems: (1) native forest (NF); (2) soybean crop (S); (3) ar-
tificial Eucalyptus sp. Forest (AF); (4) mixed horticulture and fruticulture (HF); (5) dairy
prairies (D) (Supplementary Material Table S1). Each agroecosystem was visited eight
times (spring 2014; summer, autumn, winter, and spring 2015; summer, autumn, and
spring 2016).

The suitability of the floral communities for honey production was evaluated based
on phenological data and the phytosociological method developed by J. Braun-Blanquet in
1979 [24]. Phytosociological sampling was targeted because the landscape had to be evalu-
ated within the honeybee’s foraging area [4]. Three patches of 10 m × 20 m (200 m2; total
0.06 ha) were sampled in each agroecosystem [25]. The first patch was immediately next to
the apiary, the others were 500 and 1500 m away. The distance between patches was selected
based on the average honeybee foraging distance (Steffan-Dewenter et al., 2002). A census
was performed on each patch (all the species in each patch were identified and noted).
A total of 120 samplings were performed (5 agroecosystems, 3 patches, and 8 visits). In each
patch the following variables were measured: abundance (A) (number of individuals of
each species), species richness (SR) (number of species), growth habit of each species (GH)
(tree, bush, stand, thicket, or stem), and flowering period (P) during the different seasons.
Data regarding rainfall (PP), and temperature (TT) were obtained from the weather stations
of the Instituto Nacional de Investigaciones Agrícolas (INIA) and Instituto de Meteorología
de Uruguay (INUMET) next to each agroecosystem (Supplementary Material Figure S1).
Honey supers remained during the study, and their frames containing honey were counted
each time the agroecosystems were visited (each sampling). The number of frames was
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multiplied by a conversion factor to estimate the honey production of each hive per apiary
following the methodology described in [26].

2.2. Statistical Evaluation of Sampling

The software environment for statistical computing graphics, R version 4.4.1 [27],
was used with the Vegan package (Supplementary Material Figure S2). The “specaccum”
function was used to evaluate if the number of patches sampled was enough to characterize
the landscape [28]. For the five agroecosystems, the curves were used to detect the differ-
ences in the relative dominance between the groups of floral specie, to analyze the floristic
ensembles of each patch [29]. Using the “radfit” function, the patch that represented the
floral species better was selected based on the model with lower deviation and Akaike
information criterion (AIC) [30]. Models selected for further analysis were based not on
their fitness but on their description of the species richness distribution, so less information
was lost.

2.3. Apibotanical Interest Index (ABI) Development

The Apibotanical Interest Index (ABI) was developed as a measurement to classify
floral species from the perspective of their functionality (apicultural) and relative benefit,
according to their availability in a time–space domain with defined species richness and
growth habit, so that it could be considered as a support (So) or convertible (C) species
for the beehive (Supplementary Material Table S2) [17]. Once the patch with the lowest
AIC was selected, the generalized linear models (GLMs) function of the statistical program
using maximum significance as the partition criterion was used. This model allowed using
non-normal distributions of errors (such as binomials: presence or absence of blooms) and
nonconstant variances. Throughout this study, there was a binary response: the presence of
flowers (1) and the absence of flowers (0). Only the variables with significant differences
because of the presence of flowers in the landscapes were selected. Then, the Apibotanical
Interest Index (ABI) for each species i in a defined landscape was constructed:

ABIi = (SRip) (GHip) (Pip)(TT)(Ci)(Soi)

SRip is the relative species richness of species i flowering in patch p with the lowest
AIC; GHip is the growth habit of species i in patch p with the lowest AIC; Pip is the flowering
period of species i in patch p with the lowest AIC; TT is the accumulated temperatures of
the month when sampling was performed; for Ci, if species i is classified as convertible
flora, it takes a value of 1, 3, or 5 according to the defined scale; for Soi, if species i is
classified as support flora, it takes a value of 1, 3, or 5 according to the defined scale.

2.4. Agroecosystem Apibotanical Interest Index (AABI) Development

The Shannon–Wiener diversity index (ISH) was calculated for each patch [31] to eval-
uate each agroecosystem. This index considers the number of species in the sample and the
relative number of individuals of every species, considering richness and abundance [32].
The ISH was used to classify agroecosystems as supplementary or complementary [15,16].
The AABI is the sum of the ABI of each species in the patch with the lowest AIC for each
agroecosystem. AABIa is calculated according to the following equation:

AABIa =

(
∑n

i = 1(AABIi)
n

)
(ISHa)

AABIa is the Apibotanical Interest Index of each species i present in each patch with
the lowest AIC in the agroecosystem; n is the total number of floral species registered in
the patch with a lower AIC, ISHa is the Shannon–Wiener diversity index f of the patch with
the lowest AIC in the agroecosystem.
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This study was based on the analysis of flowering resources for stationary beekeeping.

3. Results and Discussion
3.1. Composition and Structure of Agroecosystem Flora

A total of 140 species belonging to 54 families were identified in the five agroecosys-
tems, which are listed in Supplementary Material Table S2.

In Figure 1, the rank–abundance curves for each patch in each agroecosystem are pre-
sented. The radfit function fitted the best model for each patch. The patch with the lowest
deviation and AIC was selected to analyze the variables and qualify the agroecosystem.
According to Table 1, patch 1 had the lowest AIC for all agroecosystems except for native
forests (patch 3).
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Figure 1. Rank–abundance curves of floral species in the five agroecosystems (left up-) artificial
forest, (right up) mixed horticulture and fruticulture, (left middle) native forest, (right middle) dairy
prairies, and (left up) soybean per patch (1, 2, 3), with the abundance axis being in relative terms.
In its construction, the range of the species (on the abscissa axis) and the percentage of accumulated
abundance (on the ordinate axis) were used. The Vegan package (R) and radfit function were used.

Supplementary Material Figure S2 shows that agroecosystems AF, HF, D, and NF had
asymptotic behavior from patch 2, indicating that the sampling efforts (number of patches
sampled) were adequate. The S curve is not asymptotic, suggesting that the sampling effort
was insufficient. A total of 46% of the species in the present study were included within
the families with the most significant number of flowers in Uruguay [33]. On the other
hand, 60% of the species with flowers belonged to six families. These were mentioned in
melissopalynological and entomological studies as important honeybee flora and were
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present in all the agroecosystems (Supplementary Material Table S2). [34,35] documented
that Asteraceae, Anacardiaceae, Rhamnaceae, Oxalidaceae, and Myrtaceae families highly
depend on insect pollination. Moreover, the Myrtaceae family is considered one of the
main families that provide resources, and, within this family, Eucalyptus sp. has significant
beekeeping value [36].

Table 1. The Apibotanical Interest Index (ABI) and the Agroecosystem Apibotanical Interest Index
(AABI) from artificial forest (AF), dairy prairies (D), mixed horticulture and fruticulture (HF), soybean
(S), and native forest (NF). Shannon–Wiener diversity index (ISH), number of species, flowering
individuals, and Akaike information criterion (AIC) for each patch and agroecosystem.

Agroecosystem Patch ISH No. of Species Individuals AIC ISH ABI AABI

AF

1 2.37 15 325 60.0784

2.99 ± 0.36 420.43 3.662 3.58 51 131 197.905

3 3.01 35 199 119.995

HF

1 3.25 36 197 120.23

3.37 ± 0.05 490.9 4.272 3.63 45 194 151.60

3 3.23 31 176 121.36

D

1 2.50 24 237 83.63

3.31 ± 0.50 315.56 2.752 3.77 56 234 179.66

3 3.68 51 152 168.86

S

1 1.62 12 115 46.712

2.49 ± 0.56 184.26 1.62 2.89 22 82 72.28

3 2.95 26 89 87.99

NF

1 3.59 45 144 149.17

3.61 ± 0.001 573.25 52 3.65 48 139 141.05

3 3.67 46 171 136.99

According to [37], diversity indices are indicators of the distribution of abundance
(or proportion) of species that occur in a territory. However, at the agroecosystem scale,
the structure and the arrangement of individuals per species are important, not only
the number. From a beekeeping point of view, when evaluating an agroecosystem, it is
necessary to consider the availability of food resources for honeybees according to the
distance from the hive [38,39].

Concerning the configuration of the agroecosystem, the presence of flowers was ex-
plained by the variable’s species richness, flowering period, seasonality over a year, and
temperature conditions in the different agroecosystems (Supplementary Material Table S3).
Temperature and seasonality showed significant differences among all agroecosystems
(p value ≤ 0.005), except for AF (p value = 0.903). The agroecosystem that presented higher
annual average temperatures was D (Supplementary Figure S1). Winter was the only sea-
son that did not show significant differences for the five agroecosystems (p value = 0.674).
In winter, the average temperatures ranged from 10 to 15 ◦C, and few flowers were avail-
able (low presence) in any of the agroecosystems. The selected model showed significant
differences for NF, AF, and HF regarding the species growth habit and flowering pe-
riod. In these agroecosystems, trees and shrubs predominated, and, in agroecosystems
D and S, the growth habit (GH) of solitary species thickets and stands predominated
(Supplementary Material Table S4). These data show that the land uses where tree plan-
tations and shrubs predominated had more flowers (high presence), providing food and
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shelter. In agreement with these results are the findings of te [40,41]. Furthermore [42],
stated that tree and shrub assemblies could guide foraging flights since they are more likely
to orient bees better than open agricultural fields. Considering our results, the adoption of
sustainable tree and shrub management practices surrounding apiaries’ areas of influence
could favor future beekeeping scenarios at the agroecosystem scale.

3.2. Apibotanical Interest Index (ABI)

Table 1 shows the number of individuals in each agroecosystem. The results of the
Shannon–Wiener diversity index (ISH) per patch and agroecosystem are also presented.
This index was calculated because the location of the patches was random, and all species
within each patch were present in the sample [43].

The most significant number of individuals in AF, HF, and D were found in patch 1,
while, in NF, it was patch 3 (Table 1). Supplementary Material Table S3 presents the
independent variables that were included in the calculation of the ABI. The GLM was
selected because it allowed using non-normal distributions of errors (such as binomials:
presence or absence of blooms) and nonconstant variances.

The model was chosen from the 38 possibilities assayed based on the Akaike informa-
tion criterion (AIC): the non-null model with the lowest AIC value. Within the models, a
diversity of responses was found. This criterion measures the goodness of fit from the maxi-
mum likelihood of the model and its complexity through the number of parameters chosen.
The results of each ABIi for each species are presented in Supplementary Material Table S4.
The number of flowered individuals of each species was analyzed per patch, and their
spatiotemporal functions were appraised. A quantitative-qualitative comparative value
that integrated the heterogeneity of each agroecosystem and its function for beekeeping
was calculated. It was possible to generate a list of apibotanical species where the same
species obtained different ABIs due to its rating in each agroecosystem. Honeybees are
more active in habitats with species diversity [44], but the same floral species can be valued
differently by bees depending on the ecosystem in which it is assembled.

3.3. Agroecosystem Apibotanical Interest Index (AABI) Development

From the results obtained from the AABI (Supplementary Material Table S4 and Table 1),
a scale from one to five to interpret this index from an apicultural perspective was de-
veloped. The scores were 5 = prominent for honey harvest; 4 = moderate, which needs
management for honey harvest; 3 = admissible agroecosystem, which presents difficulties
for honey harvest without beekeepers’ permanent intervention; 2 = modest due to lack
of flowering species, which limits honey production 1 = low considered insignificant for
honey harvest. The agroecosystem that had outstanding apibotanical functionality was NF
(AABI = 5), which was followed by the HF, AF, and D landscapes. We expected to find
supplementary habitats when the patches in the agroecosystem were more heterogeneous,
thus increasing the importance of biodiversity in the functioning of these agroecosys-
tems. However, from a beekeeping point of view, these would require a greater energy
expenditure from honeybees since they would have to travel more (time and distance)
to replace species not present near the apiary. In this framework, according to Table 1
and Supplementary Material Figure S2, the agroecosystems that were considered supple-
mentary with heterogeneous patches were AF and D with ISH values of 2.99 ± 0.36 and
3.31 ± 0.50, respectively, which had different ranges of dominance for the two patches
within each agroecosystem. The patches with more homogeneous and complementary
behavior were NF and HF with ISH values of 3.56 ± 0.001 and 3.37 ± 0.05 and with the
same average dominant species in the three patches in each agroecosystem. For S, the data
did not allow the inferring of conclusions.



Ecologies 2025, 6, 3 7 of 13

According to Ref. [45] Lázaro and Totland (2010), high floral diversity in a territory
positively influences the permanence of the bees in the region. Pla (2006) established that
the range of Shannon–Wiener diversity index (ISH) value is between 1 and 4.5 [32]. classi-
fied ISH values as follows: values lower than 1.5 are considered low, between 1.6 and 3 are
medium, and equal to or greater than 3.1 are systems with high diversity. According to
these authors, our results indicated the high diversity of the NF, HF, and D agroecosystems
and medium diversity for AF (Table 1. The NF (without agriculture) site presented the most
remarkable diversity, this could be a response to its location within a ravine, surrounded
to the south and east by a plateau of native forests. Agricultural landscapes contain a
lower diversity of resources for bee communities [46]. On the other hand, according to [37],
diversity indices are indicators of the species richness in a territory. Considering an agroe-
cosystem as an association of plant covers within patches, represented by species with
higher abundance, it was possible to evaluate their assemblies. This could be structured
according to the distance from the hive and the availability of trophic resources for bee
communities. The patches that showed higher ISH values were not selected as the repre-
sentative ones of each agroecosystem. Instead, those patches with lower AIC presented the
highest number of individuals and were better for beekeeping. For example, patch 1 in AF
was the best representative of the agroecosystem (AIC 60.07), but its ISH was 2.37, being
the lowest ISH of the three patches, while it had the highest number of individuals.

Agroecosystems with homogeneous structures, particularly natural forests, show that
after a certain distance, no new species appear [47]. NF was the one that was best from
a beekeeping point of view. The number of species between the patches differed only
by four. Therefore, they were complementary habitats. Unlike the other agroecosystems,
honeybees do not have to stray far from their hive looking for flowers. Ref. [48] pointed out
that the consequences of being eusocial insects are that workers feed mainly to help group
members, and foraging efficiency may increase because individuals help each other to find
feeding sites near the hive. The areas with a diversity of flowers near the nests compensate
for the energy consumed when searching for food. According to our results, the NF and HF
landscapes complied with this characterized, while D and AF would need higher energy
expenditure due to the patch’s heterogeneity.

Our results showed that the agroecosystems with a higher ISH had a higher AABI
(Table 1). In accordance with [49,50], the number of flowers over time and the presence
of particularly attractive flowering species for bees are as important as diversity in the
landscape. NF and HF were complementary habitats in composition and functional struc-
ture, while landscapes AF and D were supplementary habitats. The data indicated that the
spatial–temporal diversity of the floral resources given by different land uses determined
the availability of functional flowers for honeybees.

Furthermore, considering the composition of the flowers’ assemblage as a whole
within an agroecosystem where bees feed and not a patchwork of different land uses
permitted the standardization of the biodiversity of flower resources. According to Ref. [51],
honeybees only need a limited number of flowering plants to feed on.

Interestingly, the apiaries placed in landscapes where agriculture and artificial prairies
were conducted produced very little honey in winter, if any (Figure 2). The native forest
was the landscape with the highest AABI and was the most productive. Its biodiversity was
a source of apibotanical species throughout the year. The lowest AABI score was obtained
for apiaries in extensive soybean plantations. During the summer culturing season, honey
production dropped. Still, after soybean was harvested in autumn, the biodiverse weeds
served as the nectar source for bees, triggering honey production during spring before the
first chemical tillage with glyphosate occurred. Eucalyptus flowers are intensively foraged
by bees, so honey production was high in autumn even though this agroecosystem had
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low biodiversity. The apiaries in AF produced five to six times more honey during autumn
than in any other season. A common practice is to move apiaries to Eucalyptus forests
in autumn to improve honey yields. However, honey production during summer and
spring was low in AF. The intermediate AABI value for the landscape explained the drop
in productivity for these two seasons.
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tems that could have been underestimated in this study were NF, HF, and AF, in which 
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Figure 2. Seasonal production of honey in the different landscapes. Agroecosystems: D: dairy prairies;
AF: artificial Eucalyptus sp. forest; HF: mixed horticulture and fruticulture; S: soybean crop; NF:
native forest.

It is necessary to clarify that if edaphoclimatic conditions change, these assemblages
will change, and plant species that today complete the landscape may become functional
species in the agroecosystems studied. It is worth mentioning that 34% of the species
analyzed here were the flowers of spontaneous species threatened by chemical tillage
management based on herbicide use. The point is critical for all agroecosystems with strong
agricultural inputs. The disappearance of such resources would have a negative impact not
only on bee survival but also on the quality of the beehive products collected from these
environments [44,52,53].

Plants and animals often respond to different environmental conditions (light, tem-
perature, or their combination). Phenological mismatches driven by global temperature
increases may have consequences for the plant and animal species that depend on each
other for reproductive success, such as outcrossing plants and their pollinators [54]. The
vegetative tissues of plants respond rapidly to changes in the surrounding environment:
leaves and cotyledons often elongate in response to increased temperature [55], and lateral
root emergence has been observed in plants exposed to drought [56]. In contrast, to ensure
metabolic resilience and the completion of gamete and embryo development, flowers are
equipped with a battery of functionally redundant sugar and amino acid transporters [57].
However, the observation that the yield of many crops is markedly reduced when heat, cold,
and drought occur during the flowering season (FAO, Food and Agriculture Organization
of the United Nations https://www.fao.org, accessed on 4 February 2024) is an indication
that flowers are more vulnerable than vegetative tissues to abiotic stresses [58,59].

Within this framework, the results presented here may be overestimated for agricul-
tural ecosystems such as annual crops (prairies, soybean). In agreement with [59], the
flowers produced in large quantities of commercial farm crops to attract pollinators may be
affected by the thermal differences that occur between the day and night. This means that

https://www.fao.org
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nectar secretion may not occur, for example, due to low root development with unfavorable
climatic conditions (low temperatures and abundant rainfall). Herbaceous species depend
on night temperatures and root development to absorb water, which is translocated it to
the nectaries to attract pollinators through nectar secretion. Therefore, the attractiveness
of a herbaceous plant (GH = 2) with a high ABI (greater than three) predominating in the
prairies, for example, in agroecosystem D, may be overestimated. For this reason, even if
flowers are present, the hives sometimes have no honey. The agroecosystems that could
have been underestimated in this study were NF, HF, and AF, in which trees and shrubs
predominated (GH = 4 and GH = 5). These are nonherbaceous species with a reserve
cambium (trunk). They are better adapted and not as dependent on climatic conditions.
Therefore, they always have nectar secretions that can be collected by bees. In NF, for
example, individuals of the same species bloom at different times throughout a season,
while crops are more homogeneous, with shorter flowering and nectar secretion periods.

Agroecosystem management is fundamentally important in agricultural landscapes
such as HF, S, D, and AF. The less-impacted landscapes, such as NF, without intensive
agriculture, had complementary assemblages; they presented a higher diversity index,
and the plots were homogeneous at increasing distances from the apiary. In these cases,
their blooms complemented each other. Interestingly, the HF agroecosystem had the same
behavior. The high diversity of cultured species, which are most highly attractive to bees,
and the crop variation throughout the year could be the explanation (Supplementary
Material Figure S1).

4. Conclusions
The sole occurrence of melliferous botanical species with a high ABI is insufficient to

evaluate a landscape’s usefulness for honey production properly. It depends on the species’
assemblage, which we proposed to be qualified with the AABI. Bees can use the same
species differently depending on the assemblage of the agroecosystem.

The AABI presented in this work, based on assembly rules and expected attributes
for beekeeping, constitutes a tool for generating scenarios that allow alleviating the unpre-
dictable effects of changes in landscapes, whether due to climate change or agriculture, and
improving honey productivity.

Supplementary Materials: The following supporting information can be downloaded at
https://www.mdpi.com/article/10.3390/ecologies6010003/s1, Figure S1: Average rainfall in mil-
limeters (top) and temperatures in degrees Celsius (bottom) for the five agroecosystems for (A)
autumn, (SM) summer (SP) spring, and (W) winter; Figure S2: Species accumulation curve (y-axis)
as a function of sampling patches (1, 2, and 3) (x-axis) (Rstudio, Library Vegan). The results of the
floral species accumulation curves per sampling patch in native forest, soybean, dairy prairies, mixed
horticulture and fruticulture, and artificial forest agroecosystem are presented. Table S1: Georefer-
enced and characterizations of each agroecosystem’s land use; Table S2: Flowering family and species
list according to references found for each pollen species in convertible (C) and support honey (So):
5 = frequency classes with dominant pollen (>45%) and secondary pollen (15–45%); 3 = minor pollen
importance (13–15%) and trace pollen (<3%); 1 = not found; Table S3. ANOVA of the Generalized
Linear Model (GLM) using maximum significance as partition criterion. Independent variables: P:
flowering period, SR: species richness, SS: growth habit, Seasonality (summer, autumn, spring and
winter), TT: temperature, and US: land use (native forest, artificial forest, dairy, soybean, mixed
horticulture and fruticulture). Presented results of a model with better significance or with a strong
trend (Number of Fisher Scoring iterations: 5 (of the 38 models proposed) including the different
explanatory variables at the landscape scale. Call: glm(formula = cbind(Flo) ~ P * SR + P+ SR + SS
+ US + US * TT + Seasonality, family = binomial(link = logit)). Signify. Codes: 0 ‘***’ 0.001 ‘**’ 0.01
‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1,(Dispersion parameter for binomial family taken to be 1) Null deviance: 2236.3 on

https://www.mdpi.com/article/10.3390/ecologies6010003/s1
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2278 degrees of freedom, Residual deviance: 1182.5 on 2262 degrees of freedom; AIC: 1216.5; Table S4:
Results of ABI for each agroecosystem per family, species, and growth habit (GH). A = artificial forest;
HF = mixed horticulture and fruticulture; NF = native forest; S = soybean and D = dairy prairies.
GH scale: 5 = trees; 4 = bush; 3 = stand; 2 = thicket; 1 = stem. ABI scale: 5 = prominent for honey
harvest; 4 = moderate, which needs management for honey harvest; 3 = admissible, which presents
difficulties for honey harvest without beekeepers’ permanent intervention; 2 = modest due to lack
of bloom; 1 = low, considered insignificant for honey harvest. References [60–86] are cited in the
Supplementary Materials.
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