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Abstract: Liquid hydrogen is a promising energy carrier in the global hydrogen value chain with the
advantages of high volumetric energy density/purity, low operating pressure, and high flexibility in
delivery. Safe and high-efficiency storage and transportation are essential in the large-scale utilization
of liquid hydrogen. Aiming at the two indicators of the hold time and normal evaporation rate (NER)
required in standards, this paper focuses on the thermal behaviors of fluid during the no-vented
storage of liquid hydrogen and thermal insulations applied for the liquid hydrogen tanks, respectively.
After presenting an overview of experimental/theoretical investigations on thermal behaviors, as
well as typical forms/testing methods of performance of thermal insulations for liquid hydrogen
tanks, seven perspectives are proposed on the key challenges and recommendations for future work.
This work can benefit the design and improvement of high-performance LH2 tanks.

Keywords: liquid hydrogen; thermal behavior; thermal insulation; hold time; normal evaporation
rate; safe storage and transportation

1. Introduction

Large-scale utilization of hydrogen energy is recognized as one of the optimal solutions
to achieving net-zero emissions by the major economies. According to the report published
by the International Energy Agency (IEA) [1], global hydrogen use reached a historical
high of 95 million tons (Mt) in 2022 with a nearly 3% increase year-on-year. As a promising
energy carrier, hydrogen can be paired with energy storage systems to overcome the
limitations of intermittency of renewable energy, playing an increasing role in the transition
from fossil-fuel-dominated energy to renewable energy for the global energy structure [2,3].

Such a transition to hydrogen energy requires the development of sustainable and
substantial hydrogen value chains [4]. Storage and transportation of hydrogen are vital for
the hydrogen value chain. The storage and transportation of hydrogen in the form of liquid
hydrogen (LH2) have the advantages of large volumetric energy density, low operating
pressure, as well as high purity, among the current methods [5–7]. The LH2 has flexible
delivery methods, including tanks, transport trailers, and ships, as shown in Figure 1 [8–11],
to meet the demand for different distances and scales. As the capacity and efficiency of
hydrogen liquefaction around the world are improving, LH2 becomes the most economical
selection, with a transport distance from 4000 km to 8000 km and a transport capacity of
hydrogen above 0.8 Mt/yr [12], making LH2 a prospective energy carrier in the large-scale
utilization of hydrogen energy [13].

LH2 is a cryogen with a normal boiling point of 20.3 K at 101,325 Pa and can be
regarded as well-approximated pure para-hydrogen, since the concentration of para-
hydrogen takes up more than 99.8% [14]. The temperature difference between LH2 and
the ambient surroundings (300 K) is as high as 280 K, bringing about an inevitable heat
leak into the LH2 tank [15] to generate boil-off gas. Due to the fact that hydrogen has a
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wide flammability range from 4.1% to 74.8% when exposed to the air [16], the LH2 has to
be stored in a no-vented process to prevent the flammable boil-off gas from venting out of
the tank. During the no-vented storage process, the heat leak is the main cause of pressure
continuously building up (i.e., self-pressurization). The thermal behaviors [17] caused by
the heat leak, such as temperature stratification and buoyancy flows, can accelerate the
pressure rise, leading to a reduction in hold time 18. To guarantee large-scale safe storage
of LH2, some standards [18–20] make the requirements of the total heat leak into the tank
and the hold time of the tank.
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Figure 1. Typical methods for the storage and delivery of liquid hydrogen: (a). Spherical tank (NASA,
Washington, D.C., Washington, United States, 3200 m3) [8]; (b). Liquefied hydrogen carrier ship
(Kawasaki, Tokyo, Japan, 1250 m3) [9]; (c). Cylindrical horizontal tank (Linde, Pullach, Germany,
300 m3) [10]; (d). Transport trailer (Chart, Rancho Dominguez, CA, United States, 66.7 m3) [11].

The thermal insulation performance of LH2 tanks is described by the normal evapora-
tion rate (NER) 18 with the following expression [21]:

NER =

.
Q

φρlVtankγ
(1)

where φ is the liquid fill ratio, ρl is the liquid density, Vtank is the volume of the tank, γ is
the latent heat of vaporization, and

.
Q is the total heat leak into the LH2 tank. When the

geometric structure of the tank is fixed, the total heat leak
.

Q as well as the NER can be
determined by measuring the steady boil-off rate. Therefore, the NER in Equation (1) can
be used to describe the relative boil-off losses per day in the tank. Besides, the hold time can
be reflected by the self-pressurization rate. Typical values of NER and self-pressurization
rate for LH2 tanks with different volumes are summarized in Figure 2a.

Both standardized and tested NERs continue to reduce as the volume of tanks increases
in Figure 2a [8,10,18,19,22–26]. For tanks with a volume smaller than 500 m3, the NER
is normally less than 0.5%/d. When the tank volume is in the range of 5 m3 to 500 m3,
the NER not only changes with the volume but also relates to the shape of the tanks. For
example, a spherical tank and a cylindrical tank will have different NERs and will have
different self-pressurization rates as a matter of course. In addition, even if two cylindrical
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tanks have the same NER [27], a significant difference occurs in the self-pressurization rate
between a vertical tank and a horizontal tank. Hence, the standards have requirements for
both NER and self-pressurization rate indicators for a specific LH2 tank.
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It should be noted that the standardized values of NER and self-pressurization rate
show a difference among these standards [18,20] in Figure 2a, which demonstrates that
more efforts should be made to reveal the mechanism during the no-vented storage of
LH2. In light of this, this paper presents an overview of the research status and proposes
perspectives for future work on thermal behaviors and thermal insulation structures of LH2
storage based on an analysis of two indicators, which are the hold time and NER required
by the standards. This work can be of benefit in the design of high-performance LH2 tanks.

2. Thermal Behaviors during the No-Vented Storage of Liquid Hydrogen

A series of complex thermal behaviors in the LH2 tank, including self-pressurization,
vapor-liquid phase change, temperature stratification, temperature evolution, and buoy-
ancy flows, are caused by heat leaks [17]. Because the hold time is dependent on the
self-pressurization rate, the clarification of self-pressurization has priority in investigating
the thermal behaviors during the no-vented storage of LH2 [28]. These thermal behaviors
can be correlated by the real gas equation of state in the vapor shown, as follows: [29]:

dpv
dt

=

.
mpvΩ

ρv
+

pv

Tv

∂Tv

∂t
+

pv

zv

Dzv

Dt
+

pv

Tv
(vv·∇Tv)− pv∇·vv (2)

where pv, ρv, Tv, zv, and vv denote the pressure, density, temperature, compressibility
factor, and velocity vector of the vapor,

.
m denotes the interfacial mass transfer flux by

vapor-liquid phase change, and Ω denotes the interfacial area density [30]. It is noted
that Equation (2) is valid for describing the no-vented storage of LH2 with fixed initial
conditions (i.e., initial liquid fill ratio, pressure, and temperature distribution) but needs to
be modified when describing the chill-down, filling/venting processes or with sloshing.
The terms on the right side of Equation (2) as well as the velocity vector (vv) can describe the
effect of vapor–liquid phase change, temperature evolution of vapor, nonideality of vapor,
temperature stratification, compressibility, and buoyancy flows on the self-pressurization
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rate, respectively. This section first presents an overview of experimental/theoretical
studies on the thermal behaviors during the no-vented storage of LH2 and then proposes
perspectives and outlooks for future work.

2.1. Overview of Experimental Investigation

Despite that hydrogen has been successfully liquefied over a century [31], the mech-
anism of the self-pressurization process in LH2 tanks has not been revealed, since the
pressure evolution is not only correlated with other thermal behaviors caused by the heat
leak [32], but also affected by the shape/size of the tanks [33], initial pressure, tempera-
ture, and liquid fill ratios [34]. Unlike other cryogens, such as liquid nitrogen or liquid
helium [35–38], the published tests conducted in LH2 no-vented storage (summarized in
Table 1) are very limited due to the high cost and safety risks. More detailed information
can be found in reference [17].

Table 1. Summary of the experimental investigations on the self-pressurization process in LH2 tanks.

Exp. Tank
Shape

Volume
(m3) Time (s, h) Liquid Fill Ratio

(%)/Heat Flux (W/m2) (a) Measurement Content Accuracies

[39] Spherical 208 38 h 54.2%, 84.7%/1.9
- Pressure build-up;
- Temperature evolution of fluid;

±1.38 kPa
±0.83 K

[33,40] Spherical 0.00637;
0.09195 222–2720 s 31.6–79.8%/53–202

- Pressure build-up;
- Temperature evolution of fluid;
- Temperature distribution of fluid.

±13.8 kPa
±0.5 K

[34,41] Spherical 4.95 12–20 h 29–83%/0.35–3.5

- Pressure build-up;
- Temperature distribution of fluid;
- Temperature evolution of the fluid

and solid wall;

±0.01 kPa
±0.3 K

[42,43] Cylindrical 18.09 6.9–18.37 h 25–90%/0.526–1.514 (b) - Pressure build-up;
- Temperature evolution of fluid; ±0.13 kPa

[44,45] Cylindrical 0.02 1.75 h 14%/14.8

- Pressure build-up of the tank
transported by sea;

- Temperature evolution of fluid;
- Liquid level variation.

−

[46] Cylindrical 31.1 0.53–2.28 h 25–70%/63.52–164.76 (c)

- Pressure build-up;
- Temperature distribution of fluid

with various insulation forms;
- Liquid fill ratio changes with time.

±0.69 kPa
±1 K

(a) Heat flux is estimated from the ratio between the total heat leakage and surface area. (b) Converted by measured
heat leakage and geometric structure in reference [42,43]. (c) Converted by measured heat leakage and geometric
structure in reference [46].

2.2. Status of Theoretical Investigation

Experiments can provide reliable measurements of the pressure, temperature distri-
bution, and liquid level changes with time under fixed geometry and heat leak boundary;
however, it is not easy to directly observe the flow fields and interfacial mass transfer
between vapor and liquid phases. Given this, theoretical studies become an effective
complement to experimental studies in revealing the mechanism and achieving accurate
prediction of thermal behaviors during the no-vented storage process of LH2.

Theoretical investigations have focused on establishing analytical equations among
several discretized nodes (cells) and developing numerical models for describing the
transient thermal behaviors for the LH2 no-vented storage process. According to the
modeling comprehensiveness of thermal behaviors [29], models can be classified into three
categories: thermal equilibrium model (TEM), non-thermal equilibrium model (NTEM),
and computational fluid dynamics model (CFD model), as summarized in Table 2.

Figure 3 displays the schematics of six thermal models listed in Table 2 for describing
the thermal behaviors of the LH2 no-vented storage process. As a single-node model,
TEM [47] formulates the mass and energy conservation equations in the fluid region by
assuming the vapor and liquid phases to be in a saturation and equilibrium state. Due to not
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considering the existence of temperature stratification in the LH2 tank [48], the prediction
of pressure build-up from TEM showed a large deviation from tested data [49]. Therefore,
more attention has been paid to developing the NTEM that takes the non-equilibrium mass
and energy exchange between the vapor and liquid into account.

Table 2. Models for describing the thermal behaviors of LH2 during its no-vented storage process.

Model Classification Node (Cell)
Number Advantages Limitations

TEM - 1 A clear description of the no-vented
storage process in thermodynamics

Assuming no temperature difference
existed between vapor and

liquid phases

NTEM

SEM [48] 2 Estimation of the maximum
self-pressurization rate

The temperature of the liquid phase is
regarded as a constant

TMZM [27,49–51] 3
Incorporating the temperature

difference between vapor and liquid
phases and interfacial mass transfer

Lack of consideration of temperature
stratification in the vapor and liquid

TSM [52,53] 3~5 Incorporating the boundary layer zone
and thermal stratification in the liquid

Lack of consideration of temperature
stratification in the vapor

TMNM [54,55] ≥4 Discretization of vapor, liquid, and
boundary layer zone with more nodes Simplification of modeling flow fields

CFD model [56,57] ≥5000
Multi-scale and multi-dimensional

description of thermal behaviors for
no-vented storage of LH2

Time-consuming for thermal design
and prediction;

The selection of some sub-models
remains a disagreement

TEM: Thermal equilibrium model; NTEM: Non-thermal equilibrium model; SEM: Surface evaporated model;
TMZM: Thermal multi-zone model; TSM: Thermal stratified model; TMNM: Thermal multi-node model; CFD
model: Computational fluid dynamics model.
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As listed in Table 2, the NTEMs include the surface evaporation model (SEM) [48],
thermal multi-zone model (TMZM) [27,49–51], thermal stratified model (TSM) [52,53], and
thermal multi-node model (TMNM) [54,55] with the increasing number of nodes discretized.
Compared to the other three NTEMs, TMNM contains the calculation of temperature,
pressure, density, and even one-dimensional velocity in each node and thus can cover
all the terms on the right side of Equation (2) in predicting the self-pressurization rates.
Although the model faces the limitation of a one-dimensional description of physical fields,
it still has the potential to be a promising thermal model for the design and optimization of
high-performance LH2 tanks [29].

Compared with NTEMs, the CFD model extends the modeling to more than two
dimensions with the integration of the continuity, momentum, and energy equations in
each cell grid, and can provide a holistic spatial and temporal distribution of physical
fields, achieving the numerical visualization of thermal behaviors of LH2 in multi-scales
and multi-dimensions [17]. However, the CFD model faces a limitation in calculation speed
which takes a duration of weeks to months to obtain transient behavior information from
several hours to one day [54].

The development of the aforementioned models has promoted the clarification of the
evolution mechanism of thermal behaviors inside LH2 tanks; however, the predictions of
self-pressurization rate, temperature distribution, and liquid level changes from current
models still have a big gap to substitute the experimental observations. More quantitative
information needs to be captured in multi-physical fields calculated by thermal models.

2.3. Perspectives and Recommendations for Thermal Behaviors

Combining the current statutes of experimental/theoretical investigation on ther-
mal behaviors during the no-vented storage process of LH2, this section proposes four
perspectives on the key challenges and future recommended works in this field.

2.3.1. Long-Term Tests to Observe Transient Thermal Behaviors

Normally, the maximum allowable working pressure of an LH2 tank is designed to be
around 1 MPa. For a 100 m3 tank, the maximum hold time can reach 8 d with the help of
the self-pressurization rate indicator (120 kPa/d) shown in Figure 2a. However, the tested
periods for most experiments are less than 24 h according to the published experimental
studies on thermal behaviors of LH2 no-vented storage summarized in Table 1. Conducting
the long-term test of transient thermal behaviors of LH2 is of great significance in future
work for providing valuable experimental data on developing reliable thermal models and
upgrading the requirements in standards.

2.3.2. Mechanism of Vapor–Liquid Phase Change in Liquid Hydrogen Tanks

As indicated in Equation (2), the phase change term (
.

mpvΩ/ρv) is dependent on the
self-pressurization rate, thus figuring out the mechanism of vapor-liquid phase change
is vital for the safe storage and transportation of LH2. The current vapor-liquid phase
change models include the Schrage model [59], Tanasawa model [60], Lee model [61], and
energy jump model [62]. Different selections of coefficients in these models will have an
impact on the prediction of the self-pressurization process (Figure 4a) in cryogenic tanks.
However, the selection of coefficients in these models remains in disagreement due to the
lack of a unified theory and testing results 30. Future works are recommended to focus
on the long-term observation of vapor-liquid phase change behaviors in LH2 to calibrate
these models.
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Figure 4. Results of thermal behaviors inside LH2 tanks: (a). Predicted self-pressurization pro-
cesses when coupled with different vapor–liquid phase change models in liquid nitrogen tanks [62];
(b). Effect of temperature stratification on self-pressurization rates for the LH2 tank 3441 (Point:
Tested data; Dotted line: Spline line interpolation); (c). Temperature distributions obtained from
laminar/turbulent models (SST k-ω) [56]; (d). Pressure rise and vapor-liquid phase change rate from
laminar/turbulent models (SST k-ω) [56].

2.3.3. Effect of Temperature Stratification on Self-Pressurization Rate

The temperature stratification in the fluid is formed by the buoyancy flows [32], and
a more conspicuous temperature stratification phenomenon occurs in the vapor region
than in the liquid [41]. The existence of this phenomenon makes the thermal equilibrium
assumptions of vapor and liquid phases no longer valid and explains why the practical
pressure builds up much faster than the pressure calculated by the TEM [26].

Nevertheless, some studies [34,41] indicated that the initialized temperature stratifica-
tion helped to extend the hold time of no-vented storage of LH2. As shown in Figure 4b,
when the LH2 tank is initialized with temperature stratification (i.e., steady boil-off mode),
the hold time is 1.57 h longer than that is initialized without temperature stratification
(i.e., isothermal mode) at the same initial liquid fill ratio and heat leak. Therefore, much
effort should be made to reveal whether temperature stratification accelerates the pressure
build-up or not in future research.

2.3.4. Effect of Free Convection Flows Driven by Buoyancy Force on
Self-Pressurization Rate

As heat leaks into the tank, the fluid in the boundary layer is heated and moves upward
to go through the vapor-liquid interface due to buoyancy force, and the fluid away from the
wall keeps moving downward with vapor-liquid condensation, forming the free convection
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circulating flows among the vapor, liquid, and their boundary layers [17,63]. The intensity
of free convection is described by the modified Rayleigh number (Ra* = Gr*Pr) [64] to
judge whether the flow is laminar or turbulent. As shown in Figure 4c, the temperature
distributes more uniformly in the turbulent flows than in the laminar flows.

Normally, the modified Rayleigh number is in the turbulent region for the no-vented
storage of LH2 [17]. However, according to the results in Figure 4d, the laminar model
presents a better prediction of pressure build-up than the turbulent model. In addition,
some studies [65,66] pointed out that the turbulent model was also capable of perform-
ing good predictions compared to experimental results in the LH2 self-pressurization
process. Therefore, the numerical results still need to be validated by better and more
targeted experiments. To investigate the effect of flows on the self-pressurization rate, three-
dimensional modeling of turbulent flows with high-resolution flow fields is recommended
for future work.

3. Thermal Insulation for the No-Vented Liquid Hydrogen Storage

When the volume and initial liquid fill ratio are fixed, the NER can directly evaluate
the total heat leak into the LH2 tank. To keep the heat leak into the LH2 tank at a low level, it
is vital to develop high-performance thermal insulations at LH2 temperatures. This section
summarizes the state-of-the-art thermal insulation forms applied in LH2 storage, introduces
the widely adopted testing method of thermal insulation, and proposes perspectives on
challenges to be addressed and outlooks for future work.

3.1. Typical Thermal Insulation Forms and Testing Method for LH2 Storage

Table 3 summarizes the characteristics and performance of typical thermal insulation
forms applied in LH2 storage. As shown in Table 3, the hollow glass microsphere and
multilayer insulation (MLI) are two forms with excellent thermal insulation performance
and will help to improve the thermal insulation performance in the future design of
LH2 tanks.

Table 3. Characteristics and performance of typical thermal insulations for LH2 storage [4,67,68].

Insulation Forms Advantages Disadvantages Performance

Foam-outside
- Lightweight
- Low cost
- Easy to implement

- High thermal conductivity
- Easy to degrade in

the environment
>0.01 W/(m·K)

Foam-inside

- Low cost
- Reduce microcracking
- Decrease heat ingress when

the vacuum losses

- Larger structural tank
wall required

- Increased thermal conductivity
due to cryogenic
fluid infiltration

-

Aerogel
- Low density
- Excellent thermal insulation

under non-vacuum conditions

- High cost
- Limited mechanical properties
- Not well-established for

larger tanks

2 × 10−3~1.4 × 10−2

W/(m·K)
at 185 K [69]

Perlite

- Low cost
- Low density
- Moderate thermal insulation

under non-vacuum conditions

- High demand for the vacuum to
reach high thermal
insulation performance

- Compaction can happen with
certain tank geometries under
thermal cycling and/or
dynamic loads

1 × 10−3~5 × 10−2

W/(m·K)
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Table 3. Cont.

Insulation Forms Advantages Disadvantages Performance

Glass bubbles/Hollow
glass microspheres

- Very low density
- Simplified insulation due to

flowability
- Good thermal insulation

under non-vacuum conditions

- High demand for vacuum to
reach high thermal
insulation performance

- Not well-established for
larger tanks

2 × 10−4~1 × 10−3

W/(m·K)

Multi-layer insulation

- Low density
- Low radiation heat transfer
- Superior thermal resistance

under high vacuum
- Well-established

- Demand for high vacuum
- Costly to implement

and maintain
- Near catastrophic failure upon

vacuum loss
- Difficult to execute for certain

tank geometries or very
large tanks

1 × 10−5~5 × 10−4

W/(m·K) [70]

Testing the performance is essential for the improvement and optimization of thermal
insulation structures at LH2 temperatures. Take the MLI for instance; since the insulation
performance is dependent on the layer density, number of layers, vacuum pressure, and
temperatures of cold/warm boundaries, it is difficult to achieve an accurate prediction for it.
Thus, reliable thermal insulation performance is obtained through testing [70]. The steady
boil-off test is a widely adopted testing method for monitoring heat leaks into thermal
insulation structures with the following expression [43]:

.
Q =

.
mvtγ

(
ρl,s

ρl,s − ρv,s

)
+

.
mvt(hvt − hv,s)− ∑

Ai

Li

Th∫
Tc

k(T)dT (3)

where
.

mvt is the steady boil-off rate (mass flow rate), k is the thermal conductivity of
pipelines and thermal struts, A and L are the section area and length of the pipelines/thermal
structs, ρl,s and ρv,s are the saturation density of liquid and vapor, hvt and hv,s are the en-
thalpy of the vented boil-off gas and saturation vapor, and Tc and Th are the temperatures
of cold and ambient boundaries, respectively.

Equation (3) is valid under the assumption of a quasi-steady state. As indicated in
Equation (3), the heat leak through the thermal insulation structure equals the difference be-
tween the enthalpy of the vented boil-off gas and solid heat conduction in the pipelines and
thermal structs under the steady boil-off testing conditions [43]. This method was widely
used in testing the thermal insulation performance at liquid nitrogen temperatures [71].
However, using LH2 in steady boil-off tests is costly and may bring about safety risks, mak-
ing the published experimental data very limited. Thus, methods with an alternative heat
sink at 20.3 K should be developed to test the thermal insulation performance without LH2.

In addition, the thermal performance tested on insulation structures provides a critical
boundary condition for the prediction of thermal behaviors during the no-vented storage
of LH2. For the sake of simplifying the modeling and calculation, the heat leak through the
thermal insulation structure is treated as a uniformly distributed and constant heat flux
in some studies, thus more attention is encouraged to be paid to the transient behaviors
(spatial and temporal) of heat leak during the self-pressurization process.

3.2. Perspectives and Recommendations for Thermal Insulations

According to the aforementioned status in forms and testing methods applied in ther-
mal insulation structures for LH2 storage, some perspectives on challenges and prospects
are proposed and discussed as follows.
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3.2.1. Alternative Testing Methods for Thermal Insulations at Liquid
Hydrogen Temperatures

As shown in Figure 5, using cryocoolers or cold gaseous helium as the heat sink are
two promising methods to alternate the LH2 in measuring the performance of thermal
insulation structures at LH2 temperatures [70]. In the method coupled with the cryocoolers,
as demonstrated in Figure 5a [72], a metal rod is installed to connect the cold head of
the cryocoolers to the test chamber. The heat leak into the test chamber can be obtained
from the temperature difference between the two ends of the rod after calibrating the
thermal conductivity of the rod. Although a deviation of nearly 100% of heat leak occurred
when compared to the measured results from the steady boil-off tests at liquid nitrogen
temperatures [73], the incorporation of cryocoolers as the heat sink is still one of the
potential solutions for alternating the use of LH2 in measuring the performance of thermal
insulations [70–73]. More efforts should be made in this method to further increase the
measurement accuracy of thermal insulation performance. In the method coupled with
cold gaseous helium, as shown in Figure 5b [74], the design of the experimental facility and
testing results at liquid nitrogen temperatures were provided, but no further discussion
about the testing results at LH2 temperatures [75,76].
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3.2.2. Measurement of Transient Heat Leak at Liquid Hydrogen Temperatures

The heat leak through the thermal insulation structure is normally obtained by the
steady boil-off testing and is input to the thermal models as a constant for the prediction
of thermal behaviors inside the LH2 tank. However, the heat leak will have a spatial and
temporal distribution due to the temperature stratification 38. As indicated in Figure 6a, the
temperature stratification leads to a uniformly distributed temperature from the bottom to
the top of the LH2 tank. The maximum temperature inside the fluid rises with time, making
the temperature difference between the ambient surroundings and the fluid continuously
reduced. When the ambient temperature is fixed, the heat leak will reduce during the
no-vented storage of LH2. Moreover, the temperature of vapor is higher than that of liquid,
causing the heat leakage distributed between the vapor and liquid phases [77]. For the
sake of achieving an accurate description of the heat leak, conducting measurements of the
transient heat leak under temperature stratification is recommended in future research.
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3.2.3. Development of High-Performance Thermal Insulation for Protecting LH2 Tanks

According to the American standard CGA H-3 [18] and NASA report [43], the MLI
under high vacuum is a widely used form of thermal insulation in the LH2 tank with a
volume of less than 100 m3, and the form of variable-density MLI (VDMLI) can help to
improve the insulation performance of MLI at LH2 temperatures. Figure 6b presents the
schematic of VDMLI with foam [78]. The combination of VDMLI with foam can provide
thermal protection for the cryogenic tank in the event of a vacuum breakdown or a sudden
increase in heat leak [79]. In this case, the rapid increase in pressure and discharge of the
tank contents can be limited by the safety valves of the tank.

Since the hollow glass microsphere has a higher thermal resistance than the foam, the
composite MLI coupling the hollow glass microsphere (Figure 6c) with VDMLI becomes
a potential form of thermal insulation according to reference [80]. However, few studies
have been carried out to test the thermal insulation performance of the MLI coupled with
the hollow glass microsphere due to some limitations. First, an additional wall is required
between the hollow glass microsphere and MLI layers. Despite the existence of the hollow
glass microsphere helping to slow down the pressure rise inside the tank in the event of
a vacuum breakdown, more efforts need to be made for evacuation, and more space is
required for thermal insulation. Therefore, the feasibility of applying the thermal insulation
on the LH2 tanks by coupling the MLI with the hollow glass microsphere remains to be
revealed in future studies.

To reduce the heat leak into the tank by making use of the sensible heat from the
evaporated hydrogen from 20.3 K to 300 K, the vapor-cooled shield [35] (VCS, in Figure 6d,e)
has attracted much interest in the demand for improving thermal insulation performance
at LH2 temperatures [28]. It is noted that using the para-ortho hydrogen conversion can
improve the performance of the VCS [81–83]. However, the performance of VCS coupled
with para-ortho hydrogen conversion is limited by a high-pressure drop that existed in a
catalyst and a reasonable position of VCS at the MLI layers. Moreover, due to the lack of
systematical experimental tests, the improvement in the performance of VCS coupled with
para-ortho hydrogen conversion remains unclear. Therefore, more experimental testing of
MLI coupled with MLI at LH2 temperatures needs to be carried out.
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4. Conclusions

Safe and efficient storage/transportation is essential for large-scale utilization and
operation of LH2. This paper presents an overview of thermal behaviors during the
no-vented storage of LH2 and thermal insulations applied to LH2 tanks for the two key
indicators of hold time and normal evaporation rate (NER) required in the standard.

Thermal behaviors of the fluid inside the tank can directly affect the hold time, so
the clarification of thermal behaviors is vital for the safe operation of LH2. Based on a
summary of experimental/theoretical investigation on the thermal behaviors of LH2, four
perspectives are proposed and discussed in this paper to encourage conducting long-term
observations and revealing the mechanism of vapor-liquid phase change, temperature
stratification, and buoyancy flows.

Thermal insulation with high performance can realize a low NER as well as a small
heat leak into the tank, which provides substantial support for the long-term storage of
LH2. Herein, the forms, performance, and testing method of forms of thermal insulation at
LH2 temperatures are introduced. Accordingly, three perspectives and recommendations
for future work are presented, including the alternative methods of using cryocoolers
or cold gaseous helium to test the performance of thermal insulations, measurement of
transient behaviors of heat leak due to thermal stratification, as well as the development of
performance-improved thermal insulation structures. This work can provide guidance for
the design and improvement of high-performance LH2 tanks.
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