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Abstract: Poly(vinyl acetate) nanofibers doped with PdS-ZnS nanoparticles (PdS-ZnS/PVAc nanofibers)
were fabricated via an electrospinning technique. PdS-ZnS nanoparticles were in situ synthesized by
adding (NH4)2S solution to poly(vinyl acetate)/zinc acetate/palladium acetate solution. Electrospinning
of the formed colloidal solution led to the formation of poly(vinyl acetate) nanofibers containing uni-
formly distributed PdS-ZnS nanoparticles. The prepared samples were characterized by field emission
scanning electron microscopy, X-ray diffraction, transmission electron microscopy and Fourier transform
infrared spectroscopy. In photocatalytic activity investigation, the PdS-ZnS/PVAc nanofibers showed
remarkably enhanced performance towards water photosplitting under solar irradiation compared
to the ZnS/PVAc nanofibers. This enhanced performance is attributed to the synergistic effects of
heterostructured PdS-ZnS nanoparticles, which can improve photogenerated charge migration and solar
light absorption.

Keywords: electrospinning; composite nanofibers; ZnS; semiconductor; photocatalyst; water splitting;
hydrogen evolution

1. Introduction

The continuous use of fossil fuels to fulfill the social energy demands causes the
emission of greenhouse effect gases, which are responsible for global warming and are a
major concern for humanity. Therefore, world scientific communities are showing keen
interest in searching for alternative and clean energy systems. Numerous efforts have been
made for the eco-friendly production of hydrogen (H2) as a pollution free and renewable
energy [1,2]. In this regard, the evolution of hydrogen via photocatalytic water splitting
using solar light-driven semiconductor photocatalysts has been regarded as the promising
route to addressing the problem. Solar energy is a free, abundant and interminable source of
energy, and its conversion into chemical energy causes zero pollution [3,4]. Semiconductor
materials with a conduction band (CB) more negative than 0.0 eV and valence band
(VB) more positive than 1.23 eV are considered active photocatalysts for water splitting
under visible light irradiation. In general, the overall water splitting efficiency to evolve
hydrogen utilizing semiconductor photocatalyst mainly depends on its light absorption
capacity, VB/CB positions, charge transfer/separation efficiency and surface chemical
reactions. Currently, various semiconductor photocatalysts are being applied for the
evolution of hydrogen. Among these, metal sulfides, mainly ZnS and CdS, are considered
emerging candidates for this purpose because of their appropriate bandgap, VB and CB
positions and appropriate photocatalytic activity [5–7]. Particularly, ZnS is a widely studied
semiconductor photocatalyst for hydrogen evolution because of its tendency to generate
electron-hole pairs rapidly and the highly negative potential of excited electrons in the
CB [8].

Furthermore, ZnS is a non-toxic, bio-safe and chemically stable II-IV type semiconduc-
tor with a bandgap of approximately 3.7 eV. The wide bandgap of ZnS limits its applications
without coupling with narrow bandgap semiconductor cocatalysts. Therefore, coupling
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a suitable cocatalyst with ZnS could be a good approach to promote its photostability. A
suitable cocatalyst not only improves the active reaction sites and separation of photo-
generated charge carriers, thereby suppressing their recombination but also decreases the
activation potential of a photocatalyst for hydrogen evolution from an aqueous solution [9].
Owing to its adequate bandgap (1.6 eV) and higher optical absorption coefficient, PdS
has been investigated as a cocatalyst for enhancing the photocatalytic hydrogen evolution
activity of ZnS. PdS is a n-type semiconductor with a maximum absorption at c.a. λ =
650 nm visible range, and its incorporation with ZnS reduces the activation energy and
fosters the oxidation-reduction reactions [10]. Moreover, the higher absorption coefficient
of PdS allows it to function efficiently even at a small amount when incorporated with ZnS,
thereby compensating for its relatively high cost. However, it would be better if future
research was focused on finding the best alternatives to PdS, as Pd is a scarce and expensive
element. To utilize the maximum advantages, PdS was chosen as a cocatalyst to introduce
into ZnS for the elevation of its photocatalytic hydrogen evolution.

Electrospinning, a broadly recognized simple and versatile technique, has attracted
growing attention for the fabrication of nanofibers from a polymer solution or melt us-
ing an electrostatic field. Nanofibers having a diameter ranging from 50 to 100 nm or
greater can be fabricated utilizing this technique. The electrospun nanofibers possess
unique properties like continuous morphology, high surface area, high porosity, flexibility
and interconnectivity [11,12]. Importantly, these nanofiber properties are associated with
the properties of electrospinning solution (viscosity, surface tension and conductivity),
atmospheric conditions (temperature, pressure and humidity), applied voltage and tip-
to-collector distance. Different types of nanofibers (polymeric, composite, carbon and
ceramic) can be fabricated using this technique for diversified applications [13–16]. Ad-
ditionally, electrospun nanofibers are mostly used as support materials for nanoparticles
either by anchoring on the surface or encapsulating inside. These actions result in a uniform
distribution of nanoparticles on/in nanofibers and can prevent the photocorrosion and
agglomeration/loss of nanoparticles during large-scale applications [17,18].

Hence, considering the advantages of electrospun nanofibers and PdS as a cocatalyst
to improve the photocatalytic performance of ZnS, this work reports a simple and facile
strategy for fabricating PdS-ZnS/PVAc nanofibers following electrospinning technique.
PdS was incorporated with ZnS nanoparticles by in situ precipitation route in PVAc solu-
tion. After electrospinning, PVAc nanofibers acted as a confined medium for uniformly
distributed PdS-ZnS composite nanoparticles. Fabricated composite nanofibers exhibited
high photocatalytic stability for evolving hydrogen from water splitting, solar light-driven
activity and better reusability. Also, this fabrication strategy could be an effective remedy
for handling and separating photocatalyst.

2. Materials and Methods
2.1. Chemicals

Poly(vinyl acetate) (PVAc, MW 5,500,000 g/mol), zinc acetate dihydrate (ZnAc), palla-
dium acetate (PdAc, reagent grade 98%), ammonium sulfide [(NH4)2S 40–48 wt% solution
in water], sodium sulfide (Na2S) and sodium sulfite (Na2SO3) were purchased from Sigma-
Aldrich, St. Louis, MO, USA. N,N-dimethylformamide (DMF) was purchased from Daejung
Chemicals, South Korea. All the chemicals were of AR grade and used without further
treatment. Distilled water was used to prepare aqueous solutions.

2.2. Fabrication of PdS-ZnS/PVAc Nanofibers

In a typical procedure, 18 wt% of PVAc solution was prepared by dissolving in DMF
under magnetic stirring (first solution). Similarly, 0.5 g of ZnAc and 0.125 g of PdAc
were separately dissolved in 1 mL of DMF. These two salt solutions were mixed together
(second solution). Then, the second solution was mixed with 5 mL of 18 wt% of PVAc
solution under constant stirring for 2 h (third solution). The final colloidal solution was
prepared by dropping 0.5 mL of (NH4)2S solution into the third solution under vigorous
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stirring to achieve good dispersion of PdS-ZnS nanoparticles in the solution, which was
left under continuous stirring for another 5 h. After, the colloidal solution was subjected to
electrospinning using a high voltage of 15 kV. In the electrospinning process, the solution
was fed to 5 mL syringe provided with a plastic micro-tip placed 15 cm apart from rotating
drum collector. The developing PdS-ZnS/PVAc nanofibers were collected on the drum
collector rotating with a constant speed by DC motor. After vacuum drying for 24 h, the
as-fabricated PdS-ZnS/PVAc electrospun nanofiber mat was used for further analysis. For
comparison, pure PVAc and ZnS/PVAc electrospun nanofiber mats were also prepared
following same procedure without adding ZnAc/PdAc and PdAc, respectively. The
schematic for the fabrication of PdS-ZnS/PVAc electrospun nanofibers is illustrated in
Figure 1.
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Figure 1. Schematic illustration for the fabrication of PdS-ZnS/PVAc nanofibers.

2.3. Characterization

Surface morphology of electrospun nanofibers was characterized by field emission
scanning electron microscope (FESEM, S-7400, Hitachi, Tokyo, Japan) provided with en-
ergy dispersive X-ray spectroscopy (EDS).Composition of samples was studied using EDS.
Information regarding phase and crystallinity of the samples was obtained with X-ray
diffractometer (XRD, Rigaku, Tokyo, Japan) with Kα (λ = 1.540 Å) radiation over Bragg an-
gles ranging from 10◦ to 80◦. Furthermore, distribution of nanoparticles in PVAc nanofibers
was observed using transmission electron microscope (TEM, JEM-2010, JEOL, Tokyo, Japan)
with a 200 kV accelerating voltage, and the perfectly crystalline nature of nanoparticles was
identified from high-resolution TEM (HR-TEM) images. For TEM/HR-TEM microscopy,
the samples were prepared by collecting nanofibers on TEM grid during electrospinning.
Fourier transform infrared (FTIR) spectroscopy (FT-IR, FT/IR-4200, Tokyo, Japan) was
applied to analyze the bonding configuration of nanoparticles with PVAc.

2.4. Photocatalytic Water Splitting for Hydrogen Evolution

Photocatalytic water splitting experiment utilizing ZnS/PVAc and PdS-ZnS/PVAc
nanofiber mats was conducted in a natural atmospheric condition on a sunny day under
uninterrupted sunlight (from 11 a.m. to 3.30 p.m.). The solar radiation was measured using
a solar power meter TM-206 (TENMARS ELECTRONICS, Taipei, Taiwan). The average
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amount of solar radiation (radiation flux per unit area) was measured to be 16.25 MJ/m2.
In this experiment, the rate of hydrogen generation was measured in a typical water-filled
graduated cylinder. The graduated cylinder filled with water was connected to the reaction
flask (placed on magnetic stirrer) using flexible pipe to measure the volume of hydrogen
gas that evolved from the reaction. A weighed amount (140 mg) of each nanofiber mat
was added into the reaction flask containing 200 mL of aqueous solution of Na2S (0.5
M) and Na2SO3 (0.5 M) as sacrificial agents. The volume of hydrogen gas evolved in
presence of solar irradiation under constant magnetic stirring was measured by recording
the displacement of water in graduated cylinder every 25 min. Finally, the reaction ended
when no hydrogen gas generation was observed. Then, the exact volume of dry hydrogen
at normal temperature and pressure (NTP) was obtained from combined gas equations in
which ambient temperature and pressure were also considered. Schematic illustration of
the evolution of hydrogen gas from photosplitting of water is shown in Figure 2.
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3. Results and Discussion

The surface morphology of as-fabricated nanofibers was studied using FESEM char-
acterization (Figure 3a–c). All formulations exhibited continuous, randomly oriented
and bead-free smooth nanofibers. It was observed that in situ synthesis of PdS and ZnS
nanoparticles did not affect the nanofiber morphology. Also, the absence of nanoparticles
on the surface of composite nanofibers was confirmed by FESEM images (Figure 3b,c).
In addition, compared to pure PVAc nanofibers (Figure 3a), the diameter of ZnS/PVAc
nanofibers (Figure 3b) and PdS-ZnS/PVAc nanofibers (Figure 3c) was observed to be
slightly decreased (ranging from 200 nm to 300 nm). The result signified that the addition
of nanoparticles led to a decrease in fiber diameter. This could be ascribed to the increase in
electrical conductivity of colloidal polymer solution that resulted in the formation of even
more uniform nanofibers with thinner diameters [19,20].

Moreover, FESEM-EDS spectra of PdS-ZnS/PVAc nanofibers (Figure 3d) revealed the
presence of Zn, S and Pd elements in PVAc nanofibers without other impurity elements.
Similarly, the spatial distribution of Zn, Pd and S in PVAc nanofibers was examined by
elemental mapping of PdS-ZnS/PVAc nanofibers (Figure 4). As depicted in the Figure,
these elements are seen homogeneously distributed in the nanofibers, confirming the
existence of PdS-ZnS nanoparticles.
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In order to study the crystalline nature of different samples, XRD analysis was per-
formed. The XRD diffraction patterns of the PdS-ZnS/PVAc nanofiber mat compared with
pure PVAc nanofiber mat and ZnS/PVAc nanofiber mat are shown in Figure 5. The broad
peak with low crystallinity centered at around 2θ of 20◦ in all formulations was assigned to
PVAc polymer. Besides, the sharp peaks centered at 2θ of 28.68◦ and 56.47◦ in the diffraction
patterns of ZnS/PVAc nanofibers and PdS-ZnS/PVAc nanofibers were assigned to the (111)
and (311) crystallographic planes of ZnS, respectively (JCPDS No. 772100) [9]. It is worth
noting that no characteristic peaks associated with PdS were observed in PdS-ZnS/PVAc
nanofibers, which may be ascribed to the low amount of PdS to be identified by XRD.
However, the presence of Pd in the composite nanofibers was confirmed by FESEM-EDS
(Figure 3d) and image mapping (Figure 4). Additionally, no peaks belonging to any other
phase were detected.
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Figure 6 illustrates the TEM image of PVAc nanofiber (Figure 6a), ZnS/PVAc nanofiber
(Figure 6b) and Pds-ZnS/PVAc nanofiber (Figure 6c). Likewise, Figure 6d illustrates the
HR-TEM image of PdS-ZnS nanoparticles. Compared to pure PVAc nanofiber, ZnS/PVAc
and Pds-ZnS/PVAc nanofibers showed highly dispersed and mostly rice grain-shaped
nanoparticles inside the polymer nanofiber. In both samples, the size of nanoparticles was
in the range of 5–10 nm. Such nanoparticles in non-aggregated form possess a large surface
area and, thus, are beneficial for chemical and physical functionalities. It is reported that
the immobilization of nanoparticles inside the polymer nanofiber is due to the smaller size
of nanoparticles than that of nanofibers [21]. Moreover, a homogeneous distribution of
nanoparticles inside the nanofibers might be obtained due to Coulombic repulsion between
charged Pd2+ and Zn2+ nanoparticles during electrospinning. Accordingly, polycrystalline
PdS-ZnS composite nanoparticles were observed in the HR-TEM image in which the lattice
fringes with a planar spacing of 0.23 nm and 0.32 nm represent the interplanar distance to
PdS (202) and ZnS (111), respectively [22,23]. Importantly, no amorphous phases between
PdS and ZnS were observed, which indicated the formation of atomic heterojunctions. As
reported in reference [24], the formation of heterojunction would favor the migration of
photogenerated electrons and holes across the PdS-ZnS interface and consequently prevent
their recombination. Hence, the results obtained from FESEM-EDS, image mapping and
TEM/HR-TEM indicated successful fabrication of Pds-ZnS/PVAc composite nanofibers.

FTIR spectra of pure PVAc, ZnS/PVAc and PdS-ZnS/PVAc nanofibers are presented
in Figure 7. As shown, all formulations display characteristic peaks at 1739.4 cm−1 (υC=O),
1239.9 and 1020.9 cm−1 (υC-O) and 1375.7 cm−1 (δCH3) corresponding to PVAc polymer
(Sprouse collection of IR, card no. 187–189) [25]. The ZnS/PVAc and PdS-ZnS/PVAc
composite nanofibers also showed the same spectra of PVAc with some reduced intensity,
which might be due to the loading of nanoparticles in PVAc nanofibers. Therefore, it is
concluded that the chemical structure of PVAc polymer was not influenced by the proposed
synthesis strategy.
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nanofibers.

Results of photocatalytic performance exhibited by ZnS/PVAc nanofibers and PdS-
ZnS/PVAc nanofibers for the photosplitting of water in the presence of Na2S and Na2SO3
to evolve hydrogen under solar irradiation are presented in Figure 8. As shown, both the
samples revealed good photocatalytic performance; however, PdS-ZnS/PVAc nanofibers
showed higher performance for the evolution of hydrogen (1.19 mmol) compared to the
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ZnS/PVAc nanofibers (0.74 mmol) within the observed time of 250 min. Additionally, the
cycling experiment of used PdS-ZnS/PVAc nanofibers under similar conditions showed
good stability in the second cycle, but there was slightly decreased performance, which
could be due to the loss of photocatalyst during the separation process. It is inferred that
the enhanced performance of PdS-ZnS/PVAc nanofibers is associated with the loading of
low bandgap PdS as cocatalyst on ZnS nanoparticles so that (i) the solar light absorption
ability of PdS-ZnS heterostructured nanoparticles increased through lowering the bandgap
and (ii) the heterojunction formed between PdS and ZnS nanoparticles favored the mi-
gration of photogenerated charge carriers across the PdS-ZnS interface and, consequently,
suppressed their recombination. Interestingly, due to the presence of methyl groups, PVAc
polymer possesses good electrical conductivity [26]. Therefore, PVAc not only served as
nanoparticle carriers but also played an important role in the photocatalytic process rather
than affecting it. Covering PdS-ZnS nanoparticles with PVAc created a network of conduct-
ing layers around the nanoparticles, which could promote the generation/migration of
photogenerated charge carriers. and prevent their recombination.
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Based on the reported bandgap positions of PdS and ZnS, the mechanism of water
photosplitting for hydrogen evolution utilizing PdS-Zn/PVAc nanofibers has been pro-
posed. The reported VB and CB positions of PdS are +1.34 V and −0.26 V vs. NHE (normal
hydrogen electrode), respectively [23,27,28]. Similarly, the reported VB and CB positions of
ZnS are −0.91 V and +2.44 vs. NHE, respectively [29,30]. Under solar irradiation, photogen-
erated electrons and holes are generated in the CB and VB of ZnS, respectively. Since the VB
position of PdS (+1.34 V vs. NHE) is less positive than that of ZnS (+2.44 V vs. NHE), the
photogenerated holes from the VB of ZnS are transferred to the VB of PdS. Hence, PdS itself
couldnot exhibit photocatalytic hydrogen evolution but it acted as a cocatalyst with ZnS
for accepting photogenerated holes from ZnS and enhancing the preferred separation of
photogenerated electrons and holes. PdS, as an oxidation cocatalyst, oxidizes sulfide (S2−)
and sulfite (SO3

2−) ions of sacrificial agents to degraded products thiosulfate (S2O3
2−) and

sulfate (SO4
2−) ions. It is suggested that the use of S2− and SO3

2− as sacrificial agents can
inhibit the formation of disulfide ions and enhance the evolution of hydrogen from water
splitting [31]. The role of PdS as an oxidation cocatalyst has also been reported in previous
reports [30,32–34]. Additionally, the conductive network of PVAc promoted the generation
of photogenerated charge carriers, enhanced the migration of photogenerated holes from
ZnS to PdS and prevented their recombination. In the meantime, the photogenerated
electrons in the CB of ZnS are captured by H+, resulting in the formation of H2, since the
CB of ZnS is sufficiently negative to generate H2 by reducing water [0 V vs. NHE; H+/H2].
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The schematic of the proposed charge transfer mechanism on PdS-ZnS/PVAc nanofibers
photocatalyst is illustrated in Figure 9. The possible photochemical reactions taking place
in water splitting for the evolution of H2 in the S2/SO3

2− system are summarized in the
following Equations (1)–(6).

2H2O +
(
2e−CB

)
→ H2 + 2OH− (1)

SO2−
3 + 2OH− +

(
2h+

VB
)
→ SO2−

4 + H2O (2)

2SO2−
3 + 2h+ → S2O2−

6 (3)

2S2− + 2h+ → S2−
2 (4)

SO2−
3 + S2− + 2h+ → S2O2−

3 (5)

SO2−
3 + S2−

2 → S2O2−
3 + S2− (6)
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photocatalyst.

4. Conclusions

In summary, PdS-ZnS/PVAc nanofibers were successfully fabricated by chemical
synthesis and electrospinning techniques. FESEM and TEM characterizations revealed that
the in situ synthesized PdS-ZnS nanoparticles were well dispersed in PVAc nanofibers. The
photocatalytic hydrogen evolution activity of PdS-ZnS/PVAc nanofibers was determined
by water splitting in the presence of Na2S and Na2SO3 as sacrificial agents under solar
irradiation. Compared to ZnS/PVAc nanofibers, PdS-ZnS/PVAc nanofibers were found to
be superior for hydrogen evolution (1.19 mmol) within 250 min, which can be ascribed to
the loading of PdS as cocatalyst on ZnS nanoparticles. We also conclude with the finding
that the loading of a cocatalyst (PdS) with a low bandgap could play important roles in
improving the separation of photogenerated charge carriers and increasing the solar light
absorption efficiency through narrowing ZnS bandgap. Finally, this work may provide
a new avenue to design and fabricate composite nanofibers having bi-component metal
sulfide nanoparticles uniformly distributed inside the polymer nanofibers for improving
hydrogen production activity from solar water photosplitting. Also, this synthesis strategy
prevents the nanoparticles from loss and agglomeration, which eventually makes the
separation process easier.
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