
Citation: Biswas, M.; Wilberforce, T.;

Biswas, M.A. Prediction of Transient

Hydrogen Flow of Proton Exchange

Membrane Electrolyzer Using

Artificial Neural Network. Hydrogen

2023, 4, 542–555. https://doi.org/

10.3390/hydrogen4030035

Academic Editor: Jamesh

Mohammed-Ibrahim

Received: 12 July 2023

Revised: 8 August 2023

Accepted: 11 August 2023

Published: 14 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Prediction of Transient Hydrogen Flow of Proton Exchange
Membrane Electrolyzer Using Artificial Neural Network
Mohammad Biswas 1,* , Tabbi Wilberforce 2 and Mohammad A. Biswas 3

1 Department of Mechanical Engineering, University of Texas at Tyler, Tyler, TX 75799, USA
2 Faculty of Natural, Mathematical and Engineering Sciences, Kings College London, Strand,

London WC2R 2LS, UK; tabbi.wilberforce@kcl.ac.uk
3 Department of Chemistry, Tuskegee University, Tuskegee, AL 36088, USA; mbiswas@tuskegee.edu
* Correspondence: mbiswas@uttyler.edu

Abstract: A proton exchange membrane (PEM) electrolyzer is fed with water and powered by electric
power to electrochemically produce hydrogen at low operating temperatures and emits oxygen as a
by-product. Due to the complex nature of the performance of PEM electrolyzers, the application of
an artificial neural network (ANN) is capable of predicting its dynamic characteristics. A handful of
studies have examined and explored ANN in the prediction of the transient characteristics of PEM
electrolyzers. This research explores the estimation of the transient behavior of a PEM electrolyzer
stack under various operational conditions. Input variables in this study include stack current,
oxygen pressure, hydrogen pressure, and stack temperature. ANN models using three differing
learning algorithms and time delay structures estimated the hydrogen mass flow rate, which had
transient behavior from 0 to 1 kg/h, and forecasted better with a higher count (>5) of hidden layer
neurons. A coefficient of determination of 0.84 and a mean squared error of less than 0.005 were
recorded. The best-fitting model to predict the dynamic behavior of the hydrogen mass flow rate was
an ANN model using the Levenberg–Marquardt algorithm with 40 neurons that had a coefficient
of determination of 0.90 and a mean squared error of 0.00337. In conclusion, optimally fit models
of hydrogen flow from PEM electrolyzers utilizing artificial neural networks were developed. Such
models are useful in establishing an agile flow control system for the electrolyzer system to help
decrease power consumption and increase efficiency in hydrogen generation.

Keywords: artificial neural network; learning algorithms; PEM electrolyzer; electrolysis; hydrogen

1. Introduction

Given the current development and investigation of the potential replacement of
fossil fuel assets, which are not friendly to the climate and environment, fuel cells have
been encouraged by researchers as a suitable alternative for automotive applications. The
ongoing depletion of fossil fuel reserves combined with their unpredictable prices are
significant factors heightening this need for alternative fuel and power systems. To power
a fuel cell electric vehicle, hydrogen can be used as fuel. Hydrogen can electrochemically
react with oxygen in the air to produce electric power for the vehicle, and the by-product is
basically water vapor.

Although hydrogen is the most abundant element in the world, the extraction and
attainment of hydrogen in its elemental form can be quite challenging. Some methods
of obtaining hydrogen rely on fossil fuels, whereas an alternative method can utilize
electrolysis for splitting water into hydrogen and oxygen. With recent improvements in its
technology and electrode materials, the proton exchange membrane (PEM) electrolyzer is
still considered to be a better option for making clean and high-purity hydrogen because it is
a sustainable process, and it emits basically no carbon emissions compared to hydrocarbon
reforming processes. PEM electrolyzers also have benefits over other electrolysis processes
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such as alkaline and solid oxide electrolysis devices: they are simplistic and compact in
design, they are less caustic due to the absence of any caustic electrolyte, and they can
operate at lower cell voltages, higher current densities, and higher efficiencies (>80%) [1–3].
Another advantage of PEM electrolyzers can be their ability to run at a higher pressure on
the cathode side while running at atmospheric pressure at the anode [4]. PEM electrolyzers
utilize electrical power to oxidize water to generate oxygen molecules and protons at the
anode given that electrochemical reactions occur in porous catalyst layers on both sides of
the membrane. Electrons travel through an exterior circuit from the anode to the cathode
where, with the protons, which simultaneously travel across the membrane, they reduce
into hydrogen [1]. This process is illustrated through the electrochemical equations at each
electrode that are given as follows:

Anode: 2H2O→ 4H+ + 4e− + O2 (1)

Cathode: 4H+ + 4e− → 2H2 (2)

The central element within an electrolyzer system is the electrolysis cell stack. In PEM
electrolysis, this stack utilizes a solid electrolyte comprising a polymeric membrane, com-
monly made from materials such as Nafion or other perfluorosulfonic acid polymers. This
membrane plays a crucial role, enabling the selective passage of protons while preventing
the mixing of hydrogen and oxygen gases. As a result, the electrolysis cell stack effectively
splits water into hydrogen and oxygen gases when an electric current is applied, making
it a vital component in the production of high-purity hydrogen gas for various applica-
tions. Membranes are thin, flexible, and impermeable, resulting in low-resistance cells and
compact systems that can work at medium-high absolute pressure and high differential
pressure. The membrane enables the transport of protons or H+ cations from the anode to
the cathode while ensuring the separation of the H2 and O2 produced. PEM electrolyzers
can generally operate around a current density of 2 A/cm2 at an approximate voltage of
2.1 V and in a temperature range of 50–80 ◦C [4]. However, the acidic cell environment in
the sulfonic-based membrane forces the utilization of particular materials. These materials
need to resist the corrosive condition of low pH and sustain the applied overvoltage at the
anode, which is about 2 V, and at relatively higher current densities. The catalyst used in
an electrolyzer system, along with the current collectors and separator plates, must exhibit
corrosion resistance. This quality is essential because these components are exposed to the
harsh conditions of the electrolysis process. Only a limited number of materials can meet
the requirements for corrosion resistance under such circumstances [4]. To accomplish
this, elevated loadings of precious metal electrocatalysts, for example, platinum (Pt) or
iridium (Ir), and expensive limiting corrosion-resistant components such as bipolar plates
are needed [4]. In marketable units, differential pressure technology is adopted such that
the anodic side is supplied with water at standard pressure. The cathodic side generates
H2 at 25–35 bar [5,6]. The hydrogen output from this unit can limit the contamination with
oxygen. Moreover, the unit can reduce the minimum electrical load as well as the necessity
of oxygen removal [7]. Furthermore, it is important to incorporate a de-moisturizing system
in the electrolyzer setup to remove water. This is necessary because during the electrolysis
process, the water introduced on the anode side as an inlet can be partially transported
through the membrane to the cathode due to diffusion and electro-osmotic drag. Thus,
a de-moisturizing system helps maintain optimal operating conditions and prevent un-
wanted water accumulation in the cathode compartment [8]. Afshari et al. investigated the
effect of membrane thickness on cell voltage and hydrogen crossover. They determined
that a thicker membrane results in higher voltage losses and lower hydrogen crossover [9].
Additionally, other researchers have discovered that the decreased gas penetration, facil-
itated by the solid polymeric membrane in PEM electrolyzers, allows the system to be
operated at high pressures. This characteristic is beneficial as it opens up the possibility of
running the PEM electrolyzer at elevated pressures, which can have advantages in terms
of improved overall system efficiency and higher hydrogen production rates [10]. As a
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result, the complexity of the PEM electrolyzer system is reduced, eliminating the need for
additional stages of hydrogen compression, which is often required in other reforming
and electrolysis processes. The inherent gas-tight nature of the solid polymeric membrane
allows the PEM electrolyzer to directly produce hydrogen at high pressures, streamlining
the overall system and making it more efficient compared to alternative methods that
involve separate hydrogen compression stages. This advantage contributes to the growing
interest and application of PEM electrolysis in various industries seeking efficient and
cost-effective hydrogen production methods [11]. Ogumerem et al. have developed a
thermal management strategy to address the thermal degradation issue faced by PEM
(proton exchange membrane) electrolysis systems at high temperatures. The strategy aims
to regulate the system’s operating temperature within an optimal range to minimize the
negative effects of heat on the membrane. By implementing cooling mechanisms or heat
dissipation techniques, the approach safeguards the PEM electrolysis system, enhances its
performance, and extends the membrane’s lifespan. This work contributes to improving
the practical applicability of PEM electrolysis technology in various applications [12].

In PEM electrolyzers, many operating parameters and variables, including support
and surface materials, anode and cathode gas diffusion layers, properties of membrane and
electrolyte, flow rate, and temperature, are needed to determine the different mechanisms
and reaction steps to result in optimal current density and voltage. However, this can be very
challenging to accomplish through traditional approaches because of the intricate relation-
ships among these parameters and variables with respect to the electrolyzer performance [1].
Thus, researchers have also looked to improve the performance of hydrogen electrolysis
technology through computation since most of the electrolyzer models use conventional
analytical and empirical mathematical modeling approaches [13]. The complexity of those
models is due to many process variables, which must be tested initially [14]. The accuracy
of the models can be quantified and evaluated based on the number of process variables
considered and the precision of the curve-fitting methods utilized. In other words, the more
process variables accounted for and the higher the accuracy of the curve-fitting techniques
applied, the better the measurable accuracy of the models will be [13,14]. To avoid tedious
and intensive trial-and-error approaches, numerous studies have been conducted to de-
velop models of multiple input and output variables based on changing dynamic operating
environments. Although numerous approaches are used to develop dynamic models, the
artificial neural network (ANN) technique has not been utilized for PEM electrolyzer sys-
tems, despite promising results from investigations of similar electrochemical systems like
fuel cells [15–22]. Given the significant scientific evolution in the application of ANN for
various complex systems, this modeling approach is able to manage all complex engineering
systems. For diverse input and output parameters, the model can simulate the nonlinear
transient features of many systems. The error margin is negligible and the solution can
readily converge within a reasonable computational time [23–26]. Although ANNs can
be classified into various types depending on the implementation, the time-series model-
ing ANN with different learning algorithms and time delay is better suited for dynamic
empirical modeling in electrochemical energy system applications [23,27].

This study explores a PEM electrolyzer and models its characteristics. Varying input
and output variables were considered under dynamic operating environments. The de-
veloped variables formed a set of data to lay the groundwork for the empirical models.
Furthermore, they were incorporated to precisely calculate the hydrogen flow rate. The
study highlights the influence of major variables on hydrogen production performance,
using quantitative and qualitative transient trends. By analyzing these trends, a compre-
hensive understanding of how these variables affect hydrogen production over time is
achieved, enhancing overall comprehension of their impact on the process. The study is
presented as follows: Section 1 introduces the topic of PEM electrolyzers and empirical
dynamic modeling using ANN, Section 2 describes the ANN and its related learning al-
gorithms and structures, Section 3 details the results of the ANN models and discusses
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these promising outcomes, and Section 4 presents the closing remarks of this study and
future prospects.

2. Procedure

ANN is similar to the nervous system. Applications of this modeling approach have
broadened in the past few years due to sizable advancements in solving complex, large-
scale problems using emerging technology and expanding computational capability [13,28].
Explanations for many of the challenging practical matters originate within specific time-
frames using higher computational resources [28,29].

Figure 1 shows an ANN time series with time delay architecture that consists of input
(independent variable); neurons (NRs), including weight, bias, and time delay matrices;
and output [18]. An NR is connected to an alternative NR through a weight function w,
summed with a bias term b, and an activation function g(·). Figure 1 shows a model that
has the input variable vector U and the output variable layer vector Y. In Figure 1, the
input vector U feeds through the time delay block to then go through a weight function
matrix WU and is summed with a bias matrix bU as the response vector nU is generated
by an activation function g(·), which is a log-sigmoid function in the hidden layer. The
neurons in subsequent layers obtain the response from the preceding layer, as illustrated in
Figure 1. The response vector nU then feeds through an output weight function matrix WY

and is summed with an output bias matrix bY as the response vector nY is generated by
an activation function g(·), which is a linear function in the output layer. Analogously, the
number of hidden-layer neurons may vary autonomously. The performance of summation
combined with the execution of activation functions to realize the hidden output layer
values for a single time step ahead happens because of the structure of the ANN.
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Figure 1. Diagram of ANN model with time delay structure.

For the training and validation of the models, the data obtained from the literature
were collected from an experiment carried out at the National Fuel Cell Research Center [30].
The Nel ASA C10 commercial system used in the experiment includes the electrolyzer
stack, which is composed of sixty-five cells electrically connected in series to increase the
voltage. Table 1 shows the key variables of the electrolyzer stack. The gauge pressure at the
cathode side is around the value of 30 bar, where the pressure is reached very quickly after
system startup. The gauge pressure at the anode side is between 1.0 and 2.7 bar, and the
stack temperature ranges from 45 ◦C to 60 ◦C. The dataset was collected while testing the
plant under variable load operations [30].
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Table 1. Electrolyzer stack variables used in this study [30].

Variable Range Units

Stack Current (Input) 80 to 400 A
Stack Temperature (Input) 45 to 60 ◦C
Cathode Pressure (Input) 28 to 33 bar (gauge)
Anode Pressure (Input) 1 to 2.7 bar (gauge)

Hydrogen Mass Flow Rate (Output) 0 to 1 kg/h

During the training process, output values are realized based on the input vector.
Evaluating the structure of the network shows the input variables used to produce output.
A reduction in the error margin implies comparing trained data and output data. When
the error margin in the model’s predictions is high, an iterative approach is employed,
where the model processes all input parameters again until the error meets the specified
conditions. This iterative process aims to continually refine the model’s predictions, re-
ducing the error and improving accuracy in handling complex systems. Upon completing
the training process of an artificial neural network (ANN), the network can retain the
learned weight values and bias value approximations for subsequent validation. These
parameters are vital as they encapsulate the knowledge gained from the training data.
During validation, the ANN utilizes these approximate weights and biases to evaluate its
performance on new, unseen data, based on the given parameters. By leveraging these
learned parameters, the ANN demonstrates its ability to make accurate predictions on
data beyond the training phase. During the decision-making process, the model identifies
patterns using untrained parameters aligned with the overall training objective. It analyzes
data to discover meaningful relationships independently, without prior knowledge. By
doing so, the model gains insights into decision-making patterns solely from the training
data. The main goal is to lower the error margin between the predicted and experimental
values. Various approaches can be employed to substantially reduce the error margin
between predicted and experimental data, but the choice of method depends on the user’s
judgment and specific needs. One example of such an approach is the mean squared error
(MSE) depicted in Equation (3), a commonly used metric for evaluating prediction model
performance. Selecting the appropriate method will depend on the user’s understanding
of the problem and the specific requirements for improving prediction accuracy.

MSE =
1
m∑(W − X)2 (3)

Data points occurring are denoted as m, prediction as W, and empirical data as X [19].
Errors are useful in calculating the coefficient of determination. Equation (4) summarizes
the coefficient of determination mathematically.

R2 = [Cor(W, X)]2 = 1− ∑(W − X)2

∑
(
X− X

)2 (4)

The correlation coefficient is Cor(W, X). X is the data averaged and the sum of squares
is ∑

(
X− X

)2 [28].
The range of R2 is between 0 and 1. A coefficient of determination of 0.7 implies

that 70% of the variability is explained by predictor factors, ideal for exceptional fit. To
attain a suitably fitted model, it is subjected to fast training of the data and lowering of
the error margin. Quick convergence requires training the ANN using Newton’s method.
The Hessian matrix (HM), on the other hand, is singular [31]. The Levenberg–Marquardt
algorithm (LMA) is an alternative to the Hessian matrix that can resolve issues concerning
HM. In LMA, another term, µI, is included to enhance conditioning. Detailed investiga-
tions have been conducted to establish suitable values for µ [32]. When values of µ are
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smaller, Newton’s algorithm is achieved; when values of µ are larger, there is a decline in
the gradient.

The scaled conjugate gradient algorithm (SCGA), according to Moller, is preceded by
conjugate directions. This approach does not carry out a search for every iteration [33]. The
cost of running such simulations is high compared to others. SCGA was developed mainly
to eliminate the need for difficult line searches. Whenever SCGA is utilized, the MATLAB®

function ‘trainscg’ adjusts the weight and bias values of the network [27]. The size of each
step is approximated with the assistance of different techniques. Equation (5) shows the
term in second order:

Sk =
E′(ωk + σk pk)− E′(ωk)

σk
+ λk pk (5)

λk represents the scalar unit and is subjected to the sign of σk.

αk =
µk
δk

=
−pT

j E′qω(y1)

pT
j E′′(ω)pj

(6)

ω represents the vector in space Rn, Eω denotes the global error function, E′ω is
the gradient of error, E′qw(y1) is the quadratic approximation, and p1, p2, . . . ..pk are
weight vectors.

λk can be revised using Equation (7):

λk = 2
(

λk −
δk
|pk

2|

)
(7)

When ∆k > 0.75, then λk =
λk
4 ; when ∆k < 0.25, then λk = λk +

δk(1−∆k)

|p2
k |

.

∆k is a comparative value, deduced using Equation (8):

∆k =
2δk[E(ωk)− E(ωk + αk pk)]

µk
2 (8)

The Bayesian estimation and regularization algorithm (BERA) captures the Hessian
matrix [27]. Equation (9) represents the objective function:

F = αEw + βED (9)

The BERA considers weight in relation to the network as subjectively selected parame-
ters. Equation (10) is the probability function for an array w:

f (wD, α, β, M) =
f (Dw, β, M) f (wα, M)

f (Dα, βM)
(10)

M represents the ANN model used. f (wα, M) is the prior density and f (Dw, β, M)
is the likelihood function.

3. Results and Discussion

The ANN time series model fit was examined using the MATLAB Deep Learning
Toolbox®. Four input variables were considered for this study, along with the output
variable of hydrogen flow. The developed models utilized >90% of over 1000 datasets for
training the model and <10% for testing and validation of the model. The number of hidden
layer neurons, the type of learning algorithm, and the inclusion of the time delay structure,
shown in Figure 2, were adjusted to obtain different models to find the best-fitting one.
Table 2 presents a comparison of the three different algorithms of the ANN time series or
dynamic model with time delay using the R2 and the mean squared error. Table 3 shows
another comparison of the three different algorithms of the ANN time series or dynamic
model without time delay. In both tables, the type of algorithm is shown in Column 1, the
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count of hidden neurons is presented in Column 2, the R2 results are in Column 3, and
the mean squared error values are in Column 4. Figure 3 shows the empirical and model
responses of the hydrogen mass flow rate for the ANN models with 1, 10, 20, and 40 hidden
neurons and time delay using LMA. Figure 4 captures the experimental and model data
of the hydrogen flow rate for the ANN models with varying hidden neurons and time
delay using BERA. Figure 5 depicts the experimental and model data of the hydrogen mass
flow rate for the ANN models with varying hidden neurons and time delay using SCGA.
Figure 6 shows the empirical and model responses of the hydrogen mass flow rate for the
ANN models with 1, 10, 20, and 40 hidden neurons and without time delay using LMA.
Figure 7 includes plots of empirical and model responses of the hydrogen mass flow rate
for the ANN models with varying hidden neurons and without time delay using BERA.
Figure 8 shows plots of empirical and model responses of the hydrogen mass flow rate
for the ANN models with varying hidden neurons and without time delay using SCGA.
In Figures 3–8, the y-axis is the hydrogen mass flow rate in kg/h and the x-axis is time
in minutes.

Hydrogen 2023, 4, FOR PEER REVIEW 7 
 

 

 
Figure 2. Layout of ANN model with time delay structure in MATLAB Deep Learning Toolbox®. 

Based on all tables and figures, the majority of the models with varying numbers of 
hidden neurons as well as different algorithms and structures can reasonably approximate 
the transient data. Models having more hidden neurons (10 to 40) for all three algorithms 
performed better than models with lower or much higher numbers of hidden neurons (<5 
or >50) based on the R2 and MSE values, which are show in the blue highlighted rows in 
Tables 2 and 3. A model with a lower number of hidden neurons (<5) is likely to have a 
poor fit compared to other models due to fewer weights and biases. This is illustrated in 
Table 2 with the example of the ANN model with the time delay structure, SCGA, and one 
hidden neuron, which obtained a coefficient of determination of 0.7829, much lower than 
0.85. An ANN model with a very high number of neurons (>50) can suffer from overfitting, 
indicated by a low coefficient of determination, as shown by the ANN model without the 
time delay structure, SCGA, and 50 hidden neurons, which had an R2 of 0.0224. Moreover, 
models using LMA consistently predict hydrogen flow dynamic behavior more accurately, 
with a coefficient of determination higher than 0.9 for 10, 20, and 40 hidden neurons, as 
highlighted in Tables 2 and 3, compared to the other algorithms for a similar number of 
hidden neurons. From Tables 2 and 3, the best-fitting model is the dynamic ANN model 
using LMA and 40 hidden neurons, which had a coefficient of determination of 0.9013 and 
a mean squared error of 0.003371, which is less than 1%. 

Figure 2. Layout of ANN model with time delay structure in MATLAB Deep Learning Toolbox®.

Based on all tables and figures, the majority of the models with varying numbers of
hidden neurons as well as different algorithms and structures can reasonably approximate
the transient data. Models having more hidden neurons (10 to 40) for all three algorithms
performed better than models with lower or much higher numbers of hidden neurons
(<5 or >50) based on the R2 and MSE values, which are show in the blue highlighted rows
in Tables 2 and 3. A model with a lower number of hidden neurons (<5) is likely to have a
poor fit compared to other models due to fewer weights and biases. This is illustrated in
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Table 2 with the example of the ANN model with the time delay structure, SCGA, and one
hidden neuron, which obtained a coefficient of determination of 0.7829, much lower than
0.85. An ANN model with a very high number of neurons (>50) can suffer from overfitting,
indicated by a low coefficient of determination, as shown by the ANN model without the
time delay structure, SCGA, and 50 hidden neurons, which had an R2 of 0.0224. Moreover,
models using LMA consistently predict hydrogen flow dynamic behavior more accurately,
with a coefficient of determination higher than 0.9 for 10, 20, and 40 hidden neurons, as
highlighted in Tables 2 and 3, compared to the other algorithms for a similar number of
hidden neurons. From Tables 2 and 3, the best-fitting model is the dynamic ANN model
using LMA and 40 hidden neurons, which had a coefficient of determination of 0.9013 and
a mean squared error of 0.003371, which is less than 1%.
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Figure 8. Experimental and model data of the hydrogen mass flow rate predicted by ANN time series
without time delay structure with SCGA (1, 10, 20, and 40 neurons).

Table 2. Analysis and comparison of model results for ANN time series with time delay structure.

Learning Algorithms HN COD MSE

LMA 1 0.8762 0.004183

LMA 5 0.8874 0.003819

LMA 10 0.9000 0.003417

LMA 15 0.8927 0.003661

LMA 20 0.9001 0.003414

LMA 30 0.8970 0.003509

LMA 40 0.9013 0.003371

LMA 50 0.8956 0.003558

SCGA 1 0.7829 0.006976

SCGA 5 0.8588 0.004725

SCGA 10 0.8551 0.004839

SCGA 15 0.8691 0.004404

SCGA 20 0.8458 0.005113

SCGA 30 0.7381 0.008865

SCGA 40 0.8522 0.005006

SCGA 50 0.0224 0.079663

BERA 1 0.8763 0.004171

BERA 5 0.8784 0.004105

BERA 10 0.8785 0.004104

BERA 15 0.8854 0.003881

BERA 20 0.8854 0.003884

BERA 30 0.8773 0.004140

BERA 40 0.8773 0.004139

BERA 50 0.8770 0.004150
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Table 3. Analysis and comparison of model results for ANN time series with no time delay.

Learning Algorithms HN COD MSE

LMA 1 0.8762 0.004183

LMA 5 0.8874 0.003819

LMA 10 0.9000 0.003417

LMA 15 0.8927 0.003661

LMA 20 0.9001 0.003414

LMA 30 0.8970 0.003509

LMA 40 0.9013 0.003371

LMA 50 0.8956 0.003558

SCGA 1 0.7829 0.00698

SCGA 5 0.8588 0.00473

SCGA 10 0.8551 0.00484

SCGA 15 0.8691 0.00440

SCGA 20 0.8458 0.00511

SCGA 30 0.7381 0.00886

SCGA 40 0.8522 0.00501

SCGA 50 0.0224 0.07966

BERA 1 0.8763 0.004171

BERA 5 0.8784 0.004105

BERA 10 0.8785 0.004104

BERA 15 0.8854 0.003881

BERA 20 0.8854 0.003884

BERA 30 0.8773 0.004140

BERA 40 0.8773 0.004139

BERA 50 0.8770 0.004150

Although several investigations have been conducted on electrolyzers, there are very
few research efforts to estimate dynamic flow behavior [13,14,26]. Becker et al. developed
a set of models using Adaptive Neuro-Fuzzy Inference Systems (ANFIS) for predicting
the hydrogen volumetric flow rate of a small-scale electrolyzer (about 5 to 10 L/min of
hydrogen) along with stack and system efficiencies [13]. The results were consistent and
quite accurate, with low error percentages (<5%) for flow rate and efficiency, which are
comparable to the results of this study for the modeling technique [13]. Unlike their
empirical modeling method and results, this study looks at the hydrogen mass flow rate for
a larger-scale PEM electrolyzer system (about 22 to 200 L/min of hydrogen) using ANN, not
ANFIS. The same researchers conducted another study on predictive models using neural
networks for hydrogen flow rate, electrolyzer system efficiency, and stack efficiency [26]. A
comprehensive experimental database was obtained using the same electrolyzer system.
The models were found to be reliable, with an accuracy of <3% compared with empirical
values. Although the results have the potential for further studies with the implementation
of virtual sensors instead of physical sensors in such systems, their study is again limited to
small-scale electrolyzers and plots data as a function of indexed data instead of time; thus,
the results do not provide a clear picture of the dynamic behavior of the system. In another
study, the dynamic voltage behavior of a PEM electrolyzer with a three-cell stack (100 cm2

of active area) was modeled using ANN with a reliable accuracy of <2% with two inputs of
electrolyzer electric current and operating temperature in each electrolyzer [14]. Although
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the results seem to be reliable, the study only considers two input variables, unlike this
study, which considers four variables to account for more variation and different operating
conditions with less restriction. Moreover, the goal of their study was to explore the
hydrogen production rate, yet the focus of the results showed voltage behavior for changes
in current, unlike this study, which shows the hydrogen mass flow rate directly. Although
there are a few related studies on PEM electrolyzer model development using ANN or
similar machine learning methods, the present study does not compare to what is in
the literature.

4. Conclusions

The study looked at the use of artificial neural network modeling with varying learning
algorithms and time structures to predict transient electrolyzer performance. The models
are similar and stable in relation to the experimental datasets. Through this study, we
found the following:

• The majority of the dynamic ANN models showed responses with relatively high
coefficients of determination (greater than 0.8).

• ANN models using any of the three algorithms with the number of hidden neurons
ranging from 10 to 40 and inclusion or exclusion of time delay showed a very good fit.

• Dynamic ANN models with 10 to 40 hidden neurons combined with the LMA algo-
rithm had better performance, with most coefficient of determination values being
above 0.9.

• With a mean squared error of only 0.00337 and a coefficient of determination of 0.9013,
the most suitable ANN model to approximate the hydrogen mass flow rate was the
ANN model with the LMA algorithm and 40 neurons. However, the models with
10 and 20 neurons were very close, each with a coefficient of determination of 0.9.

Moreover, most of these modeling methods can be effective computational instru-
ments in designing a robust control architecture for electrolysis systems to boost efficiency
and operating stabilization in actual dynamic environments. The best-fitting models for
predicting the hydrogen flow of the electrolyzer using ANN time series can be utilized to
design and optimize control strategies to enhance the flow and power management of PEM
electrolyzer systems. This will lead to lower power consumption and higher efficiency of
similar electrolyzer systems.
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Nomenclature

ANN Artificial neural network
PEM Proton exchange membrane
w Weight function
b Bias
g(·) Activation function
U Input variable
Y Output variable
WU Weight function matrix
bU Biase function matrix
nU Response vector
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WY Output weight function matrix
MSE Mean squared error
COD Coefficient of determination
HN Hidden neurons
m Data points
W Predicted data
X Empirical data
X Averaged data
R2 Range between 0 and 1
HM Hessian matrix
LMA Levenberg–Marquardt algorithm
SCGA Scaled conjugate gradient algorithm
λk Scalar unit
ω Vector in space
Eω Global error function
BERA Bayesian estimation and regularization algorithm
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