Hydrogen Jet Fire from a Thermally Activated Pressure Relief Device (TPRD) from Onboard Storage in a Naturally Ventilated Covered Car Park
Abstract
:1. Introduction
2. Problem Description
Harm Criteria
3. Model and Numerical Approach
4. Results
4.1. Grid Independence
4.2. Upward Release
4.2.1. Constant Mass Flow Rate Release
4.2.2. Tank Blowdown
Upward 2 mm TPRD Diameter Release
Upward 0.5 mm TPRD Diameter Release
4.3. Downward Release
4.3.1. 0° Release Angle with the Vertical Axis
4.3.2. 30° Release Angle with the Vertical Axis
4.3.3. 45° Release Angle with the Vertical Axis
4.3.4. Comparison of Release Angles
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- European Parliament. Regulation C. No 406/2010 of 26 April 2010 Implementing Regulation (EC) No 79/2009 of the European Parliament and of the Council on Type-Approval of Hydrogen-Powered Motor Vehicles; European Parliament: Brussels, Belgium, 2010. [Google Scholar]
- Fuster, B.; Houssin-Agbomson, D.; Jallais, S.; Vyazmina, E.; Dang-Nhu, G.; Bernard-Michel, G.; Kuznetsov, M.; Molkov, V.; Chernyavskiy, B.; Shentsov, V.; et al. Guidelines and recommendations for indoor use of fuel cells and hydrogen systems. Int. J. Hydrogen Energy 2017, 42, 7600–7607. [Google Scholar] [CrossRef] [Green Version]
- HyTunnel-CS Project Website. Available online: https://hytunnel.net/ (accessed on 7 August 2021).
- Brennan, S.; Molkov, V. Pressure peaking phenomenon for indoor hydrogen releases. Int. J. Hydrogen Energy 2018, 43, 18530–18541. [Google Scholar] [CrossRef]
- Brennan, S.; Molkov, V. Safety assessment of unignited hydrogen discharge from onboard storage in garages with low levels of natural ventilation. Int. J. Hydrogen Energy 2013, 38, 8159–8166. [Google Scholar] [CrossRef]
- Makarov, D.; Shentsov, V.; Kuznetsov, M.; Molkov, V. Pressure peaking phenomenon: Model validation against unignited release and jet fire experiments. Int. J. Hydrogen Energy 2018, 43, 9454–9469. [Google Scholar] [CrossRef]
- Hussein, H.; Brennan, S.; Molkov, V. Dispersion of hydrogen release in a naturally ventilated covered car park. Int. J. Hydrogen Energy 2020, 45, 23882–23897. [Google Scholar] [CrossRef]
- Xu, B.; Wen, J. Numerical study of spontaneous ignition in pressurized hydrogen release through a length of tube with local contraction. Int. J. Hydrogen Energy 2012, 37, 17571–17579. [Google Scholar] [CrossRef]
- SAE International. SAE J2578, Technical Information Report for Fuel Systems in Fuel Cell and Other Hydrogen Vehicles; A Surface Vehicle Information Report; SAE International: Warrendale, PA, USA, 2009. [Google Scholar]
- Brennan, S.; Hussein, H.; Makarov, D.; Shentsov, V.; Molkov, V. Pressure effects of an ignited release from onboard storage in a garage with a single vent. Int. J. Hydrogen Energy 2019, 44, 8927–8934. [Google Scholar] [CrossRef]
- Hussein, H.; Brennan, S.; Shentsov, V.; Makarov, D.; Molkov, V. Numerical validation of pressure peaking from an ignited hydrogen release in a laboratory-scale enclosure and application to a garage scenario. Int. J. Hydrogen Energy 2018, 43, 17954–17968. [Google Scholar] [CrossRef]
- TI Organization for Standardization. 19880-1 I. Gaseous Hydrogen—Fuelling Stations, Part 1: General Requirements; TI Organization for Standardization: Dallas, TX, USA, 2018. [Google Scholar]
- National Fire Protection Association (NFPA). Hydrogen Technologies Code; National Fire Protection Association (NFPA): Quincy, MA, USA, 2011. [Google Scholar]
- International Electrotechnical Commission. IEC 60079-10-1. Explosive Atmospheres—Part 10-1: Classification of Areas—Ex-Plosive Gas Atmospheres; International Electrotechnical Commission: London, UK, 2015. [Google Scholar]
- BSI. BS 7346-7:2013. Components for Smoke and Heat Control Systems—Part 7: Code of Practice on Functional Recommendations and Calculation Methods for Smoke and Heat Control Systems for Covered Car Parks; BSI: London, UK, 2013. [Google Scholar]
- Chow, W. On safety systems for underground car parks. Tunn. Undergr. Space Technol. 1998, 13, 281–287. [Google Scholar] [CrossRef]
- Van Der Heijden, M.G.M.; Loomans, M.G.L.C.; Lemaire, A.D.; Hensen, J. Fire safety assessment of semi-open car parks based on validated CFD simulations. Build. Simul. 2013, 6, 385–394. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Guo, Y.; Chan, C.; Lin, W. Numerical simulations on fire spread and smoke movement in an underground car park. Build. Environ. 2007, 42, 3466–3475. [Google Scholar] [CrossRef]
- NEN. 2443 NEN-IN. Parkeren en Stallen van Personenauto’s op Terreinen en Garages; NEN: Delft, The Netherlands, 2000. [Google Scholar]
- Molkov, V.; Makarov, D.; Bragin, M. Physics and Modelling of Underexpanded Jets and Hydrogen Dispersion in Atmosphere; Russian Academy of Sciences: Moscow, Russia, 2009. [Google Scholar]
- Molkov, V. Fundamentals of Hydrogen Safety Engineering I. 2012. Available online: www.bookboon.com (accessed on 7 August 2021).
- ANSYS, Inc. ANSYS Fluent R16.2 User Guide; ANSYS, Inc.: Canonsburg, PA, USA, 2016. [Google Scholar]
- Yan, L.; Yue, G.; He, B. Development of an absorption coefficient calculation method potential for combustion and gasification simulations. Int. J. Heat Mass Transf. 2015, 91, 1069–1077. [Google Scholar] [CrossRef]
- Cirrone, D.; Makarov, D.; Molkov, V. Thermal radiation from cryogenic hydrogen jet fires. Int. J. Hydrogen Energy 2019, 44, 8874–8885. [Google Scholar] [CrossRef]
- Roberts, P.T.; Shirvill, L.C.; Roberts, T.A.; Butler, C.J.; Royle, M. Dispersion of hydrogen from high-pressure sources. Inst. Chem. Eng. Symp. Ser. 2006, 151, 410. [Google Scholar]
- Baraldi, D.; Melideo, D.; Kotchourko, A.; Ren, K.; Yanez, J.; Jedicke, O. SUSANA Final Report D6.2, The CFD Model Evaluation Protocol; 2016; Available online: https://www.h2fc-net.eu/collaboration/susana-database/susana-public-documents/ (accessed on 10 August 2021).
- Baraldi, D.; Melideo, D.; Kotchourko, A.; Ren, K.; Yanez, J.; Jedicke, O.; Giannissi, S.; Tolias, I.; Venetsanos, A.; Keenan, J.; et al. Development of a model evaluation protocol for CFD analysis of hydrogen safety issues the SUSANA project. Int. J. Hydrogen Energy 2017, 42, 7633–7643. [Google Scholar] [CrossRef]
- Li, Z.Y.; Makarov, D.; Keenan, J.; Molkov, V. CFD study of the unignited and ignited hydrogen releases from TPRD under a fuel cell car. In Proceedings of the International Conference on Hydrogen Safety, Yokohoma, Japan, 19 October 2015. [Google Scholar]
- Li, Z.; Luo, Y. Comparisons of hazard distances and accident durations between hydrogen vehicles and CNG vehicles. Int. J. Hydrogen Energy 2018, 44, 8954–8959. [Google Scholar] [CrossRef]
Case Number | TPRD Diameter (Notional) mm | Release Direction | Release Angle with Vertical | Car Geometry | Blow-Down Model | Initial H2 Rate kg/s | Release Distance Ceiling, m |
---|---|---|---|---|---|---|---|
Case 1 | 3.34 (56.4) | Upward | 0° | No | No | 0.2993 | 2.1 |
Case 2 | 2 (33.8) | Upward | 0° | No | Yes | 0.1072 | 2.1 |
Case 3 | 2 (33.8) | Upward | 0° | Yes | Yes | 0.1072 | 1.13 |
Case 4 | 2 (33.8) | Downward | 0° | Yes | Yes | 0.1072 | 2.35 |
Case 5 | 2 (33.8) | Downward | 30° | Yes | Yes | 0.1072 | 2.35 |
Case 6 | 2 (33.8) | Downward | 45° | Yes | Yes | 0.1072 | 2.35 |
Case 7 | 0.5 (8.44) | Upward | 0° | No | Yes | 0.0067 | 2.1 |
Case 8 | 0.5 (8.44) | Upward | 0° | Yes | Yes | 0.0067 | 1.13 |
Case 9 | 0.5 (8.44) | Downward | 0° | Yes | Yes | 0.0067 | 2.35 |
Case 10 | 0.5 (8.44) | Downward | 30° | Yes | Yes | 0.0067 | 2.35 |
Case 11 | 0.5 (8.44) | Downward | 45° | Yes | Yes | 0.0067 | 2.35 |
Mesh | No. of Cells | No. of Faces | No. of Nodes | Cells at Leak |
---|---|---|---|---|
Coarse | 691,759 | 2,297,390 | 745,416 | one |
Intermediate | 1,013,449 | 3,293,809 | 1,072,606 | one |
Refine | 2,656,244 | 8,402,247 | 2,758,610 | four |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussein, H.; Brennan, S.; Molkov, V. Hydrogen Jet Fire from a Thermally Activated Pressure Relief Device (TPRD) from Onboard Storage in a Naturally Ventilated Covered Car Park. Hydrogen 2021, 2, 343-361. https://doi.org/10.3390/hydrogen2030018
Hussein H, Brennan S, Molkov V. Hydrogen Jet Fire from a Thermally Activated Pressure Relief Device (TPRD) from Onboard Storage in a Naturally Ventilated Covered Car Park. Hydrogen. 2021; 2(3):343-361. https://doi.org/10.3390/hydrogen2030018
Chicago/Turabian StyleHussein, Harem, Síle Brennan, and Vladimir Molkov. 2021. "Hydrogen Jet Fire from a Thermally Activated Pressure Relief Device (TPRD) from Onboard Storage in a Naturally Ventilated Covered Car Park" Hydrogen 2, no. 3: 343-361. https://doi.org/10.3390/hydrogen2030018
APA StyleHussein, H., Brennan, S., & Molkov, V. (2021). Hydrogen Jet Fire from a Thermally Activated Pressure Relief Device (TPRD) from Onboard Storage in a Naturally Ventilated Covered Car Park. Hydrogen, 2(3), 343-361. https://doi.org/10.3390/hydrogen2030018