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Abstract: The process of dry reforming methane (DRM) is seen as a viable approach for produc-
ing hydrogen and lowering the atmospheric concentration of carbon dioxide. Recent times have
witnessed notable advancements in the development of catalysts that enable this pathway. Numer-
ous experiments have been conducted to investigate the use of nickel-based catalysts in the dry
reforming of methane. All these reported experiments showed that variations in the catalyst property,
namely pore size, pore volume, and surface area, affect the hydrogen production in DRM. None
of the previous studies has modeled the surface nickel-incorporated catalyst activity based on its
properties. In this research, DRM’s hydrogen yield is predicted using three different artificial neural
network-learning algorithms as a function of the physical properties of Ni-based catalyst along with
two reaction inputs. The geometric properties as an input set are a different approach to developing
such empirical models. The best-fitting models are the artificial neural network model using the
Levenberg–Marquardt algorithm and ten hidden neurons, which gave a coefficient of determination
of 0.9931 and an MSE of 7.51, and the artificial neural network model using the scaled conjugate
gradient algorithm and eight hidden layer neurons, which had a coefficient of determination of 0.9951
and an MSE of 4.29. This study offers useful knowledge on how to improve the DRM processes.

Keywords: dry reforming of methane; machine learning; hydrogen yield; physical properties of
nickel-based catalyst; artificial neural network

1. Introduction

Research on hydrogen generation is ongoing because it has the potential to improve
energy security, address important environmental and energy-related issues, and generate
new business opportunities. Hydrogen is a promising energy alternative for the future
because of its clean energy benefits [1]. The most desirable approach to producing hydrogen
among the various technologies available is through dry methane reforming of methane.
The urgency of finding a solution to lower carbon dioxide and methane emissions from the
atmosphere increased along with the severity of the global warming crisis [2].

The most economical way of producing hydrogen is steam reforming of methane
(SRM). It is the most widely used method for hydrogen production; about half of total
hydrogen is generated through this method. The drawback of this process is that it produces
greenhouse gases (GHGs). This is why the modern trend is to find an alternative way of
producing hydrogen. Many researchers have turned their attention to producing hydrogen
using the dry reformation of methane (DRM), as it effectively valorizes both methane and
carbon dioxide. The process of turning methane (CH4) and carbon dioxide (CO2) into
syngas—a combination of hydrogen (H2) and carbon monoxide (CO)—is called DRM, also
referred to as CO2 reforming of methane [3,4].
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The process of DRM is seen as a viable approach for producing hydrogen and lowering
the atmospheric concentration of carbon dioxide. Nonetheless, its main challenge is its
high energy requirements. DRM’s main reactions are given below.

CH4 + CO2 → 2CO + 2H2 ∆H (298 K) = +247.4 kJ/mole (Dry Reforming)

CO + H2O → 2CO2 + H2 ∆H (298 K) = −41.2 kJ/mole (Water–Gas Shift)

CH4 → C + 2H2 ∆H (298 K) = +74.9 kJ/mole (Methane Decomposition)

2CO + → C + CO2 ∆H (298 K) = −172.4 kJ/mole

Being an endothermic reaction, DRM needs elevated temperatures to function
properly—usually between 700 ◦C and 1000 ◦C. When compared to other syngas man-
ufacturing procedures, this process is less cost-effective and energy-efficient due to the
requirement for high temperatures, which also results in high energy usage [5–9].

Noteworthy progress has been made in the creation of catalysts that facilitate this
pathway in recent times. For DRM, noble metal catalysts are particularly useful. Exam-
ples of these include those containing ruthenium (Ru), platinum (Pt), rhodium (Rh), and
palladium (Pd). These catalysts exhibit high levels of stability, coking resistance, and
activity [10]. Non-noble metals, especially nickel (Ni), are widely used in DRM because
of their low cost. The employment of catalysts based on nickel in the dry reforming of
methane has been the subject of numerous experiments. Ni-based catalysts can achieve
sufficient activity for DRM if they are supported by the right materials (such as MgO,
Al2O3, or CeO2) [10–14]. The supporting metal oxides yield enhanced performance and
increased catalytic stability. It promotes the anchoring of the active phase to their surface.
This generally leads to increased conversions and selectivity in the DRM reaction [15,16].
A catalytic support, while not directly involved in the process, can modify the overall
properties of the catalyst. Numerous prior studies have demonstrated that the catalytic
performance of metallic catalysts is enhanced with the dispersion of the active support and
the metal. Moreover, the support must provide exceptional thermal stability and superior
mechanical strength [17,18].

Pore volume, surface area, and pore diameter always affect the catalytic activity. These
properties influence the interaction of the reactants with the active sites of the catalyst,
influencing the total effectiveness of the catalytic process [17]. The appropriate calcination
technique and optimal matrix combination with Ni during the manufacturing of catalysts
can influence the morphology of the solid heterogeneous Ni-based catalyst [19–22]. The
pore diameter and surface area of a Ni catalyst in DRM significantly influence hydrogen
yield. Catalysts with higher pore volume tend to exhibit improved performance in DRM,
attributed to enhanced mass transfer and reduced coking. Catalysts with mesoporous
structures typically exhibit enhanced activity and improved hydrogen selectivity [23]. The
diameter of the pores influences the quantity of carbon dioxide and methane that can access
the active sites of the catalyst. When the holes are excessively small, reactant molecules
are unable to penetrate, thereby restricting the reaction to the surface area. When pore
sizes are suitable, the movement of reactants and products is enhanced. Smaller pores
can lead to diffusion restrictions despite the fact that larger openings may decrease the
distance molecules need to traverse to access active sites. The influence of pore diameter
on carbon deposition and generation is a prevalent concern in DRM. Optimal pore widths
can reduce carbon buildup by allowing sufficient space for carbon species to be gasified
and eliminated [24,25]

The ability of a catalyst to efficiently catalyze the reaction between methane (CH4) and
carbon dioxide (CO2) to produce syngas (H2 and CO) is measured by its hydrogen yield,
which is a critical performance metric for assessing the catalytic activity of different catalysts.
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By comparing the hydrogen yields of different catalysts under similar conditions, the
performance of a catalyst can be determined [26]. Hydrogen yield is calculated as follows:

Hydrogen yield(%) =
Moles of H2 in production
2 × Moles of CH4 in feed

× 100

An artificial neural network (ANN) can model any complex non-linear phe-
nomenon [27,28]. It is made up of networked neurons that allow the processing of a
set of input data to produce matching sets of desired outputs [29]. Previously, ANN was
chosen by testing different neural network topologies based on the non-linear relationship
between the reaction temperature, catalyst weight, time of stream, calcination temperature,
calcination time, specific volume, and H2 yield [30,31]. Hossain et al. [31] developed an
ANN model to predict hydrogen yield, CO yield, methane, and carbon dioxide conversions
as a function of feed ratio, temperature, and metal loading. Similarly, Alsaffar et al. [30]
developed an ANN model to predict H2 and CO production as a function of inlet pressures
and temperature. Gendy et al. [32] developed several models, including ANN models
for the DRM process, and they obtained an excellent fit for ANN models to predict the
performance for operating conditions of gas velocity, temperature, and composition. In con-
trast to prior research on ANN modeling for dry methane reforming, this article presents a
model utilizing published experimental data, incorporating various geometric properties of
Ni-based catalysts as input variables, alongside temperature and gas velocity, to generate
hydrogen from methane without the presence of water.

This study looked to develop a model using surface area, pore specific volume, and
pore diameter as input variables, which has not been carried out in the previous literature
and would be of interest to carry out in potentially optimized reactors and determine rele-
vant performance. To understand the variables, a broader understanding of the influence
of these variables affecting H2 generation can be observed to improve the overall impact on
the reaction process. The work in this paper is outlined as follows: Section 1 introduces the
topic of dry reforming of methane along with blackbox modeling based on ANN, the next
section explains the modeling approach and relevant learning algorithms, the following
section presents resulting ANN models and discussion compared to the experimental data,
and Section 4 provides the concluding points and potential implication.

2. Materials and Methods
2.1. Artificial Neural Network Modeling

ANN is like the human central nervous network. Such backbox modeling techniques
have extended and increased over the past decade or more due to significant progress
in evaluating complicated and big challenges through the use of innovative tools and
computational ability [33,34]. Figure 1 shows an ANN static fitting layout to involve the
input variable, neurons, along with weight and bias, and the output [35]. The neuron is
connected through a weight function, added to a bias parameter, to go through an activation
function. Figure 1 illustrates the layout for the ANN modeling technique, with input vector
I and output layer vector O. The input vector goes into a matrix of weight WI and is added
to a matrix of bias bI to then go through the hidden layer activation function f( ), which
is a log-sigmoid function. The output layer obtains values through hidden neurons. The
value from the hidden layer goes to a matrix of output weight WO and is then added to a
matrix of output bias bO to then be followed by the output activation function f( ), which is
a linear function. Furthermore, the number of hidden neurons can be varied to obtain the
optimal model. The values of the addition, along with the values of activation functions,
provide results in the last two layers for the given ANN layout.

For model validation and training, the literature data were collected from various
sources. Extracted data are shown in Tables 1 and 2. Table 3 presents the summary of major
variables for the model development and analysis.
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Table 2. Properties selected as input variables for ANN modeling.

Sr/No Catalyst Name Surface Area
(m2/g)

Pore Volume
(cm3/g)

Pore Diameter
(nm) GHSV (L/h gcat) RT (◦C)

1 Ni/ZrO2 44 0.05 19.9 40 800
2 5Ni15YZr 25 0.18 24 42 700
3 5Ni-SP-OA 290.3 0.6614 9.11 24 700
4 Ni-SP-Imp 296.1 0.7414 10.67 24 700
5 Ni-20/MSN 422 0.645 10.22 36 700
6 10NiRh/Al2O3 183 0.53 11.9 100 550
7 10NiRh/Al2O3 183 0.53 11.9 100 650
8 NiY/Al2O3 163 0.66 17.17 60 550
9 Ni/CeO2 83.1 0.14 4.85 40 700
10 Ni/CeO2-Al2O3 100.6 0.324 40.75 30 750
11 NiPd-SiO2-Imp 271.3 0.7236 10.67 24 700
12 NiPd-SiO2-OA 278.1 0.635 8.83 24 700
13 5Ni2Ce/ZSM5 235 0.09 5.4 42 700
14 5Ni2Ce/ZSM5 235 0.09 5.4 42 700
15 5Ni2Ce/ZSM5 235 0.09 5.4 42 800
16 NZA-0C 124.4 0.59 19 42 800
17 NZA-1C 119.5 0.57 18.8 42 800
18 NZA-2C 117.5 0.56 18.9 42 800
19 NZA-3C 117.8 0.55 18.7 42 800
20 NZA-4C 115.2 0.54 18.8 42 800
21 Ni/TiO2-600 34.77 0.33 36.7 42 700
22 Ni/TiO2-800 3.04 0.032 51.2 42 700
23 Ni/MgO-600 55.2 0.52 35.4 42 700
24 Ni/MgO-800 37.12 0.35 40 42 700
25 Ni/Al2O3-600 196 0.61 9.71 42 700
26 Ni/Al2O3-800 175.29 0.67 11.2 42 700
27 Ni/ZrO2-600 23.75 0.21 29.17 42 700
28 Ni/ZrO2-800 14.13 0.14 44.41 42 700

Table 3. Dry reforming of methane reactor variables considered in this study.

Variable Range Units

GSHV (Input) 24 to 100 L/h gcat
Reactor Temperature (Input) 550 to 800 ◦C

Surface Area (Input) 0.44 to 422 m2/g
Pore Volume (Input) 0.03 to 0.74 cm3/g

Pore Diameter (Input) 4 to 52 Nm
Hydrogen Yield (Output) 1 to 100 %

For the training part of the model development, values for the output layer are deter-
mined from the input layer values. The goal is to minimize the error between the trained
model’s predictions and the actual output data. When there is a significant discrepancy
in the model’s predictions, an iterative method is used. The model’s parameters are up-
dated until the error is reduced to the desired level. This process aims to continuously
improve the model’s accuracy in handling complex systems. After training, ANN retains
the optimized weights and biases for future validation. These parameters are vital as
they encapsulate the knowledge gained from the training data. During validation, the
ANN utilizes these approximate weights and biases to evaluate its performance on new,
unseen data based on the given parameters. Utilizing the learned parameters, the ANN
model can accurately predict data beyond the training phase. During decision-making, the
model detects patterns with untrained parameters that align with the overall training goals.
The model independently analyzes data to uncover meaningful relationships without any
prior knowledge. This allows it to derive insights into decision-making patterns based
solely on the training data. There are several methods available to significantly reduce
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the error margin between predicted and experimental data. However, the selection of the
appropriate approach depends on the user’s judgment and specific requirements. One
example of such an approach is the mean squared error (MSE) depicted in Equation (1), a
commonly used metric for evaluating prediction model performance with a 95% confidence
interval. The right method to choose depends on the user’s comprehension of the problem
and the specific needs for enhancing prediction accuracy.

MSE =
1
p∑(T − Z)2 (1)

Data points occurring are denoted as p, prediction as T, and empirical data as Z [19].
Errors are useful in calculating the coefficient of determination. Equation (2) reviews the
coefficient of determination R2 mathematically.

R2 = [Cor(T, Z)]2 = 1 − ∑(T − Z)2

∑
(
Z − Z

)2 (2)

The correlation coefficient is Cor(T, Z). Z is the data averaged, and the sum of squares
is ∑

(
Z − Z

)2.
The range of R2 is from zero to one with a 95% confidence interval. A coefficient of

determination of 0.85 implies that 85% of the variability is explained by predictor factors,
ideal for exceptional fit. To achieve a well-fitted model, it undergoes rapid training and
error margin reduction. Quick convergence requires training the ANN using Newton’s
method, even when the Hessian matrix is singular [41]. The Levenberg–Marquardt (LM)
algorithm offers an alternative approach to the Hessian matrix, effectively addressing
related concerns. In LM, another term, µI, is included to enhance conditioning. Detailed
investigations have been conducted to establish suitable values for µ [42]. When values of
µ are lesser, Newton’s algorithm is reached; when values of µ are bigger, there is a decrease
in the gradient.

Conversely, the scaled conjugate gradient (SCG) algorithm utilizes conjugate directions
and does not perform a search at every iteration [43]. To run similar simulations, there is
a higher cost compared to other approaches. SCG was formed to eliminate the need for
challenging line searches. When SCG is employed, the MATLAB® (version 9.0) function
‘trainscg’ adjusts the ANN bias and weight values [44]. The size of each step is estimated
with the aid of separate techniques. Equation (3) shows the term in second order:

Sn =
E′(ωn + σn pn)− E′(ωn)

σk
+ λn pn (3)

where λn is the scalar unit and is subjected to the sign of σn.

αn =
µn

δn
=

−pT
j E′

qω(z1)

pT
j E′′(ω)pj

(4)

ω represents the vector in space Rn, Eω denotes the global error function, E′ω is
the gradient of error, E′

qw(z1) is the quadratic approximation, and p1, p2, . . . ..pn are
weight vectors.

The term λn can be revised using Equation (5):

λn = 2
(

λn −
δn

|pn2|

)
(5)

when ∆n > 0.75, then λn = λn
4 , and when ∆n < 0.25, then λn = λn +

δn(1−∆n)

|p2
n| .



Hydrogen 2024, 5 806

The term ∆n is a comparative value, deduced using Equation (6):

∆n =
2δn[E(ωn)− E(ωn + αn pn)]

µn2 (6)

The Bayesian regularization (BR) algorithm considers the Hessian matrix in another
way [27]. Equation (7) represents the objective function:

G = αEw + βED (7)

The BR considers weight in relation to the network as subjectively selected parameters.
Equation (8) is the probability function for an array w:

g(wD, α, β, M) =
g(Dw, β, M)g(wα, M)

g(Dα, βM)
(8)

The term M represents the ANN model used. g(wα, M) is the prior density, and
g(Dw, β, M) is the likelihood function.

2.2. Computational Resources for ANN Models

When artificial neural network (ANN) models are developed and trained for predicting
hydrogen yield in dry reforming of methane (DRM) using MATLAB’s Neural Network
Toolbox®, here are a couple of key computational resources that were considered:

1. Processing Time—The time required to train an ANN model can vary significantly
based on the complexity of the network (e.g., number of layers and neurons), the size
of the dataset, and the computational power available. For this study, training a simple
feedforward network with several hidden neurons took a few minutes on a standard CPU
with Windows 11 operating system.

2. Memory Requirements—Training ANNs can be memory-intensive, so the memory
required depends on the size of the dataset, the architecture of the network, and the batch
size used during training. For this study, training a network with several parameters on a
small dataset requires less than 2 GB of RAM on a standard CPU.

3. Resulting Outcome and Discussions

The fit of the ANN time series model was evaluated using the MATLAB Deep Learning
Toolbox®, which is presented in Figure 2. Five input variables and one output variable of
hydrogen yield have been considered for this work. The models utilized more than 90%
of twenty-eight data points for training the model and less than 10% for model testing
and validation. The number of hidden layer neurons and the type of learning algorithm
were adjusted to create different models to aim to identify the best fit. Table 4 presents a
comparison of the three different algorithms of the ANN static model using the R2 and the
mean squared error. In Table 4, the type of algorithm is shown in Column 1, the count of
hidden neurons is presented in Column 2, the R2 results are in Column 3, and the mean
squared error values are in Column 4. Figures 3–5 show the experimental and model
responses of the hydrogen yield for the ANN models with 5, 10, 30, and 50 hidden neurons
and using LM as a function of surface area, pore diameter, and volume. Figures 6–8 present
the experimental and model data for hydrogen yield in ANN models with varying hidden
neurons, using BR as a function of surface area, pore diameter, and volume. Figures 9–11
show the experimental and model data of the hydrogen yield for the ANN models with
varying hidden neurons using SCG as a function of surface area, pore diameter, and volume.
In Figures 3–12, the y-axis is the hydrogen yield in %, and the x-axis is one of the three
input variables: surface area, pore volume, and pore diameter.
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Based on the model results, some of the developed models with different numbers
of hidden neurons and learning algorithms can moderately estimate the experimental
data. Models with a moderate number of hidden neurons (five to twenty) across all
learning algorithms to achieve R2 values greater than 0.95 outperformed those with fewer
or significantly more hidden neurons (less than five or more than twenty) with R2 values of
0.7 to 0.94, which are shown in the light orange highlighted rows in Table 2. A model with
a smaller number of hidden neurons (such as one) is likely to have a poor fit compared to
other models due to having fewer weights and biases. This is illustrated in Table 2, with the
example of the ANN model with BR and one hidden neuron, which obtained a coefficient
of determination of 0.7652, lower than 0.8, and an MSE of 180, which is remarkably high.
An ANN model with an excessively high number of neurons (over 50) can experience
overfitting, as evidenced by a relatively low coefficient of determination or a high MSE,
as demonstrated by the ANN model with LM and 50 hidden neurons, which has an MSE
value of 55.01. From Table 2, the best-fitting models are the ANN model using LM and ten
hidden neurons, which had a coefficient of determination of 0.9931 and a mean squared
error of 7.51, and the ANN model using SCG and eight hidden neurons, which had a
coefficient of determination of 0.9951 and a mean squared error of 4.29. The optimal models
are observed and compared with experimental data with varying surface areas at a constant
temperature of 800 ◦C and GHSV of 42 L/h gcat, while the pore diameter is about 19 nm,
and the pore volume is around 0.57 cm3/g, as shown in Figure 12. It can be observed that
there is relatively close precision in terms of following the trend, and the accuracy is within
3% of the hydrogen yield, thus showing promise for the models to predict the hydrogen
yield for DRM application.

The strong correlation between surface area and the hydrogen output of DRM can be
observed in Figures 3, 6 and 9. The catalyst’s surface area between 110 and 140 m2/g yields
the maximum yield. These point clusters within this range also imply that it functions
better for BR and LM when there are five neurons. All the model points for SCG, however,
are nearer the experimental point. This also agrees with the literature that the increase in
surface area, along with relatively higher operating temperature and GHSV, leads to higher
catalytic activity and, thus, hydrogen production. The high surface area allows more active
areas to be in close proximity to the reactants, therefore hastening the process. The more
surface area catalysts provide for reactants to attach to them, the more opportunities for
them to be more efficient. Greater surface area facilitates better distribution of the active
ingredient, therefore preventing sticking together and maintaining a high activity level.
A smaller surface area may result in fewer active sites, therefore reducing the catalyst’s
overall performance [3].

The effect of pore diameter is apparent in Figures 4, 7 and 10. All three types of
models produced the highest yield when the pore diameter was around 18 nm, following
the experimental value. This shows that the pore size, in this case diameter, plays an
important role besides operating temperature and GHSV, where a relative decrease in
diameter can lead to increased catalytic activity and DRM performance [3,20]. It could be
that the decreased size in the diameter produced amorphous carbon species to result in
the occurrence of the Boudouard reaction, resulting in higher hydrogen yield and lower
carbon deposition. While smaller-width micropores can offer a lot of surface area, if they
are too narrow, larger reactant molecules are not able to reach the active sites, limiting
mass transfer. Mesopores or macropores facilitate products and reactants to pass through
the material more easily, hence reducing diffusion resistance. This is particularly true for
interactions involving larger molecules. For bigger compounds, this can strengthen the
catalytic effect. The finest pore width depends on the size of the reactant molecules. While
too small pores could make it difficult to reach or block, too large pores could shrink the
surface area [3,23].

Figures 5, 8 and 11 show the effect of pore volume on hydrogen yield. These figures
suggest that a high hydrogen yield can be obtained when the pore volume is between
0.52 and 0.60 cm3/g. The yield increases as pore capacity increases as a result of better
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reactant diffusion. This value would decrease beyond an ideal pore volume. It is apparent
in LM (Figure 5) that the yields are reduced when pore volume goes beyond 0.52 nm. LM
rightly brings this trend. This shows again that the pore specific volume and size affect
the catalytic activity and DRM performance, where the increase in pore volume results in
higher DRM performance. Greater pore volume allows the catalyst to retain more reactants,
therefore facilitating access to the active sites. It also makes it simple for goods to leave
the pores, hence reducing the likelihood of pores becoming blocked. Nevertheless, if the
pore volume is too large and the active surface area is insufficient, active sites could be
lost [3,23].

It was observed from the literature that carbon deposition increases, hydrogen yield
increases, and reactant conversion decreases are influenced by the pore volume, along with
metal catalyst loading and support composition [23]. This trend is confirmed through this
study. Although this study will benefit in predicting the DRM performance, it is mainly
limited to similar types of DRM reactors due to the ANN modeling approach being an
empirical model approach. More data on various reactors are needed to develop a more
comprehensive model set.

A sensitivity analysis was conducted for the ANN and experimental models. This
process helps understand how changes in input variables affect the output predictions.
Using the dataset, the input perturbation method assessed the sensitivity of each input
variable. This involves slightly varying each input by 1% deviation and observing the
change in the output. Figure 13 shows that the temperature has the highest sensitivity,
indicating that it is the most critical factor affecting the output. Moreover, pore diameter and
surface area have moderate sensitivity to potentially play a significant role. Finally, pore
volume and GHSV have lower sensitivity, indicating that they have less impact compared
to other variables. Figure 14 visualizes the fitting of one of the ANN models using the LM
algorithm, where the coefficient determination is illustrated on how the fit is compared
and estimated.
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4. Conclusions

Given dry methane reforming is a feasible option to produce hydrogen effectively,
this study uses experimental data to develop empirical models using ANN to predict
hydrogen yield in the dry reforming of methane in the presence of nickel-based catalysts
under different operating and physical conditions. Temperature, gas velocity, and three
key geometric properties of the nickel-based catalysts were taken as input variables in
the process of observing and predicting the hydrogen production yield from methane
without the use of water. The ANN was trained using three different algorithms, Leven–
Marquardt, Bayesian regularization, and scaled conjugate gradient, in order to forecast the
hydrogen yield.

The ANN models that were best-fitting models involved ten hidden neurons and the
LM algorithm, with an R2 of 0.9931 and an MSE of 7.51, and eight hidden neurons and the
SCG algorithm, with an R2 of 0.9951 and an MSE of 4.29.

The hydrogen yield was relatively well-predicted when the ANN model was trained
using the optimal number of hidden neurons and the learning algorithm. It is a sign that
the measured measurements and the expected yield agree precisely. In order to examine
the functional relationship between the hydrogen yield and variables in the hydrogen-
generation process using a methane dry reforming reaction over a Ni-based catalyst, this
work has shown how to employ ANN predictive modeling to be used to help design and
optimize future DRM experiments based not only on thermal fluid properties but also
geometric properties with relatively less time and resources utilized. This could lead to
a more consistent and reliable performance of the DRM reactor that can be confidently
monitored and assuredly controlled for high hydrogen yield to build up the amount of
hydrogen to meet the clean energy market, including fuel cell electric vehicles and other
applications. Further studies will be carried out by collecting and analyzing more relevant
data for an optimized, comprehensive model.

Employing this developed model to describe the physical properties of catalysts could
make it much easier to build and make new catalysts. This model could predict what
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would happen and help with optimization by showing complex, non-linear connections
between catalyst factors and their performance that would be hard to find with traditional
testing methods. Experiments are used to teach this model how to predict what will happen
when physical factors change in terms of catalyst activity. This ability to predict the future
makes screening easier, improves performance, speeds up catalyst design, finds the best
manufacturing parameters, cuts down on the time and cost of experiments, shows how
complex interactions work, adapts to real-world conditions, and encourages catalyst design
that is good for the environment.

This model will generate precise predictions regarding the performance of the catalyst
as it is based on physical properties. The necessity for extensive experimentation will be
diminished, and the cost will be reduced. It will tailor catalyst design efforts for specific
industrial applications. Its application will accelerate the identification of high-performance
catalysts, guaranteeing their optimization for both efficacy and longevity. This results in
significant advancements in the industrial applications of dry methane reforming.

This study did not account for the catalytic support and the catalyst manufacturing
process nor their implications on activity. Coke deposition was also not taken into account.
A prospective modeling study may incorporate these characteristics based on available
experimental results.
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Nomenclature

Symbol/Acronym Explanation
DRM dry reformation of methane
ANN artificial neural network
λn scalar unit
GHSV gas hourly space velocity
MSE the mean squared error
R2 coefficient of determination
p data points occurring
T prediction
Z empirical data
Z the data averaged
SCG scaled conjugate gradient
ω vector in space
BR Bayesian regularization
g(wα, M) the prior density
g(Dw, β, M) the likelihood function
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