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Abstract: Working towards a more sustainable future with zero emissions, the International Future
Laboratory for Hydrogen Economy at the Technical University of Munich (TUM) exhibits concerted
efforts across various hydrogen technologies. The current research focuses on pre-reforming processes
for high-quality reversible solid oxide cell feedstock preparation. An AI-based machine learning
model has been developed, trained, and deployed to predict and optimise the controlled utilisation
of methane gas. Using a blend of design of experiments and a validated 3D computational fluid
dynamics model, pre-reforming process data have been generated for various syngas mixtures. The
results of this study indicate that it is possible to achieve a targeted methane utilisation rate of 20%
while decreasing the amount of catalyst material by 11%. Furthermore, it was found that precise
process parameters could be determined efficiently and with minimal resource consumption in order
to achieve higher methane fuel utilisation rates of 25% and 30%. The machine learning model has
been effectively employed to analyse and optimise the fuel outlet conditions of the pre-reforming
process, contributing to a better understanding of high-quality syngas preparation and furthering
sustainable research efforts for a safe reversible solid oxide cell (r-SOC) process.

Keywords: hydrogen; machine learning; sustainability; artificial intelligence; solid oxide cell; r-SOC;
pre-reforming; syngas

1. Introduction

Solid oxide cell technologies, along with their auxiliary system attributes and pro-
cesses, have emerged as a key research field in hydrogen technologies. With the increasing
demand for hydrogen fuel generation, delivery, and utilisation, solid oxide fuel cell tech-
nology has garnered significant attention from researchers worldwide [1–13]. Over the last
decade, numerous research groups have conducted investigations in this field, resulting in
a plethora of success stories. These include experimental assessment of both individual
components [8,14–22] and complete systems, with a focus on system integration, durability,
and efficiency [7,12,22–29]. Computational modelling has also played a significant role in
this research, with numerous studies utilising modelling techniques to provide insights into
performance and system design aspects [30–35]. As research continues in several areas, it is
anticipated that the cost structure of solid oxide cell systems will change rapidly, leading to
reductions in the cost of balance-of-plant components and increasing their competitiveness
by reducing the price per kWh. The ultimate cost of solid oxide cell systems will depend on
various factors, including the chosen system size, application area, and market conditions.

Solid oxide cell (SOC) technology is an attractive choice as it can be used both as fuel
cell and as an electrolyzer. Numerous scholars have been researching the implications
of reversed solid oxide cell (r-SOC) capable fuel gas generation [36–41]. Another advan-
tage of the technology is its fuel flexibility; it is able to utilise hydrogen as well as other
hydrocarbon-containing sources in liquid and gas form [42–44]. Renewable biomass is an
appealing fuel source that may also be used. SOC can process mixtures consisting of H2,
H2, CO, CO2, and CH4 species where more complex hydrocarbons, H2O, and tar, can also
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be present and may require pre-cleaning [45–51]. Gasification is also a practical method
that can convert carbonaceous substances into gaseous mixtures, i.e., in the form of syngas.
These substances can be converted into syngas [41–44,52–59]. It should be noted that the
gas composition is dependent on several factors, such as the obtained feedstock, the chosen
gasification method and process conditions, and the catalyst properties.

Safe and efficient operation of solid oxide cell technology requires the removal of
impurities from the fuel stream. In this context, the reforming process proves to be an
effective means of pre-cleaning product streams of varying compositions, resulting in
syngas that is pure enough to sustain seamless SOFC operation [56,60–62]. Pre-reforming
of fuel is essential to mitigate safety issues and prevent material degradation that may
arise when oxygen-rich fuel is released into a solid oxide fuel cell (SOFC). Moreover, con-
trol of the amount of methane feed reformed in the stack is necessary to ensure proper
cooling of the fuel cell stack. These factors have led to the growing popularity of syn-
gas production and utilisation via pre-reforming, particularly from a hydrogen economy
perspective. In the field of solid oxide fuel cell (SOFC) technology, both computational
methods and experimental measurements have been successfully employed to predict the
performance of thermochemical reforming in integrated SOFC systems and to ensure the
quality of fuel for efficient SOFC operation [17,60,63–71]. Numerical models validated
through experimental measurements have proven effective in predicting and simulating
the thermochemical reforming performance of integrated solid oxide fuel cell (SOFC) sys-
tems. Traditional methods such as the finite volume and finite element methods have been
widely used, offering a robust and flexible tool for accurate results. These models have
been successfully applied in various related applications, demonstrating their reliability
and versatility [72–76]. Advanced, modern accelerated modelling approaches, empow-
ered by Artificial Intelligence (AI), have gained popularity for their ability to dramatically
improve the accuracy of predictions while also reducing the time required for modelling.
By utilising AI-powered techniques, research can now achieve optimal outcomes quickly
and efficiently. The flexibility and robustness offered by AI-based numerical models make
them a powerful tool for predicting and simulating complex systems [77–83]. Previous
research has demonstrated the significant benefits of utilising the design of experiments
(DoE) in conjunction with studies of solid oxide technologies. This powerful approach has
proven to be effective in providing valuable insights into the design and performance of
these technologies. The authors have similarly employed this method, resulting in a deep
understanding of solid oxide systems and their optimisation for enhanced efficiency and
cost-effectiveness [64,84] and have recently extended its wide use coupled with Artificial
Intelligence-based Machine Learning models [85].

With the exponential growth in the use of Artificial Intelligence (AI), sophisticated
modelling approaches are revolutionising various research fields. AI systems offer great
scalability and numerous prediction options, enabling the handling of large data sets
generated by experimentally validated multiphysics models. The ability to understand
complex processes and interactions precisely, without analysing huge multiphysics data
sets individually, is one of the hallmarks of AI. This study harnesses the power of AI
to optimise the fuel utilisation of methane, introducing various syngas constellations
into a pre-reformer that can be externally connected to a solid oxide cell. An artificial
intelligence-based machine learning model is developed to accurately predict and assess
computationally generated data, identifying improved material use and process conditions.
The investigation supports the assessment of providing high-quality, cleaned syngas to
solid oxide cells for continuous r-SOC operation, furthering sustainable research in a safe,
consistent manner.

2. Methodology

In a recent study [86], an experimentally validated CFD model based on Peksen et al. [65]
was reconstructed and extended to predict the intricate syngas thermochemistry during
the pre-reforming process. In this study, this model, with its enhanced capabilities, has
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been used to generate quantitative data in a systematic manner, leveraging the Design
of Experiments (DoE). This optimises the data generation process, thereby reducing the
number of numerical simulations required to achieve the desired outcome. This approach
provides multiple benefits, including the reduction of uncontrolled variables that can
introduce errors, and the identification of key factors that influence the outcome of the
assessment, thereby improving the overall performance of the data processing. To assess
the optimal methane fuel utilisation, a supervised machine learning model was developed
and trained, considering both individual parameter effects and interaction impacts of the
examined variables. The approach has proven to be both cost-effective and sustainable,
providing valuable research early in the process.

2.1. Numerical Modelling for AI Data Generation

Proper data preparation is a crucial aspect of AI-based modelling, involving the careful
selection, cleaning, and preprocessing of data to ensure their high quality and suitability
for training an artificial intelligence-based model. In this study, a numerically solved
computational fluid dynamics (CFD) model was used to successfully generate data. The
used pre-reformer component was modelled as a continuum using a pseudo-fluid phase,
as depicted in Figure 1. For further details on the validation and utilisation of the model,
readers are referred to Ref. [65].
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Figure 1. Used computational fluid dynamics model based on Ref. [65].

The present study considers a pre-reformer with two air flow plate layers that en-
compass the interior components, which are heated by the manifold regions. The catalyst
layer is sandwiched between two wire mesh structures that facilitate the fuel flow. The
pre-reformer has a symmetrical geometry and flow configuration along its centerline axis.
This allows for a time efficient CFD analysis by simulating only half of the component.
Syngas is used as the fuel medium in this study, and the focus is on determining the
methane utilisation percentage, which is critical for delivering the desired fuel composition
and amount for solid oxide cell operation. The simulation of the oxygen-containing syngas
solves the tri-reforming (TR) reactions [42].

2.1.1. Chemically Reacting Species Transport

The transport of chemically reacting species such as CH4, CO2, H2O, and O2 is as-
sumed to take place concurrently. The process involves the energy-efficient partial oxidation
of methane, mitigating carbon formation. The numerical model takes into account the
steam reforming and water-gas shift reactions, which are expressed as:

CH4 + H2O 
 CO + 3H2 at ∆RH◦ 298 K = 206 kJ/mol (1)
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CO + H2O 
 CO2 + H2 at∆RH◦ 298 K = −41.2 kJ/mol (2)

In this study, the methane reforming reaction (1) is considered to be kinetically slower
and hence governs the methane conversion as the rate-limiting step. The reaction kinetics
are dependent on the temperature and directly influence the conversion rate. Therefore,
the operating temperature of the pre-reformer is a crucial parameter. The fuel used in this
investigation contains a significant proportion of oxygen (5% to 10%). Thus, the chemical
reaction characterising the partial oxidation of methane gas is included in the chemistry
model, and it can be expressed as:

CH4 + 2O2 
 CO2 + 2H2O at∆RH◦ 298 K = −191.7 kJ/mol (3)

The calculations involving the oxygen-containing gas include CH4, H2O, and O2 as
reagents. The partial oxidation of methane is considered in the process, acting like an
auto-thermal reforming reaction that generates clean syngas. However, since methane is
consumed by this oxidation process, the methane that effectively takes part in the reforming
reaction is reduced. As a result, the reforming rate depends on the CH4 amount that remains
after it reacts with O2.

The species transport model is based on single-phase flow field calculations. The
local concentrations of species influence the flow field. Chemical reactions are considered
to be homogeneous and take place at the catalyst layer. Turbulent fluctuations are not
considered, and the reactions are driven kinetically by the Arrhenius kinetic expression,
which is expressed as:

ri = k f

Nsp

∏
j=1

∣∣Cj
∣∣η′ − kb

Nsp

∏
j=1

∣∣Cj
∣∣η′′ (4)

In this expression, N specifies the number of the chemical species in the reaction, Cj
refers to the molar concentration of eactant and product species, η′ denotes the forward
rate exponent of each reactant and product species, and η′′ indicates the reverse proceeding
backward reaction rate exponent. k f and kb express the forward and backward equilibrium
constants, respectively. The rate constant shown as k for each reaction (r) is calculated
using equation:

kr = ArrTße−E/RT (5)

“Ar” is the pre-exponential factor, the temperature exponent is shown as “ß”, and the
activation energy is “E”; “R” and “T” represent the universal gas constant and temperature,
respectively. Mass flow rates, operating temperatures, and species concentrations are specified
for the fluid flow inlet regions. Each species is treated using the multi-component approach,
which is based on Maxwell’s equations. Homogeneous chemical reactions are assumed to
occur at the catalyst layer, and they are driven by the Arrhenius kinetic expression.

2.1.2. Fluid Flow

The differential expression of the principle of conservation of mass is utilised at all
points within the fluid domain to ensure that the mass balance is maintained. This equation
expresses that, within a particular region, the rate of change of mass is equal to the net
mass flux across the boundary of that region.

∂ρ

∂t
+∇.ρU = 0 (6)

Using the product rule, momentum conservation is defined as:

∇.(ρuU) = U.∇(ρu) + ρu∇.U. (7)

The pre-reformer component comprises materials and components that are porous in
nature. To account for the momentum conservation in such media, the continuum theory of
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porous media is applied. This is mathematically achieved by incorporating a momentum
source term into the Navier–Stokes equations, as detailed in Ref. [87].

2.1.3. Energy

Conjugate heat transfer is an important factor in thermal energy exchange, and ac-
curately estimating the temperature of the fluid within the flow field is crucial. To solve
the thermal fluid flow problem, the energy equation must include this dependent variable.
This relationship can be expressed as a vector:

∂ρh
∂t

= −∇(ρhu)−∇ .
q− (τ : ∇u)− p(∇.u) + S (8)

where h is given as the enthalpy, t refers to the temperature, u is the fluid velocity,
.
q

expresses the heat conduction, and τ refers to the viscous part of the stress tensor. S
comprises the source terms of the chemical reactions.

Due to the heat exchanging fluid flow, variations in density arise; these can have a
significant impact on the overall flow behavior. These variations in density can be attributed
to the pressure and temperature fluctuations; as such, these parameters must be interrelated
to accurately describe the flow. The equation of state provides a means of coupling the
pressure and specific internal energy (ie) to describe the thermodynamic behavior of the
system. This relationship is crucial for accurately predicting the behavior of the fluid within
the flow field, especially in cases where temperature and pressure variations are significant
and can be described as:

p = p(ρ, T)
ie = ie(ρ, T)

p = ρRT
ie = CT

(9)

where R is the ideal gas constant and C refers to the specific heat capacity. The total enthalpy
resulting from species transport can be expressed as:

h = ∇.
(

∑j Xj
→
hj
)

(10)

Xj is the species mass fraction shown as j. At the given reference temperature, the
expression for the production of sensible enthalpy by the species j is:

hj =
∫ T

Trefj
cpjdT + h0

j (Trefj) (11)

In Equation (8), the chemically reacting species transport term is presented as a
source term denoted by the symbol S. This term represents the rate of change of species
concentrations due to chemical reactions. This source term is crucial for accurately modeling
the chemical reactions within the system and predicting the behavior of the fluid flow.

It can be expressed as the source term for chemical reactions:

S := −∑j

h0
j

Mj
Rj (12)

With Rj as the volumetric rate of creation of the species,
The heat transfer of the solid regions is described as:

∂ρh
∂t

+∇(ρhu) = ∇.(k∇T) + S (13)
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The convective term on the left-hand side describes the heat transfer between the solid
walls and the fluid. Where h will be calculated from:

hj =
∫ T

Trefj
cpjdT + h0

j (14)

2.2. Computational Assessment

The current investigation employs two different gas compositions: one with high
oxygen with low methane content, and the other containing moderate oxygen gas with a
high methane concentration. In a typical system operation, the cathode outlet gas from the
SOC stack is linked to the air intake of the external pre-reformer component, which helps
to determine the air inlet conditions of the pre-reformer, as shown in Figure 2, proposed
by Blum et al. [88]. Thus, the current research considers a data set of pre-heated air of
750 ◦C and 30 kg/h that feeds the pre-reformer with an air input temperature of 724 ◦C.
The fuel inlet temperature is set at 155 ◦C. These specific values were chosen based on
previous studies and are typical operating conditions for this type of system configuration.
It is important to note that variations in operating conditions can significantly affect the
performance of the system. Therefore, systematic analyses will be performed to evaluate
the robustness of the results.
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Methane fuel utilisation is an important performance metric in the pre-reforming
process; it is used to convert hydrocarbon fuels into hydrogen gas. The amount of methane
that enters the pre-reformer and the amount that exits unconverted represents the amount
of methane that was converted to hydrogen gas. Simply, it represents the fraction of the
fuel that is converted to hydrogen gas during the reforming process. Understanding the
fuel utilisation of the cleaned syngas when using a pre-reformer is an important factor in
optimising the fuel cell stack inlet conditions. By carefully monitoring the reformed fuel
outlet, it is possible to gain an indication of the amount of methane that can be used in
SOC operation for cooling purposes. This can help ensure the most efficient use of the
fuel cell stack. In order to use dataset for the development and further deployment of an
artificial intelligence model, the effects of several operating parameters are systematically
assessed. This will reduce the prediction time and the need for additional CFD analyses.
The conversion rate of pre-reformed methane in this current study will be analysed in



Hydrogen 2023, 4 480

relation to its dependence on five parameters, each of which has three distinct degrees. In
this case, the nonlinear interactions of the variables are considered.

A three-factor level approach will express the lowest, median, and maximum levels
of the variables. The stated process parameters, and the quantitative prediction of the
methane utilisation percentage (in this context, it is the conversion as the mass flow rate is
constant), is the outcome. An efficient Design of Experiment (DoE) plan [89] is used and
the investigated variables are illustrated in Table 1.

Table 1. Investigated variables used for the Design of Experiment (DoE) assessment.

Factor Level −1 0 1

Fuel_mass flow rate [kg/s] A B C

Air_mass flow rate [kg/s] A B C

Air temperature [◦C] 640 700 725

Fuel oxygen content [%] 0 5 10

Catalyst porosity [-] 0.2 0.35 0.50

The catalyst layer’s porosity corresponds to the void fraction of the substrate. Three
different gas compositions are investigated, with oxygen concentrations of 0%, 5%, and
10%, denoted as A, B, and C, respectively, as given in Table 1. The gas mass flow rates are
also included, as they affect the quantity of energy introduced to the component. The fuel
input temperature is set at 155 degrees Celsius in all cases, and the porosities of the catalyst
materials are chosen based on commonly observed values. A total of 48 instances were
computed to illustrate the various combinations of factor levels, providing the necessary
output data for statistical analysis.

2.3. Artificial Intelligence-Based Machine Learning (ML) Modelling

In this study, quantitative data has been generated using an experimentally validated
CFD model to develop and train a machine learning model based on supervised learning.
Supervised learning is a machine learning field in which large data sets are provided to
develop a mathematical model that can reliably predict values of previously unknown
data. The first step in this process is the collection and preparation of numerical data. This
involves identifying and correcting any data errors or inconsistencies, such as missing
values, incorrect data types, or outliers. Data processing ensures the accuracy and reliability
of the data.

The data may need to be transformed to conform to the model’s specifications. This
could include scaling the data to a common range, normalising it, or converting categorical
variables into numerical values. The most relevant features are selected to train the model
to reduce its complexity and improve its performance. After processing, transforming, and
selecting features, the data is separated into two or three distinct sets: a training set, a vali-
dation set, and a test set. The validation part is used to tune the model’s hyperparameters,
and the test set is used to evaluate the model’s performance.

Data augmentation is used to create new training data for the model by applying
transformations to existing data, which helps to improve the model’s robustness and
reduce overfitting.

The independent variables are used to describe the parameters, while the dependent
variable or response variable is known as the target variable of interest. The CFD model
generated numerical data, which were divided into two data sets for training and evaluating
the model. Since steady-state analyses were performed, the nature of the data was not
categorical or a function of time. As the collected data were numerical and continuous, a
regression-type problem architecture was used instead of classification or time series. The
supervised learning process was used to establish a relationship between the variables and
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methane fuel utilisation. An algorithm was used to analyse the patterns in the data that
enables the generation of new data.

Figure 3 depicts the procedure utilised in the present investigations.
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The response variable is the methane fuel utilisation, which is a number; therefore,
the problem type can be justified as a regression type. In this way, the model is trained
by assigning labels to the data to enable the model to learn from it. The data labelling
involves assigning a continuous numerical value to each data point. As the goal is to
predict methane fuel utilisation, the label represents the percentage. The quality of the
labelled data can have a significant impact on the accuracy of the model. Therefore, high-
quality data have been used that are free from errors and inconsistencies. To avoid the
issue with the so-called overfitting, the validation set was used. Overfitting occurs when
the model is trained too closely to the labelled data, leading to poor performance on new
data. To mitigate this, the model’s parameters are carefully assessed. It refers to settings
such as regularisation strength or learning rate, iteration number, step size, and batch
size controlling each iteration of the training process. A similar process is performed in
CFD analysis for reaching convergence. Overall, artificial intelligence-based modelling is
anticipated to accelerate the assessment based on the 3D pre-reformer behaviour, and the
improvement potential has been pursued using the data provided by the CFD calculations.

2.3.1. Model Development

Building upon the findings of Section 2.3, the nonlinear relationship between the fuel
utilisation percentage and the pertinent parameters will be established. Quadratic and
cubic terms are considered in the model. A multi-regression modelling approach ensures
that categorical variables, such as gas composition, can be used with the specified factor
levels and values.

2.3.2. Model Training Based on Machine Learning (ML)

To evaluate the model’s feasibility, an assessment of outliers and model quality is
conducted for different regression models. For the learning-training procedure, the initial
set of numerically calculated data is used to train the model, while the test data are used
then to evaluate the level of model accuracy. Model regression coefficients can be learned
and trained using the proposed data set. A k-fold cross-validation divides the data into
sections for training purposes. This is performed multiple times using different partitions of
the data followed by averaging the results to obtain an estimate of the model’s performance
on unseen data. The data have been divided into ten subsets of roughly equal size. The
model is trained on nine subsets and evaluated on the remaining subset. This procedure
is repeated ten times, with each subset serving as the validation set once. The results are
averaged to obtain an estimate of the model’s performance. The fold number determines the
computational effort and evaluates the optimisation potential of the model. The procedure
facilitates model comparison and selection. Details of the procedure are given in Ref. [85].
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2.3.3. ML Model Validation

Three different regression models are benchmarked to assess the methane fuel util-
isation. The objective was to evaluate the model’s ability to generalise to new data and
identify any issues. The root mean squared error (RMSE) metric is used to interpret the
model accuracy. This is the square root of the mean squared error (MSE) and provides
a measure of the average absolute difference between the predicted and actual values of
the target variable. A lower RMSE indicates better performance. The MSE measures the
average squared difference between the predicted and actual values of the target variable.
The common R-squared (R2) is also used. An R2 of 1 indicates an excellent prediction
level, while an R2 of 0 indicates that the model does not explain any of the variance in
the target variable. A confidence interval of 95% was utilised to estimate the true popu-
lation parameters. Using this interval is aimed at capturing the range within which the
population mean is likely to fall within 95% confidence. This approach provides a level of
precision and reliability in the estimations, allowing for robust conclusions and informed
decision making. The stochastic Optimizable Gaussian Progress Regression (GPR) model is
the first model trained. This type is beneficial when data sets with a normal distribution
are of concern. A support vector machine (SVM) model of cubic form is also trained in
case data classes are formed. The third variant to be considered was a linear regression
model. The model results are compared to a more complex multiple regression model.
Figure 4 illustrates the results of the predictions compared to the true response results of
the observed CH4 utilisation%.
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Figure 4. Model development and comparison of different regression models: GPR (a); SVM (b),
linear-regression (c), multi-regression model (d).

Although the residual data are spread across the theoretical normal distribution line,
outliers were evident in both the Optimizable Gaussian Progress Regression (GPR) model,
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depicted in Figure 4a, and the support vector machine (SVM) model, depicted in Figure 4b.
The assessed linear-regression model depicted in Figure 4c showed similar behaviour. The
residuals of the multi-regression approach are closer to the straight line when compared
to the other three models (Figure 4d). These models each show outliers. The use of a
robust linear regression algorithm that can be used to handle outliers did not result in an
improvement. Moreover, the validation values of the multi-regression model outperformed
the remaining models used as a benchmark in Figure 4d.

Table 2 shows the data for the quality evaluation.

Table 2. Quality evaluation of the used models considering R2, RMSE values.

GPR SVM Linear-Regression Multi-Regression

RMSE 5.50 6.08 5.88 4.096

R-Squared 0.57 0.48 0.50 0.93

Based on the conducted analysis, the decision was made to implement a more complex
cubic multi-regression machine learning model. This choice was made as the quality of
the remaining models remained unsatisfactory, despite using methods such as principal
component analysis (PCA) or hyperparameter optimisation. The data points were meticu-
lously assessed to ensure that the entire range of values for each factor was accounted for. If
certain regions of the cube had no points, it could indicate that the design was incomplete
and that certain factor combinations were not explored. Figure 5 depicts the distribution of
the data points in the design space using a three-dimensional cube plot.
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The design points show a satisfactory evenly distributed behaviour across the cube.
Considering the three-factor levels and the complexity of the process, this indicates that
the regions of interest are neither over- nor under-represented. Moreover, the points are
not clustered in certain regions, suggesting that the data cover several regions and shows
uniformity. The trained model has been used to assess the individual process variables to
predict a practicable methane fuel utilisation of 20%. It has been targeted to use the same
substrate and syngas combination, comprising 5% of oxygen, and to assess the possible
fuel amount and air temperature. Figure 6 shows the results.

By adjusting the air temperature value, it is possible to achieve the desired 20%
CH4 fuel utilisation under the current settings. The nonlinear cubic behaviour of the air
temperature curve is apparent, as it shows a more energy-efficient output on the lower
side of 666 ◦C and on the higher side of 709 ◦C, both resulting in a 20% fuel utilisation.
Moreover, the nonlinear nature of the variable suggests that it has the potential to increase
the methane utilisation beyond 20% if adjusted independently.

In order to evaluate the performance of the trained model using fuel flow rate, catalyst
substrate porosity, and oxygen% content, Figure 7 presents the assessment results.
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Figure 7. Trained model employment: assessment of the CH4 utilisation as a function fuel flow rate,
substrate porosity, and oxygen content.

The trained model was evaluated individually for each parameter. The results suggest
that a methane fuel utilisation rate of 20% can be achieved by using a fuel flow rate of
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7.6 × 10−4 kg/s or by increasing the substrate porosity. The nonlinear cubic behaviour
of the substrate porosity indicates that a porosity of approximately 31% is optimal for
achieving the desired methane utilisation rate. Additionally, the quadratic behaviour of
the oxygen concentration shows that an increase in oxygen content leads to an increase in
methane utilisation percentage due to the increased partial oxidation reaction. Therefore, a
lower oxygen content of around 3% is recommended for achieving the desired 20% methane
utilisation rate. The complex mathematical relationship between the three-level factors and
methane fuel utilisation was analysed to determine the main factors affecting CH4. Figure 8
depicts the analysis results of the main factors affecting the CH4 fuel utilisation rate.
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The findings of the study demonstrate that CH4 utilisation is highly sensitive to air
temperature, as indicated by the results presented in Figure 6. The complex nature of
the temperature’s effect on the reactions is represented by its strong nonlinearity under
fixed remaining parameters. The temperature-dependent nature of the chemical reactions
and the energy required to initiate them necessitates a certain level of temperature for the
reactions to occur. As a result, temperature received the highest weighting, followed by
fuel amount, as it is also a limiting factor. Insufficient fuel for conversion would lead to
utilisation failure. The exothermic impact of the oxygen-driven partial oxidation reaction
contributes significantly to providing the necessary thermal energy for utilisation and leads
to a substantial increase in fuel conversion, as depicted in Figure 6. On the other hand, the
effects of substrate porosity and air flow, when used as a sole design tool, were found to be
less significant than the first three factors.

3. Optimisation Using the Machine Learning Model

In this section, the predictive economic tool for accelerated process and material
optimisation was demonstrated using the capability of the trained model. Under virtual
operating conditions, the methane fuel utilisation rate of the reformer was simulated to
mitigate prohibitive measurements. In situations where there may be a concern for detailed
distributions of temperature, species concentrations, or pressure, the rapid predictions of
the machine learning model also allow for screening purposes. Hence, the model can be
deployed either independently or in conjunction with conventional methods.

3.1. Assessment for Potential Material Optimisation

Fluid flow, heat transfer, and chemical reaction conditions are essential to gain a deeper
understanding of the process interactions while reforming oxygen-containing syngas. The
interactions and nonlinear behaviour of these factors play a critical role in SOC systems
that use syngas. These factors influence the inlet gas composition of the fuel cell stack. In
addition, by pre-reforming a portion of the fuel gas, the oxygen can be utilised while ensur-
ing that no oxygen is later released into the fuel cell stack. Machine learning predictions
will provide invaluable information to enhance the control of species and methane fuel
utilisation during the process. Thus, controlled quality syngas can be generated by specify-
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ing the methane fuel species mass fractions of the reformed syngas in SOC operation. To
achieve a controlled methane fuel utilisation of ~20% under the applied process conditions,
a nonlinear analysis of the factors has been conducted to comprehend the interactions
among the parameters during the pre-reforming process.

To evaluate the possibility of reducing the solid material amount in the catalyst and
enhancement of resource sustainability, the level of porosity of the substrate materials used
during the pre-reforming process is crucial. The substrate’s porosity affects the access of
the reactants to the active sites. Low substrate porosity can lead to poor species transport,
reduced access of the reactants to the catalyst, lower reaction rates, and reduced thermos
chemical efficiency. For this purpose, two distinct cases have been investigated under the
same process conditions. The outcomes of the analysis are illustrated in Figure 9.

4 

Figure 9. Assessment of the material reduction potential by keeping target CH4 utilisation.
Figure 9. Assessment of the material reduction potential by keeping target CH4 utilisation.

Using the developed ML model, it was possible to determine the substrate porosity
values required to achieve a methane fuel utilisation rate of 20%. An optimally selected
porous catalyst is environmentally friendly because it uses less material, and it may also
facilitate enhanced chemical reaction performance with the targeted fuel utilisation output.
The nonlinear behaviour of the substrate curve indicates the possibility of reducing the
amount of catalyst material while still achieving 20% CH4 utilisation. The results reveal
that the desired utilisation level can be achieved in two ways, one at the low end of the
factor range and the other at the high end.

Approaching a void fraction of 40%, compared to a less dense open structure of 47%,
showed to be feasible to retain the desired methane fuel utilisation. The results reveal that
it is possible to use a substrate with a reduced solid fraction of around 11.7%. This would
enable less material as well reduce catalyst costs that may contribute to an overall cost
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reduction in the integrated technology concepts. The results were compared to the detailed
3D CFD-calculated predictions for verification purposes. The comparison of the results is
listed in Table 3.

Table 3. Comparison of machine learning model predictions vs. 3D CFD analyses.

Fuel [kg/s] Air [kg/s] Air [◦C] O2 [%] Catalyst % ML % CFD % Error

Case 1 7.0 × 10−5 3.9 × 10−4 650 5 40 20.14 20.52 −1.76
Case 2 7.0 × 10−5 3.9 × 10−4 650 5 47 20.73 20.48 1.22

The calculated methane fuel utilisation% values are in excellent agreement with the
CFD predictions. The model is approved to be a predictive optimisation instrument where
the sustainable use of materials with specific methane utilisation outputs is targeted.

3.2. Assessment for Potential Process Optimisation

The optimisation of methane fuel utilisation in the reforming process presents a
challenge as the thermochemical processes are very complex. T the model was employed to
determine the required amount of fuel for specified methane utilisation conditions. Process
optimisation efforts offer several advantages, including reducing the amount of trial and
error necessary to optimise the process, saving time and resources, and predicting the
required optimal parameters for fuel utilisation, enabling rapid adjustments if necessary.
Moreover, it improves the overall efficiency of the process, resulting in lower costs and
fewer emissions. Given the use of an oxygen-containing medium in the current process, it
is a safe method.

The controlled operation of the pre-reforming process with specific methane fuel
utilisation is essential to ensure the success of SOC operation. It directly influences the
efficiency and performance of the SOC. The arbitrary release of methane fuel concentration
into the SOC can cause deposition issues on the anode, leading to a performance reduction
and eventual failure of the components. On the other hand, incomplete conversion can
occur if the methane concentration is too low, resulting in a decrease in power output.
Monitoring and maintaining the methane concentration at the desired optimal level is
crucial to ensure the efficient and reliable operation of solid oxide cells, resulting in cost
savings and reduced environmental impact. Figure 10 displays the prediction results
of the process possibilities to achieve fuel utilisation percentages of 20%, 25%, and 30%
using a substrate material with a porosity of 44%, depicting a range closer to the higher
parameter level.

The plot of the predicted curves illustrates the complex nonlinear behaviour of the
investigated parameters. The slope of each variable indicates the level of its effect that can
be adjusted. Based on the relationships, it was possible to assess and determine process
conditions with the desired methane fuel utilisation%. The current analyses considered
processes that maintained stable temperature, constant oxygen content, and the same
substrate. The target was to use the fuel and air mass flow rates in an economical manner to
achieve a methane fuel utilisation of 20%, 25%, and 30%. Increasing the fuel flow rate can
result in higher pre-reforming methane fuel utilisation, which means that more methane
will be converted into hydrogen and carbon monoxide.

However, if the air flow rate remains insufficient, the oxygen supply may not be
sufficient for the increased amount of methane, leading to incomplete conversion and the
production of carbon dioxide and unreacted methane.

Reducing the fuel flow rate can decrease the fuel utilisation percentage, resulting in
lower hydrogen production. However, if the airflow rate is systematically adjusted, the
process can remain balanced, resulting in the desired output. The present research results
indicate that the fuel flow behaviour influences methane fuel utilisation percentage levels
non-linearly, approaching higher levels from a nearly linear state. This behaviour could
indicate an increased mass flow rate utilization.
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The optimal configuration of model parameters is important because if more gas
is available for a chemical reaction-induced heat transfer, the more likely it will be that
methane concentration can remain as excess gas at the outlet region, resulting in reduced
methane utilisation. The air flow rate shows an exponential drop approaching low-level
values to the mid-range level, and it increases with similar behaviour, building a parabolic
curve. The fuel mass flow rate requires an increase of 58% to increase the baseline 20%
methane fuel utilisation to 25%. Similarly, the methane utilisation percentage could be
increased to 30% by increasing the fuel flow rate by 33% while allowing the air flow rate to
decrease by 28%. However, solely increasing the mass flow rates was insufficient.

5 

Figure 10. Assessment of an improved process potential by targeting specific CH4 utilisation %. 
Figure 10. Assessment of an improved process potential by targeting specific CH4 utilisation%.

In a recent study, a cost-effective approach was shown to maintain an air flow rate at a
medium temperature set at 650 ◦C [86]. Thus, it was assessed whether it was possible to
maintain the conditions and the catalyst porosity at a constant level and try to achieve the
desired methane utilisation targets with mass flow rate optimisation. It should be noted
that, when compared to the 20% methane utilisation case, an economic option could still
be achieved as both the used air and fuel mass flow rates could be reduced by increasing
the oxygen content to 7.5% instead of the targeted 5%. This can be attributed to the close
interaction between the air mass flow rate and the increased oxygen level, as the chemical
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reactions in the process are a function of oxygen concentration. This contributes to an
energy-efficient and sustainable solution in the utilisation of process gases.

4. Conclusions

This article investigates the optimal conditions for pre-forming during SOC-ready
syngas preparation. Using a 3D CFD pre-reformer model, the integrated Tri-reforming (TR)
chemical reactions and thermofluid flow of syngas-containing fluids have been system-
atically solved to predict methane fuel utilisation. The validated model has been used to
efficiently generate input for the development and training of an accelerated machine learn-
ing model. Process and material parameters, including flow rates, air temperature, different
levels of oxygen-containing gas compositions, and various catalyst substrate configura-
tions, have been considered. The AI-based model results indicate that an 11% reduction in
substrate material could be achieved by maintaining the desired parameters at the targeted
20% methane fuel utilisation. This could be attributed to the nonlinear effect of the substrate
on methane fuel utilisation. When the predicted data and the result of the 3D CFD analyses
were compared, an excellent agreement was observed. Systematic process optimisation
efforts reveal that it was possible to gain 5% in methane fuel utilisation by maintaining a
moderate air temperature of 650 ◦C under constant air flow and gas composition. The fuel
mass flow rate required an increase of 58%. Similarly, the methane utilisation% could be
increased to 30% by increasing the fuel flow rate by 33% while allowing the air flow rate to
decrease by 28%. A compromise has been given to increase the fuel oxygen content as it
was not possible to reach the high utilisation% otherwise. The accelerated AI-based model
demonstrated outstanding performance in promoting sustainable research. In addition,
it enhanced the understanding of controlled quality syngas preparation for upcoming
continuous SOC operation with reduced operation risks. The approach has great potential
for future research on accelerated data supply especially when additional variables are
considered and complex machine learning models are trained on different platforms.
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